On the number of terms in the Lovelock products

Abstract : In this short note we wonder about the explicit expression of the expanding of the $p$-th Lovelock product. We use the 1990's works of S. A. Fulling et al. on the symmetries of the Riemann tensor, and we show that the number of independent scalars appearing in this expanding is equal to the number of Young diagrams with all row lengths even in the decomposition of the $p$-th plethysm of the Young diagram representing the symmetries of the Riemann tensor.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01953158
Contributeur : Inspire Hep <>
Soumis le : mercredi 12 décembre 2018 - 16:33:10
Dernière modification le : vendredi 18 janvier 2019 - 01:01:34

Lien texte intégral

Identifiants

Collections

Citation

Xavier Lachaume. On the number of terms in the Lovelock products. 2018. 〈hal-01953158〉

Partager

Métriques

Consultations de la notice

4