Sobol-Hoeffding decomposition: bounds and extremes
Olivier Roustant

To cite this version:
Olivier Roustant. Sobol-Hoeffding decomposition: bounds and extremes. 2018. hal-01953080

HAL Id: hal-01953080
https://hal.archives-ouvertes.fr/hal-01953080
Preprint submitted on 12 Dec 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Sobol-Hoeffding decomposition: bounds and extremes

Olivier Roustant *

Synthesis of works with
F. Barthe, J. Fruth, F. Gamboa, B. Iooss, S. Kuhnt, C. Mercadier and T. Muehlenstaedt

* Mines Saint-Étienne

Seminar of Statistics at IMT Toulouse, 2018 December 11
Outline

1. Sobol-Hoeffding decomposition
 - Definition and ANOVA
 - Supersets and application to screening

2. Computational shortcuts based on derivatives
 - Upper bounds with Poincaré inequalities
 - Lower bounds with geometry

3. Connexion with extremes: the tail dependograph
Part I

Sobol-Hoeffding decomposition
Sobol-Hoeffding decomposition

Framework. \(X = (X_1, \ldots, X_d) \) is a vector of independent input variables with distribution \(\mu_1 \otimes \cdots \otimes \mu_d \), and \(g : \Delta \subseteq \mathbb{R}^d \to \mathbb{R} \) is such that \(g(X) \in L^2(\mu) \).

Theorem [Hoeffding, 1948, Efron and Stein, 1981, Sobol, 1993]

There exists a unique expansion of \(g \) of the form

\[
g(X) = g_0 + \sum_{i=1}^{d} g_i(X_i) + \sum_{1 \leq i < j \leq d} g_{i,j}(X_i, X_j) + \cdots + g_{1,\ldots,d}(X_1, \ldots, X_d)
\]

such that \(E[g_I(X_I)|X_J] = 0 \) for all \(I \subseteq \{1, \ldots, d\} \) and all \(J \subsetneq I \).
Sobol-Hoeffding decomposition

Framework. \(X = (X_1, \ldots, X_d) \) is a vector of independent input variables with distribution \(\mu_1 \otimes \cdots \otimes \mu_d \), and \(g : \Delta \subseteq \mathbb{R}^d \rightarrow \mathbb{R} \) is such that \(g(X) \in L^2(\mu) \).

There exists a unique expansion of \(g \) of the form

\[
g(X) = g_0 + \sum_{i=1}^{d} g_i(X_i) + \sum_{1 \leq i < j \leq d} g_{i,j}(X_i, X_j) + \cdots + g_{1,\ldots,d}(X_1, \ldots, X_d)
\]

such that \(E[g_I(X_I)|X_J] = 0 \) for all \(I \subseteq \{1, \ldots, d\} \) and all \(J \subsetneq I \). Moreover:

\[
\begin{align*}
g_0 &= E[g(X)] \\
g_i(X_i) &= E[g(X)|X_i] - g_0 \\
g_I(X_I) &= E[g(X)|X_I] - \sum_{J \subsetneq I} g_J(X_J) \quad \text{(recursion)} \\
&= \sum_{J \subseteq I} (-1)^{|I|-|J|} E[g(X)|X_J] \quad \text{(inclusion-exclusion)}
\end{align*}
\]
The non-overlapping condition

\[\mathbb{E}[g_I(X_I) | X_J] = 0 \quad \text{for all} \quad J \subsetneq I \]

avoids one term to be considered as a more complex one.
Variance decomposition

- The non-overlapping condition
 \[\mathbb{E}[g_I(X_I)|X_J] = 0 \quad \text{for all} \quad J \subsetneq I \]
 avoids one term to be considered as a more complex one.

- It implies that \(g_I(X_I) \) is orthogonal to \(L^2(X_J) \) such that \(J \cap I \subsetneq I \):
 \[
 \mathbb{E}[g_I(X_I)h(X_J)] = \mathbb{E}[\mathbb{E}[g_I(X_I)h_J(X_J)|X_J]] \\
 = \mathbb{E}[h(X_J)\mathbb{E}[g_I(X_I)|X_{J\cap I}]] = 0
 \]
Variance decomposition

- The non-overlapping condition

\[\mathbb{E}[g_I(X_I) | X_J] = 0 \quad \text{for all} \quad J \subsetneq I \]

avoids one term to be considered as a more complex one.

- It implies that \(g_I(X_I) \) *is orthogonal to* \(L^2(X_J) \) *such that* \(J \cap I \subsetneq I \):

\[
\mathbb{E}[g_I(X_I)h(X_J)] = \mathbb{E}[\mathbb{E}[g_I(X_I)h_J(X_J) | X_J]] \\
= \mathbb{E}[h(X_J)\mathbb{E}[g_I(X_I) | X_J \cap I]] = 0
\]

In particular *the decomposition is orthogonal (ANOVA):*

\[
D := \text{Var}(g(X)) = \sum_{I \subseteq \{1, \ldots, d\}} \text{Var}(g_I(X_I))
\]
Orthogonal projections

Property
For each $I \subseteq \{1, \ldots, d\}$, the map $\Pi_I : g \mapsto g_I$ is an orthogonal projection.
Orthogonal projections

Property

For each $I \subseteq \{1, \ldots, d\}$, the map $\Pi_I : g \mapsto g_I$ is an orthogonal projection

Proof.

Using the non-overlapping condition:

- Projection: applying twice the decomposition leaves it unchanged.
- Orthogonality:

\[
\langle \Pi_I g, h \rangle = \mathbb{E}(g_I(X_I)h(X)) = \sum_{J \subseteq \{1, \ldots, d\}} \mathbb{E}(g_I(X_I)h_J(X_J)) = \mathbb{E}(g_I(X_I)h_I(X_I)) = \langle g, \Pi_I h \rangle
\]

since if $J \neq I$, then $I \cap J \subsetneq I$ or $I \cap J \subsetneq J$, thus $\mathbb{E}(g_I(X_I)h_J(X_J)) = 0$.

Multivariate decompositions with commuting projections

S.-H. dec. is an example of multivariate decompositions obtained with \textit{(a class of) commuting projections} P_1, \ldots, P_d ([Kuo et al., 2010]), here orthogonals:

\[
P_j(g)(x) = \int g(x) d\mu_j(x_j) = \mathbb{E}[g(X)|X_{-j} = x_{-j}]
\]

The non-overlapping condition is written here $P_i(g_I) = 0$ for all $i \in I$. We find again that Π_I is an orthogonal projection.
S.-H. dec. is an example of multivariate decompositions obtained with \textit{(a class of) commuting projections} \(P_1, \ldots, P_d\) ([Kuo et al., 2010]), here orthogonals:

\[
P_j(g)(x) = \int g(x) d\mu_j(x_j) = \mathbb{E}[g(X)|X_{-j} = x_{-j}]
\]

The form of the decomposition is simply obtained by expansion:

\[
I_d = (P_1 + (I_d - P_1)) \cdots (P_d + (I_d - P_d))
\]
Multivariate decompositions with commuting projections

S.-H. dec. is an example of multivariate decompositions obtained with *(a class of) commuting projections* P_1, \ldots, P_d ([Kuo et al., 2010]), here orthogonals:

$$P_j(g)(x) = \int g(x) d\mu_j(x_j) = \mathbb{E}[g(X)|X_{-j} = x_{-j}]$$

The form of the decomposition is simply obtained by expansion:

$$I_d = (P_1 + (I_d - P_1)) \ldots (P_d + (I_d - P_d)) = \sum_{l \subseteq \{1, \ldots, d\}} \prod_{j \notin l} P_j \prod_{k \in l} (I - P_k)$$

The non-overlapping condition is written here $P_i(g_I) = 0$ for all $i \in I$. We find again that \prod_l *is an orthogonal projection*.

An example: separable functions

Consider \(g(x) = f_1(x_1) \ldots f_d(x_d) \), and denote \(m_j = \mathbb{E}(X_j) \). Then:

\[
\begin{align*}
g_I(x_I) &= \prod_{i \in I} (f_i(x_i) - m_i) \prod_{j \notin I} m_j \\
g_{I}^{\text{tot}}(x) &= \prod_{i \in I} (f_i(x_i) - m_i) \prod_{j \notin I} f_j(x_j)
\end{align*}
\]

Proof. The Sobol-Hoeffding decomposition is obtained by expanding:

\[g(x) = ((f_1(x_1) - m_1) + m_1) \ldots ((f_d(x_d) - m_d) + m_d) \]

For each bracket,

- for \(g_I \), choose \((f_i(x_i) - m_i)\) if \(i \in I \), and \(m_j \) otherwise
- for \(g_{I}^{\text{tot}} \), choose \((f_i(x_i) - m_i)\) if \(i \in I \)
Sensitivity indices

Sobol indices

- Partial variances: \(D_I = \text{Var}(g_I(X_I)) \), and **Sobol indices** \(S_I = D_I / D \)

\[
D = \sum_I D_I, \quad 1 = \sum_I S_I
\]

- \(D_{i}^{\text{tot}} = \sum_{J \supseteq \{i\}} D_J \), \(S_{i}^{\text{tot}} = \frac{D_{i}^{\text{tot}}}{D} \) **Total index**

- \(D_{i}^{\text{tot}} = \sum_{J \supseteq \{l\}} D_J \), \(S_{l}^{\text{tot}} = \frac{D_{l}^{\text{tot}}}{D} \) **Total interaction, superset importance**
Sensitivity indices

Sobol indices

- Partial variances: $D_I = \text{Var}(g_I(X_I))$, and Sobol indices $S_I = D_I/D$

$$D = \sum_I D_I, \quad 1 = \sum_I S_I$$

- $D_i^{\text{tot}} = \sum_{J \supseteq \{i\}} D_J$, $S_i^{\text{tot}} = \frac{D_i^{\text{tot}}}{D}$ Total index

- $D_i^{\text{tot}} = \sum_{J \supseteq \{i\}} D_J$, $S_i^{\text{tot}} = \frac{D_i^{\text{tot}}}{D}$ Total interaction, superset importance

Derivative Global Sensitivity Measure (DGSM)

$$\nu_i = \int \left(\frac{\partial g(x)}{\partial x_i} \right)^2 d\mu(x), \quad \nu_I = \int \left(\frac{\partial |I| g(x)}{\partial x_I} \right)^2 d\mu(x)$$
Usage for screening

Assume that:

- \(g \) is continuous on \(\Delta = [0, 1]^d \)
- for all \(i \), the support of \(\mu_i \) contains \([0, 1] \)

Variable screening

If either \(D_i^{\text{tot}} = 0 \) or \(\nu_i = 0 \), then \(X_i \) is non influential
Usage for screening

Assume that:

- g is continuous on $\Delta = [0, 1]^d$
- for all i, the support of μ_i contains $[0, 1]$

Variable screening

If either $D_{i}^{\text{tot}} = 0$ or $\nu_i = 0$, then X_i is non influential

Interaction screening

If either $D_{i,j}^{\text{tot}} = 0$ or $\nu_{i,j} = 0$, then $(x_i, x_j) \mapsto g(x)$ is additive

Total interactions can be visualized on the *FANOVA graph*, where the edge size is proportionnal to the index value.
Illustration on a toy example

8D g-Sobol function, with uniform inputs on $[0, 1]$:

$$g(x) = \prod_{j=1}^{8} \frac{|4x_j - 2| + a_j}{1 + a_j}$$

with $a = c(0, 1, 4.5, 9, 99, 99, 99, 99)$.
Illustration on a toy example

8D g-Sobol function, with uniform inputs on $[0, 1]$:

$$g(x) = \prod_{j=1}^{8} \frac{|4x_j - 2| + a_j}{1 + a_j}$$

with $a = c(0, 1, 4.5, 9, 99, 99, 99, 99)$.

Figure: 1st order analysis (left) and 2nd order analysis (right) with 10^5 simulated data.
Illustration on a toy example

A 6D block-additive function, with uniform inputs on $[-1, 1]$:

$$g(x) = \cos([1, x_1, x_2, x_3]^T \beta) + \sin([1, x_4, x_5, x_6]^T \gamma))$$

with $\beta = (-0.8, -1.1, 1.1, 1)^T$ and $\gamma = (-0.5, 0.9, 1, -1.1)^T$.
Illustration on a toy example

A 6D block-additive function, with uniform inputs on $[-1, 1]$:

$$g(x) = \cos([1, x_1, x_2, x_3]^T \beta) + \sin([1, x_4, x_5, x_6]^T \gamma))$$

with $\beta = (-0.8, -1.1, 1.1, 1)^T$ and $\gamma = (-0.5, 0.9, 1, -1.1)^T$.

Figure: 1st order analysis (left) and 2nd order analysis (right) with 10^5 simulated data
Part II

Upper bounds for Sobol indices
Variance-based and derivative-based measures

- **Usage for screening.**

 If either $D_{i}^{\text{tot}} = 0$ or $\nu_{i} = 0$, then X_{i} is non influential

- **Advantages / Drawbacks**

<table>
<thead>
<tr>
<th></th>
<th>Computational cost</th>
<th>Interpretability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sobol indices</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>DGSM</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>
Variance-based and derivative-based measures

- **Usage for screening.**

 If either $D_i^{\text{tot}} = 0$ or $\nu_i = 0$, then X_i is non influential

- **Advantages / Drawbacks**

<table>
<thead>
<tr>
<th></th>
<th>Computational cost</th>
<th>Interpretability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sobol indices</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>DGSM</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

↓

Can we use DGSM to do screening based on Sobol indices?
Poincaré inequality

Poincaré inequality (1-dimensional case)

A distribution μ satisfies a Poincaré inequality if the energy in $L^2(\mu)$ sense of any centered function is controlled by the energy of its derivative:

For all h in $L^2(\mu)$ such that $\int h(x) d\mu(x) = 0$, and $h'(x) \in L^2(\mu)$:

$$\int h(x)^2 d\mu(x) \leq C(\mu) \int h'(x)^2 d\mu(x)$$

The best constant is denoted $C_P(\mu)$.
Theorem [Lamboni et al., 2013], [Roustant et al., 2014]

If \(\mu_i \) and \(\mu_j \) admit a Poincaré inequality, then:

\[
D_i \leq D_{i}^{\text{tot}} \leq C(\mu_i)\nu_i, \quad D_{i,j} \leq D_{i,j}^{\text{tot}} \leq C(\mu_i)C(\mu_j)\nu_{i,j}
\]
Upper bounds

Link between total Sobol indices and DGSM

Theorem [Lamboni et al., 2013], [Roustant et al., 2014]

If μ_i and μ_j admit a Poincaré inequality, then:

$$D_i \leq D_i^{\text{tot}} \leq C(\mu_i)\nu_i, \quad D_{i,j} \leq D_{i,j}^{\text{tot}} \leq C(\mu_i)C(\mu_j)\nu_{i,j}$$

Proof 1. Denote $g_i^{\text{tot}}(x) := \sum_{J \supseteq \{i\}} g_J(x_J)$. Then:

$$\frac{\partial g(x)}{\partial x_i} = \frac{\partial g_i^{\text{tot}}(x)}{\partial x_i}$$
Theorem [Lamboni et al., 2013], [Roustant et al., 2014]

If μ_i and μ_j admit a Poincaré inequality, then:

$$D_i \leq D^{\text{tot}}_i \leq C(\mu_i) \nu_i, \quad D_{i,j} \leq D^{\text{tot}}_{i,j} \leq C(\mu_i)C(\mu_j) \nu_{i,j}$$

Proof 1. Denote $g_{i}^{\text{tot}}(x) := \sum_{J \supseteq \{i\}} g_{J}(x_{J})$. Then:

$$\frac{\partial g(x)}{\partial x_{i}} = \frac{\partial g_{i}^{\text{tot}}(x)}{\partial x_{i}}$$

$$D^{\text{tot}}_i = \text{Var}(g_{i}^{\text{tot}}(x)) = \int (g_{i}^{\text{tot}}(x))^{2} \ d\mu(x)$$

$$\leq C(\mu_i) \int \left(\frac{\partial g_{i}^{\text{tot}}(x)}{\partial x_{i}}\right)^{2} \ d\mu(x) = C(\mu_i) \nu_i$$
Link between total Sobol indices and DGSM

Theorem [Lamboni et al., 2013], [Roustant et al., 2014]

If μ_i and μ_j admit a Poincaré inequality, then:

$$D_i \leq D_i^{\text{tot}} \leq C(\mu_i)\nu_i,$$
$$D_{i,j} \leq D_{i,j}^{\text{tot}} \leq C(\mu_i)C(\mu_j)\nu_{i,j}$$

Link between total Sobol indices and DGSM

Theorem [Lamboni et al., 2013], [Roustant et al., 2014]

If μ_i and μ_j admit a Poincaré inequality, then:

$$D_i \leq D_i^{\text{tot}} \leq C(\mu_i)\nu_i, \quad D_{i,j} \leq D_{i,j}^{\text{tot}} \leq C(\mu_i)C(\mu_j)\nu_{i,j}$$

Proof 2. Denote $g_{i,j}^{\text{tot}}(x) := \sum_{J \supseteq \{i,j\}} g_J(x_J)$. Then:

$$\frac{\partial^2 g(x)}{\partial x_i \partial x_j} = \frac{\partial^2 g_{i,j}^{\text{tot}}(x)}{\partial x_i \partial x_j}$$
Link between total Sobol indices and DGSM

Theorem [Lamboni et al., 2013], [Roustant et al., 2014]

If μ_i and μ_j admit a Poincaré inequality, then:

$$D_i \leq D_i^{\text{tot}} \leq C(\mu_i)\nu_i, \quad D_{i,j} \leq D_{i,j}^{\text{tot}} \leq C(\mu_i)C(\mu_j)\nu_{i,j}$$

Proof 2. Denote $g_{i,j}^{\text{tot}}(x) := \sum_{J \supseteq \{i,j\}} g_J(x_J)$. Then:

$$\frac{\partial^2 g(x)}{\partial x_i \partial x_j} = \frac{\partial^2 g_{i,j}^{\text{tot}}(x)}{\partial x_i \partial x_j}$$

$$D_{i,j}^{\text{tot}} = \text{Var}(g_{i,j}^{\text{tot}}(x)) = \int (g_{i,j}^{\text{tot}}(x))^2 \, d\mu(x)$$

$$\leq C(\mu_i) \int \left(\frac{\partial g_{i,j}^{\text{tot}}(x)}{\partial x_i} \right)^2 \, d\mu(x)$$

$$\leq C(\mu_i)C(\mu_j) \int \left(\frac{\partial}{\partial x_j} \frac{\partial g_{i,j}^{\text{tot}}(x)}{\partial x_i} \right)^2 \, d\mu(x) = C(\mu_i)C(\mu_j)\nu_{i,j}$$
Getting optimal Poincaré constants on intervals

Assume that $d\mu_1(t)/dt = e^{-V(t)} > 0$ on a bounded interval $[a, b]$. Then, the smallest Poincaré constant $C(\mu_1)$ is obtained by solving a spectral problem:

$$Lf := f'' - V'f' = -\lambda f \quad \text{with} \quad f'(a) = f'(b) = 0$$

Comments.

- For some (rare) pdf, $C(\mu_1)$ can be computed semi-analytically.
- For many other ones, a finite element method can be used.
- Adaptations are possible for unbounded intervals and pdf vanishing at the boundaries.

See technical details in [Roustant et al., 2017].
Optimal Poincaré constants: Examples

<table>
<thead>
<tr>
<th>pdf</th>
<th>Support</th>
<th>C_{opt}</th>
<th>Form of $f_{\text{opt}}(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform</td>
<td>$[a, b]$</td>
<td>$(b - a)^2 / \pi^2$</td>
<td>$\cos \left(\frac{\pi(x-a)}{b-a} \right)$</td>
</tr>
<tr>
<td>$\mathcal{N}(\mu, \sigma^2)$</td>
<td>\mathbb{R}</td>
<td>σ^2</td>
<td>$x - \mu$</td>
</tr>
<tr>
<td>$[r_{n,i}, r_{n,i+1}]$</td>
<td></td>
<td>$1/(n + 1)$</td>
<td>$H_{n+1}(x)$ related to Kummer hypergeom. func.</td>
</tr>
<tr>
<td>$[a, b]$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Db. exp. $e^{-</td>
<td>x</td>
<td>} dx/2$</td>
<td>\mathbb{R}</td>
</tr>
<tr>
<td>$[a, b], ab > 0$</td>
<td></td>
<td>$(\frac{1}{4} + \omega^2)^{-1}$</td>
<td>$e^{x/2} \cos(\omega x + \phi)$</td>
</tr>
<tr>
<td>$[a, b], ab \leq 0$</td>
<td></td>
<td>$> (\frac{1}{4} + \omega^2)^{-1}$</td>
<td>$e^{x/2} \times \text{trig. spline}$</td>
</tr>
<tr>
<td>Logistic $\frac{e^x}{(1+e^x)^2} dx$</td>
<td>\mathbb{R}</td>
<td>4</td>
<td>\times</td>
</tr>
<tr>
<td>$[-1, 1]$</td>
<td></td>
<td>≈ 0.1729</td>
<td>linked to Bessel J_0</td>
</tr>
</tbody>
</table>

(*) For the truncated Exponential on $[a, b] \subseteq \mathbb{R}^+$, we use $\omega = \pi/(b - a)$

(**) If $a < 0 < b$, the spectral gap is the zero in $]0, \min(\pi/|a|, \pi/|b|)[$ of $x \mapsto \cot(|a|x) + \cot(|b|x) + 1/x$
Optimal Poincaré constants: Examples

Truncated normal distribution – Symmetric case: \(I = [-b,b] \)

Figure: Poincaré constant of \(\mu = \mathcal{N}(0, 1) \) truncated on \(I = [-b, b] \), vs \(\mu(I) \)

\(\sigma_I^2 \) : variance of the truncated normal on \(I \) – Black points: Hermite polynomials of even degree.
A case study for global sensitivity analysis

A simplified flood model [Iooss, 2011], [Iooss and Lemaitre, 2015].

1 output: maximal annual overflow (in meters), denoted by S:

$$S = Z_v + H - H_d - C_b \quad \text{with} \quad H = \left(\frac{Q}{B K_s \sqrt{\frac{Z_m - Z_v}{L}}} \right)^{0.6}$$

where H is the maximal annual height of the river (in meters).
A case study for global sensitivity analysis

- 8 inputs variables assumed to be independent r.v., with distributions:

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
<th>Unit</th>
<th>Probability distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_1 = Q$</td>
<td>Maximal annual flowrate</td>
<td>m^3/s</td>
<td>Gumbel $G(1013, 558)$, truncated on [500, 3000]</td>
</tr>
<tr>
<td>$X_2 = K_s$</td>
<td>Strickler coefficient</td>
<td>-</td>
<td>Normal $N(30, 8^2)$, truncated on [15, +∞[</td>
</tr>
<tr>
<td>$X_3 = Z_v$</td>
<td>River downstream level</td>
<td>m</td>
<td>Triangular $T(49, 50, 51)$</td>
</tr>
<tr>
<td>$X_4 = Z_m$</td>
<td>River upstream level</td>
<td>m</td>
<td>Triangular $T(54, 55, 56)$</td>
</tr>
<tr>
<td>$X_5 = H_d$</td>
<td>Dyke height</td>
<td>m</td>
<td>Uniform $\mathcal{U}[7, 9]$</td>
</tr>
<tr>
<td>$X_6 = C_b$</td>
<td>Bank level</td>
<td>m</td>
<td>Triangular $T(55, 55.5, 56)$</td>
</tr>
<tr>
<td>$X_7 = L$</td>
<td>River stretch</td>
<td>m</td>
<td>Triangular $T(4990, 5000, 5010)$</td>
</tr>
<tr>
<td>$X_8 = B$</td>
<td>River width</td>
<td>m</td>
<td>Triangular $T(295, 300, 305)$</td>
</tr>
</tbody>
</table>

- **Aim:** To detect unessential X_i’s, to quantify the influence of X_i’s on S, …
A case study for global sensitivity analysis

Figure: The 3 distributions types of the case study, here with mean 0 and variance 1
Results with optimal Poincaré constants

![Diagram showing results with optimal Poincaré constants. The x-axis represents different variables (Q, Ks, Zv, Zm, Hd, Cb, L, B), and the y-axis represents the total Sobol index values. The diagram includes bars indicating Db. exp transport, Optimal bound, and Total Sobol index.](image-url)
Results with optimal Poincaré constants
Part III

Lower bounds for Sobol indices

Ongoing work with F. Gamboa and B. Iooss
Without loss of generality, assume $g_0 = 0$. Define:

$$F_1 = \{ g \in L^2(\mu) \text{ s.t. } g = g_1 \}$$ functions depending exactly on x_1

$$F_1^{\text{tot}} = \{ g \in L^2(\mu) \text{ s.t. } g = g_1^{\text{tot}} \}$$ functions depending at least on x_1

Notice that g_1 and g_1^{tot} are obtained from g by orthogonal projection

$$g_1 = \Pi_{F_1}(g) = \mathbb{E}[g(X) | X_1 = .]$$

$$g_1^{\text{tot}} = \Pi_{F_1^{\text{tot}}}(g) = g - \mathbb{E}[g(X) | X_2 = ., \ldots, X_d = .]$$

Hence, $D_1 = \|\Pi_{F_1}(g)\|^2$ and $D_1^{\text{tot}} = \|\Pi_{F_1^{\text{tot}}}(g)\|^2$.

Lower bounds of D_1, D_1^{tot} are obtained by projecting onto subspaces of F_1, F_1^{tot}.
Main result

Let ϕ_1, \ldots, ϕ_m be orthonormal functions in F_1^{tot}. Then:

$$D_1^{\text{tot}} \geq \sum_{j=1}^{m} \left(\int g(x) \phi_j(x) d\mu(x) \right)^2$$

with equality iff g has the form $g(x) = \sum_{j=1}^{m} \alpha_m \phi_m(x) + h(x_2, \ldots, x_m)$.

If all the ϕ_j’s belong to F_1 then the lower bound is for D_1.

Proof.

- $D_1^{\text{tot}} = \| g_1^{\text{tot}} \|^2 = \| \Pi_{F_1^{\text{tot}}} (g) \|^2 \geq \| \Pi_{\phi_1, \ldots, \phi_m} (g) \|^2 = \sum_{j=1}^{m} (\langle g, \phi_j \rangle)^2$

- Equality is when $g_1^{\text{tot}} = \Pi_{\phi_1, \ldots, \phi_m} (g)$, leading to the condition above.

- Same arguments when all the ϕ_j’s are in F_1.

Tensor-based lower bounds

For all j, let $\psi_{j,0} = 1, \psi_{j,1}, \ldots, \psi_{j,n_j-1}$ be orthonormal functions in $L^2(\mu_j)$. Consider tensors, i.e. separable functions:

$$\phi_\ell(x) = \prod_{j=1}^{d} \psi_{j,\ell_j}(x_j)$$

where $\ell = (\ell_1, \ldots, \ell_d)$ is a multi-index.

Let $\mathcal{T}_1 = \{\ell \text{ s.t. } \ell_1 \geq 1\}$, the set of tensors ϕ_ℓ involving x_1. Then:

$$D_1^{\text{tot}}(f) \geq \sum_{\ell \in \mathcal{T}_1} \left(\int f(x) \phi_\ell(x) \nu(dx) \right)^2$$

with equality iff f has the form $f(x) = \sum_{\ell \in \mathcal{T}_1} \alpha_\ell \phi_\ell(x) + g(x_2, \ldots, x_d)$.
Tensor-based lower bounds

As an illustration, if μ_i admit the first two moments, denote:

$$\psi_i(x) = (x_i - m_i)/s_i$$

where m_i is the mean and s_i the s.d.

Then $\psi_1, \psi_1 \psi_2, \ldots, \psi_1 \psi_j$ are orthonormal functions of F_{1}^{tot}.

Hence:

$$D_{1}^{\text{tot}} \geq \left(\int g(x) \psi_1(x) d\mu(x) \right)^2 + \sum_{j=2}^{m} \left(\int g(x) \psi_1(x) \psi_j(x) d\mu(x) \right)^2$$

lower bound for D_1
Derivative-based lower bounds

All the integrals above can involve derivatives by integrating by part. But this often induce weights; Here is a partial solution to avoid weights.
Derivative-based lower bounds

All the integrals above can involve derivatives by integrating by part. But this often induce weights; Here is a partial solution to avoid weights.

Assume that μ_j is continuous with pdf $p_j \in H^1(\mu_j)$ vanishing at the boundaries but not inside, and such that $p_j' \neq 0$ and $p_j'/p_j \in L^2(\mu_j)$. Denote:

$$Z_j(X_j) = (\ln p_j)'(X_j), \quad I_j = \text{Var}(Z_j(X_j))$$

Then:

$$D_1^{\text{tot}} \geq I_1^{-1} c_1^2 + I_j^{-1} \sum_{j=2}^d I_j^{-1} c_{1,j}^2$$

with

$$c_1 = \int g(x) Z_1(x_1) d\mu(x) = -\int \frac{\partial g(x)}{\partial x_1} d\mu(x)$$

$$c_{1,j} = \int g(x) Z_1(x_1) Z_j(x_j) d\mu(x) = -\int \frac{\partial g(x)}{\partial x_1} Z_j(x_j) d\mu(x) = \int \frac{\partial^2 g(x)}{\partial x_1 \partial x_j} d\mu(x)$$
Derivative-based lower bounds: examples

For normal variables $N(m_j, s_j^2)$:

$$D_1^{\text{tot}} \geq s_1^2 \left(\int \frac{\partial g(x)}{\partial x_1} d\mu(x) \right)^2 + s_1^2 \sum_{j=2}^{d} s_j^2 \left(\int \frac{\partial^2 g(x)}{\partial x_1 \partial x_j} d\mu(x) \right)^2$$

Dist. name	Support	p	Z	l
Normal | \mathbb{R} | \(\frac{1}{s\sqrt{2\pi}} \exp \left(-\frac{1}{2} \frac{(x-m)^2}{s^2} \right) \) | \(-(X - m)/s^2 \) | \(1/s^2 \)
Laplace | \mathbb{R} | \(\frac{1}{2s} \exp \left(\frac{|x-m|}{s} \right) \) | \(-\text{sgn}(X - m)/s \) | \(1/s^2 \)
Cauchy | \mathbb{R} | \(\frac{1}{\pi} \frac{s}{(x-x_0)^2+s^2} \) | \(\frac{-2(x-x_0)}{(x-x_0)^2+s^2} \) | \(1/(2s^2) \)
Improvements on existing works

According to results given in the review [Kucherenko and Iooss, 2017],

- For normal distributions, we improve on:

\[D_{1}^{\text{tot}} \geq D_{1} \geq s_{1}^{2} \left(\int \frac{\partial g(x)}{\partial x_{1}} d\mu(x) \right)^{2}. \]
Improvements on existing works

According to results given in the review [Kucherenko and Iooss, 2017],

- For normal distributions, we improve on:

 \[D_1^{\text{tot}} \geq D_1 \geq s_1^2 \left(\int \frac{\partial g(x)}{\partial x_1} d\mu(x) \right)^2. \]

- For uniforms on \([0, 1]\) using the orthonormal function obtained from \(x_1^m\), and an integration by part, we obtain:

 \[D_1^{\text{tot}} \geq D_1 \geq \frac{2m+1}{m^2} \left(\int (g(1, x_{-1}) - g(x))dx - w_1^{(m+1)} \right)^2 \]

 where \(w_1^{(m+1)} = \int \frac{\partial g(x)}{\partial x_1} x_1^{m+1} dx\). This improves on the known lower bound which has the same form, with the smaller multiplicative constant \(\frac{2m+1}{(m+1)^2}\).
Lower bounds

Improvements on existing works

According to results given in the review [Kucherenko and Iooss, 2017],

- For normal distributions, we improve on:

\[D_{1}^{\text{tot}} \geq D_{1} \geq s_{1}^{2} \left(\int \frac{\partial g(x)}{\partial x_{1}} d\mu(x) \right)^{2} \]

- For uniforms on \([0, 1]\) using the orthonormal function obtained from \(x_{1}^{m}\), and an integration by part, we obtain:

\[D_{1}^{\text{tot}} \geq D_{1} \geq \frac{2m + 1}{m^{2}} \left(\int (g(1, x_{-1}) - g(x)) dx - w_{1}^{(m+1)} \right)^{2} \]

where \(w_{1}^{(m+1)} = \int \frac{\partial g(x)}{\partial x_{1}} x_{1}^{m+1} dx\). This improves on the known lower bound which has the same form, with the smaller multiplicative constant \(\frac{2m + 1}{(m+1)^{2}}\).

N.B. Better bounds are obtained by adding orth. funct. of the form \(\psi_{1}\psi_{j}\).
Results on the application

![Bar chart](image)

Figure: Results obtained with orth. 1st order pol. tensors $\psi_1, \psi_1\psi_2, \ldots, \psi_1\psi_8$
Results on the application

Figure: Results obtained with orth. 1st order pol. tensors $\psi_1, \psi_1\psi_2, \ldots, \psi_1\psi_8$
When using derivatives and other numerical considerations

We must compute squared integrals $\theta = (\int h(x) d\mu(x))^2$, when h has the form:

$$h_{\text{dir}} = g\phi_1, g\phi_1\phi_j, \ldots,$$

or

$$h_{\text{der}} = \frac{\partial g}{\partial x_i}, \frac{\partial g}{\partial x_j} Z_j, \ldots$$

for centered function ϕ_1, ϕ_j, Z_j.
When using derivatives and other numerical considerations

We must compute squared integrals $\theta = \left(\int h(x) d\mu(x) \right)^2$, when h has the form:

$$h_{\text{dir}} = g\phi_1, g\phi_1 \phi_j, \ldots,$$

or

$$h_{\text{der}} = \frac{\partial g}{\partial x_i}, \frac{\partial g}{\partial x_j} Z_j, \ldots$$

for centered function ϕ_1, ϕ_j, Z_j.

The sample estimate $\hat{\theta} = \left(\frac{1}{n} \sum_{i=1}^{n} h(X^i) \right)^2$, with X^1, \ldots, X^n i.i.d. $\sim \mu$, verifies:

$$\hat{\theta} \approx \mathcal{N} \left(\theta, \frac{4\theta}{n} \text{Var}_\mu(h) \right)$$

Hence, for one squared integral, using the derivative form can reduce estimation error when h_{der} is less variable than h_{dir}.
Partial conclusions

Lower bounds of a (convex comb. of) ANOVA term g_I can be obtained by projection onto subspaces of its ANOVA space $\{g \in L^2(\mu) \text{ s.t. } g = g_I \}$ → Illustrated on main and total effects, but very general!
Lower bounds of a (convex comb. of) ANOVA term g_I can be obtained by projection onto subspaces of its ANOVA space $\{g \in L^2(\mu) \text{ s.t. } g = g_I\}$ → Illustrated on main and total effects, but very general!

Tensors are used to get lower bounds as a sum of squared integrals → Chaos polynomials or more general tensors
Partial conclusions

- Lower bounds of a (convex comb. of) ANOVA term g_I can be obtained by projection onto subspaces of its ANOVA space $\{g \in L^2(\mu) \text{ s.t. } g = g_I\}$
 → Illustrated on main and total effects, but very general!

- Tensors are used to get lower bounds as a sum of squared integrals
 → Chaos polynomials or more general tensors

- Integration by part modify lower bounds into derivative-based forms
 → Specific choices of subspaces remove weights for specific pdfs
Partial conclusions

- Lower bounds of a (convex comb. of) ANOVA term g_I can be obtained by projection onto subspaces of its ANOVA space $\{g \in L^2(\mu) \text{ s.t. } g = g_I\}$
 \rightarrow Illustrated on main and total effects, but very general!

- Tensors are used to get lower bounds as a sum of squared integrals
 \rightarrow Chaos polynomials or more general tensors

- Integration by part modify lower bounds into derivative-based forms
 \rightarrow Specific choices of subspaces remove weights for specific pdfs

- Using derivative-based inequalities may be useful when the derivative is less variable than the function itself.
Part IV

Tail dependograph

Joint work with C. Mercadier
Multivariate dependence

Denote F a multivariate cdf,

$$F(x) = \mathbb{P}(X_1 \leq x_1, \ldots, X_d \leq x_d)$$

Assume that F is in the domain of attraction of a max-stable distribution H i.e. there exist vector sequences $a_n > 0, b_n$ s.t. for indep. samples X^1, \ldots, X^n of F

$$\mathbb{P}\left(\frac{\max_{k=1}^n(X^1_k) - b_{n,1}}{a_{n,1}} \leq x_1, \ldots, \frac{\max_{k=1}^n(X^d_k) - b_{n,d}}{a_{n,d}} \leq x_d\right) \xrightarrow{n \to \infty} H(x)$$
Multivariate dependence

Denote F a multivariate cdf,

$$F(x) = \mathbb{P}(X_1 \leq x_1, \ldots, X_d \leq x_d)$$

Assume that F is in the domain of attraction of a max-stable distribution H i.e. there exist vector sequences $a_n > 0, b_n$ s.t. for indep. samples X^1, \ldots, X^n of F

$$\mathbb{P}\left(\frac{\max_{k=1}^n (X^k_{1}) - b_{n,1}}{a_{n,1}} \leq x_1, \ldots, \frac{\max_{k=1}^n (X^k_{d}) - b_{n,d}}{a_{n,d}} \leq x_d\right) \xrightarrow{n \to \infty} H(x)$$

In the univariate case, H is a generalized extreme value distribution, summarizing the three types Fréchet, Weibull, Gumbel
Multivariate dependence

Denote F a multivariate cdf,

$$F(x) = \mathbb{P}(X_1 \leq x_1, \ldots, X_d \leq x_d)$$

Assume that F is in the domain of attraction of a max-stable distribution H i.e. there exist vector sequences $a_n > 0, b_n$ s.t. for indep. samples X^1, \ldots, X^n of F

$$\mathbb{P} \left(\frac{\max_{k=1}^n (X^k_1) - b_{n,1}}{a_{n,1}} \leq x_1, \ldots, \frac{\max_{k=1}^n (X^k_d) - b_{n,d}}{a_{n,d}} \leq x_d \right) \xrightarrow{n \to \infty} H(x)$$

- In the univariate case, H is a generalized extreme value distribution, summarizing the three types Fréchet, Weibull, Gumbel
- In the multivariate case, the margins are gev, and the multivariate dependence is characterized by a multivariate function
 - extreme value copula, stable tail dependence function, …
Multivariate dependence: stable tail dependence function

Stable tail dependence function (stdf) ℓ

$$- \log H(x) = \ell(- \log H_1(x_1), \ldots, - \log H_d(x_d))$$

Properties (see e.g. [de Haan and Ferreira, 2006])

- ℓ is continuous, convex and homogeneous of order 1
 \rightarrow we can restrict it on $[0, 1]^d$
- $\max(u_1, \ldots, u_d) \leq \ell(u) \leq u_1 + \cdots + u_d$
 Asymptotic dependence
 Asymptotic independence
- $\ell(u) = \lim_{z \to +\infty} z \left(1 - F\left(\frac{F_1^{-1}(u_1/z), \ldots, F_d^{-1}(u_d/z)}{}
ight)\right)$
Asymptotic independence and tail dependograph

Let A, B a partition of $\{1, \ldots, d\}$

X_A and X_B are *asymptotically independent* if

$\iff H(x)$ if of the form $H(x) = H_A(x_A)H_B(x_B)$

$\iff \ell(u)$ if of the form $\ell(u) = \ell(u_A) + \ell(u_B)$

$\iff \forall i \in A, \forall j \in B, \ell_{i,j}^{\text{tot}} \equiv 0$
Asymptotic independence and tail dependograph

Let A, B a partition of $\{1, \ldots, d\}$

X_A and X_B are \textit{asymptotically independent}

\[\iff \quad H(x) \text{ if of the form } H(x) = H_A(x_A)H_B(x_B) \]

\[\iff \quad \ell(u) \text{ if of the form } \ell(u) = \ell(u_A) + \ell(u_B) \]

\[\iff \quad \forall i \in A, \forall j \in B, \quad \ell_{i,j}^{\text{tot}} \equiv 0 \]

Thus

\[X_A \perp \perp_{\infty} X_B \quad \text{if} \quad \text{the FANOVA graph of } \ell \text{ is partitioned by } A \text{ and } B \]

“tail dependograph”
Asymptotic independence and extremal coefficients

The extremal coefficients $\theta_I(\ell)$ are defined by

$$P \left(X_j \leq F_j^{-1}(p), \text{ for all } j \in I \right) = p^{\theta_I(\ell)}$$

Equivalently $\theta_I(\ell) = \ell(1_I)$
Asymptotic independence and extremal coefficients

The extremal coefficients $\theta_I(\ell)$ are defined by

$$\mathbb{P} \left(X_j \leq F_j^{-1}(p), \text{ for all } j \in I \right) = p^{\theta_I(\ell)}$$

Equivalently $\theta_I(\ell) = \ell(1_I)$, and in particular

$$\underbrace{1}_{\text{Asymptotic dependence}} \leq \theta_I(\ell) \leq \underbrace{|I|}_{\text{Asymptotic independence}}$$
Asymptotic independence and extremal coefficients

The extremal coefficients $\theta_I(\ell)$ are defined by

$$\mathbb{P} \left(X_j \leq F_j^{-1}(p), \text{ for all } j \in I \right) = p^{\theta_I(\ell)}$$

Equivalently $\theta_I(\ell) = \ell(1_I)$, and in particular

$$\frac{1}{|I| \ell(1_I)} \leq \theta_I(\ell) \leq \ell(1_I)$$

Hence, $X_i \perp \perp_X \infty X_j$ if $\theta_{i,j}(\ell) = 2$
Illustration: Revealing asymptotic dependence for asymmetric models

Consider a 4-dim. random vector X with standard Gumbel margins, and s.t.d.f. built as a mixture of independence and logistic:

$$
\ell(u) = (1 - w)(u_1 + u_2) + w \left(u_1^{1/\alpha} + u_2^{1/\alpha} \right)^\alpha
+ (1 - w')(u_3 + u_4) + w' \left(u_3^{1/\alpha'} + u_4^{1/\alpha'} \right)^{\alpha'},
$$

with asymmetric parameters: $(w, \alpha) = (0.2, 0.2)$, $(w', \alpha') = (0.8, 0.83)$.
Illustration: Revealing asymptotic dependence for asymmetric models

Figure: Tail dependograph (left) and graph representing $2 - \theta_{i,j}$ (right)

→ Both indices recover the asympt. indep. between (X_1, X_2) and (X_3, X_4)
→ Asymmetry in tail dependence is more visible on tail dependograph
Inference

The formula $\ell(u) = \lim_{z \to +\infty} z \left(1 - F \left(F_1^{-1}(u_1/z), \ldots, F_d^{-1}(u_d/z) \right) \right)$ leads to the natural estimator ([Huang, 1992])

$$\hat{\ell}_{k,n}(u) = \frac{n}{k} \left(1 - \frac{1}{n} \sum_{s=1}^{n} \mathbb{1}\left\{ X_{s}^{(1)} < X_{n-[ku]+1,n}^{(1)}, \ldots, X_{s}^{(d)} < X_{n-[ku_d]+1,n}^{(d)} \right\} \right)$$

$$= \frac{n}{k} \left(1 - \frac{1}{n} \sum_{s=1}^{n} \mathbb{1}\left\{ u_1 < \tilde{R}_s^{(1)}, \ldots, u_d < \tilde{R}_s^{(d)} \right\} \right)$$

$$= \frac{n}{k} - \frac{1}{k} \sum_{s=1}^{n} \prod_{t=1}^{d} \mathbb{1}\left\{ u_t < \tilde{R}_s^{(t)} \right\}$$

with:

- $X_{1,n}, \ldots, X_{n,n}$: sorted data (asc. order) for coordinate t

- $\tilde{R}_s^{(t)} := \frac{n-R_s^{(t)}+1}{k}$, where $R_s^{(t)}$ is the rank of $X_s^{(t)}$ among $X_{1}^{(t)}, \ldots, X_{n}^{(t)}$.
Inference

Let $\mu = \mu_1 \otimes \cdots \otimes \mu_d$ a measure on $[0, 1]^d$ (without special link with F).

As a sum of separable functions, the whole Sobol-Hoeffding decomposition of the stdf estimator can be computed in closed form, and in particular

$$\hat{\ell}_{k,n;\{i,j\}}^{\text{tot}}(u) = -\frac{1}{k} \sum_{s=1}^{n} \prod_{t=1}^{d} \left(1\{u_t < \tilde{R}_s^{(t)}\} - 1\{t \in \{i,j\}\} \mu_t \left(\tilde{R}_s^{(t)} \right) \right)$$

and the tail dependograph as well

$$D_{\{i,j\}}^{\text{tot}}(\hat{\ell}_{k,n}) = \frac{1}{k^2} \sum_{s=1}^{n} \sum_{s' = 1}^{n} \prod_{t=1}^{d} \left(\mu_t \left(\tilde{R}_s^{(t)} \wedge \tilde{R}_{s'}^{(t)} \right) - 1\{t \in \{i,j\}\} \mu_t \left(\tilde{R}_s^{(t)} \right) \mu_t \left(\tilde{R}_{s'}^{(t)} \right) \right).$$
Inference

As the terms of S.-H. decomposition are obtained by linear operation,

\textit{inference properties of the stdf transfer to its ANOVA terms...}
Inference

As the terms of S.-H. decomposition are obtained by linear operation,

\[\text{inference properties of the stdf transfer to its ANOVA terms...} \]

Consider the usual assumptions for stdf inference, with corresponding valid sequences \(k = k(n) \). Then, for all \(I \subseteq \{1, \ldots, d\} \),

1. \(\sup_{u_I \in [0,1]^I} |\hat{\ell}_{k,n,I}(u_I) - \ell_I(u_I)| \xrightarrow{\mathbb{P}} 0 \).
2. \(\sqrt{k} \left\{ \hat{\ell}_{k,n,I}(u_I) - \ell_I(u_I) \right\} \xrightarrow{d} Y_{\ell,I}(u_I) \)

where \(Y_{\ell,I} \) is some Gaussian process.
Inference

As the terms of S.-H. decomposition are obtained by linear operation,

\(\textit{inference properties of the stdf transfer to its ANOVA terms...}\)

Consider the usual assumptions for stdf inference, with corresponding valid sequences \(k = k(n)\). Then, for all \(I \subseteq \{1, \ldots, d\}\),

- \(\sup_{u_I \in [0,1]^{|I|}} |\hat{l}_{k,n}(u_I) - l_I(u_I)| \xrightarrow{\mathbb{P}} 0\).
- \(\sqrt{k} \left\{ \hat{l}_{k,n}(u_I) - l_I(u_I) \right\} \xrightarrow{d} Y_{\ell;I}(u_I)\)

where \(Y_{\ell;I}\) is some Gaussian process.

\(\text{... and hence to the tail dependograph}\)

\(\mathbb{D}_I(\hat{l}_{k,n}) \xrightarrow{\mathbb{P}} \mathbb{D}_I(\ell)\)

- If \(\mathbb{D}_I(\ell) > 0\), then \(\mathbb{D}_I(\hat{l}_{k,n})\) is asympt. normal with rate \(\sqrt{k}\)
- If \(\mathbb{D}_I(\ell) = 0\), then \(\mathbb{D}_I(\hat{l}_{k,n})\) is asympt. \(\chi^2\) type with rate \(k\)

(The same is true for \(\mathbb{D}_I^{\text{tot}}\))
Inference

(A piece of intuition about asymptotic distribution)

\[
\hat{\ell}_{k,n;I}(u_I) = \ell_I(u_I) + \frac{1}{\sqrt{k}} Y_{\ell,I}(u_I) + \ldots
\]
Inference

(A piece of intuition about asymptotic distribution)

\[
\hat{\ell}_{k,n;I}(u_I) = \ell_I(u_I) + \frac{1}{\sqrt{k}} Y_{\ell,I}(u_I) + \ldots
\]

- If \(\ell_I \neq 0\),

\[
\int_{D_I(\hat{\ell}_{k,n})} \hat{\ell}_{k,n;I}^2(u_I) d\mu(u) = \int_{D_I(\ell)} \ell_I^2(u_I) d\mu(u) + \frac{1}{\sqrt{k}} \int_{D_I(\ell)} 2 Y_{\ell,I}(u_I) \ell_I(u_I) d\mu(u) + \ldots
\]

\[\text{a Gaussian r.v.}\]
Inference

(A piece of intuition about asymptotic distribution)

\[\hat{\ell}_{k,n;l}(u_l) = \ell_l(u_l) + \frac{1}{\sqrt{k}} Y_{\ell,l}(u_l) + \ldots \]

- If \(\ell_l \neq 0 \),
 \[\int_{D_l(\hat{\ell}_{k,n})} \hat{\ell}_{k,n;l}^2(u_l) d\mu(u) = \int_{D_l(\ell)} \ell_l^2(u_l) d\mu(u) + \frac{1}{\sqrt{k}} \int_{D_l(\ell)} 2 Y_{\ell,l}(u_l) \ell_l(u_l) d\mu(u) + \ldots \]
 a Gaussian r.v.

- If \(\ell_l \equiv 0 \),
 \[\int_{D_l(\hat{\ell}_{k,n})} \hat{\ell}_{k,n;l}^2(u_l) d\mu(u) = 0 + \frac{1}{k} \int_{D_l(\ell)} Y_{\ell,l}^2(u_l) d\mu(u) + \ldots \]
 a \(\chi^2 \) type r.v.
Application on real data

Figure: Estimated tail dependograph: complete, 30 largest values, 9 largest
Application on real data

Figure: Estimated tail dependograph: complete, 30 largest values, 9 largest
Application on real data

Figure: Estimated tail dependograph: complete, 30 largest values, 9 largest
Some conclusions

Tail dependograph is a graphical tool to investigate multivariate independence.

- Asymptotic independence is visible by partitions in the graph
- Asymmetric seems to be better visible, compared to extremal coefficients
Some conclusions

Tail dependograph is a graphical tool to investigate multivariate independence.

- Asymptotic independence is visible by partitions in the graph
- Asymmetric seems to be better visible, compared to extremal coefficients
- A natural estimator can be computed analytically
- Inference properties of the stdf transfer to the tail dependograph
Acknowledgements

Part of this research was conducted within the frame of the Chair in Applied Mathematics OQUAIDO, gathering partners in technological research (BRGM, CEA, IFPEN, IRSN, Safran, Storengy) and academia (CNRS, Ecole Centrale de Lyon, Mines Saint-Etienne, University of Grenoble, University of Nice, University of Toulouse) around advanced methods for Computer Experiments.
Part V

References - Thank you for your attention!

https://hal.archives-ouvertes.fr/hal-01649596.

Sensitivity estimates for non linear mathematical models.