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Abstract. We consider the time-harmonic scattering wave problem in a 2D waveguide at wavenum-
ber k such that one mode is propagating in the far field. In a first step, for a given k, playing with
one scattering branch of finite length, we demonstrate how to construct geometries with zero trans-
mission. The main novelty in this result is that the symmetry of the geometry is not needed :
the proof relies on the unitary structure of the scattering matrix. Then, in a second step, from
a waveguide with zero transmission, we show how to build geometries supporting trapped modes
associated with eigenvalues embedded in the continuous spectrum. For this second construction,
using the augmented scattering matrix and its unitarity, we play both with the geometry and the
wavenumber. Finally, the mathematical analysis is supplemented by numerical illustrations of the
results.

Key words. Waveguides, zero transmission, trapped modes, scattering matrix, asymptotic analy-
sis.

1 Introduction
In this work, we are interested in the propagation of waves in a waveguide with two open channels
(channels 1 and 2, see Figure 1). We work at a wavenumber k sufficiently small so that only one
wave can propagate in each of the channels. For the Neumann problem that we consider in the
following, which appears for example for acoustics, for water-waves or for electromagnetism, this
wave is nothing but the plane wave. To describe the scattering process of the incident plane wave
propagating in channel 1, classically one introduces two complex coefficients, namely the reflection
and transmission coefficients, denoted s11 and s12, such that s11 (resp. s12) corresponds to the
amplitude of the scattered field at infinity in channel 1 (resp. 2) (see (3)). According to the energy
conservation, we have

|s11|2 + |s12|2 = 1.

In the first part of the article, we are interested in constructing non-symmetric geometries such that
the transmission coefficient s12 is zero. In this case, all the energy is backscattered in channel 1,
as if the waveguide was obstructed. This problem of zero transmission is interesting by itself and
seems to have received little attention literature, especially from a theoretical point of view. The
motivation for designing domains where s12 = 0 is also linked to the second part of the paper where
we show how to use them to find waveguides supporting so called trapped modes associated with
eigenvalues embedded in the continuous spectrum. We remind the reader that trapped modes are
non zero solutions of the homogeneous wave Problem (2) which are of finite energy. In particular,
using Fourier decomposition, one shows that trapped modes are exponentially decaying at infinity.
Unlike the zero transmission problem, the question of existence of trapped modes has been widely
investigated in literature (see e.g. [49, 10, 11, 8, 23, 29, 38]). Note that eigenvalues embedded in
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the continuous spectrum are also often called bound states in the continuum (BSCs or BICs) in
quantum mechanics or in optics (see for example [44, 27, 16, 50, 15] as well as the recent review [20]).

One way to exhibit situations where s12 = 0 is to use the so-called Fano resonance (see the seminal
paper [13] and the review article [26]). Let us present briefly the idea which is developed and justified
in [47, 46, 48, 1, 5]. If trapped modes exist at a given wavenumber k0 such that k2

0 is an eigenvalue
embedded in the continuous spectrum, then perturbing slightly the geometry allows one to exhibit
settings where the scattering coefficients have a fast variation for k moving on the real axis around
k0. And with an additional assumption of symmetry of the geometry, one can prove that |s12|
passes exactly through 0 and 1. This process requires to start from a setting where it is known that
there are trapped modes. We emphasize that trapped modes associated with eigenvalues embedded
in the continuous spectrum are rather rare objects. In general, for a given geometry, the set of
wavenumbers such that they exist is empty. Moreover, they are relatively unstable. If eigenvalues
embedded in the continuous spectrum exist in a given setting, a small perturbation of the geometry
will transform them into complex resonances as shown in [2] (except if the perturbation is carefully
chosen, see [32]).

In the present article, in order to create geometries where s12 = 0, we follow another approach
introduced in [6, 7]. As in [6, 7], we assume that the waveguide is endowed with a branch of finite
length L−1 (see Figure 1 left). The scattering coefficients depend on the geometry, in particular on
L. Computing an asymptotic expansion of s11 = s11(L), s12 = s12(L) as L→ +∞ allows us to know
the main behaviour of the complex curves L 7→ s11(L), L 7→ s12(L). When the geometry has some
symmetries, it is shown in [6, 7] that asymptotically L 7→ s11(L), L 7→ s12(L) pass through zero
periodically. Then, owing to the symmetry assumption, we can get more and exhibit geometries
where zero reflection (s11 = 0, |s12| = 1), zero transmission (|s11| = 1, s12 = 0) or perfect invisi-
bility (s11 = 0, s12 = 1) occur (not only asymptotically but exactly). In the present work, quite
surprisingly, we prove that without this assumption of symmetry of the geometry, asymptotically
L 7→ s12(L) still passes through zero periodically. And moreover, we show that the unitary struc-
ture of the scattering matrix defined in (4) is sufficient to conclude that L 7→ s12(L) passes through
zero exactly. We emphasize that without the assumption of symmetry, in general the curve for the
reflection coefficient L 7→ s11(L) does not pass through zero as L→ +∞ (not even asymptotically).
Thus, in the non-symmetric case we consider, we demonstrate zero transmission but zero reflection
and so perfect invisibility, cannot be achieved.

In order to construct geometries supporting trapped modes, we will use a similar idea as before
but with a useful auxiliary object called the augmented scattering matrix [34, 21, 28, 31] instead
of the usual scattering matrix. To establish the existence of trapped modes, we will see that it is
sufficient that a coefficient of the augmented scattering matrix, which is unitary, passes through the
point of affix −1 + 0i. The unitary structure of the matrix will not be sufficient to obtain the de-
sired result. But playing also a bit with the wavenumber, we will be able to circumvent the difficulty.

In the nicely written introduction of [18], from [16], the authors distinguish three main mecha-
nisms to produce trapped modes associated with eigenvalues embedded in the continuous spectrum.
The most common one is based on the decoupling between resonances and radiation modes due
to symmetries of the problem [39, 40, 12, 11]. The second mechanism relies on the destructive
interference between two resonances of a single resonator. It has been revealed by Friedrich and
Wintgen in [14] (see also [44] and the review paper [36]). The third idea to obtain trapped modes
consists in using two resonant structures acting as a pair of mirrors. Tuning correctly the distance
between the two mirrors, one can trap waves between them, the structure then being equivalent to
a Fabry-Perot cavity. This technique has been used in [25, 22, 43, 37, 4, 45]. The latter mechanism
is the one we will exploit in the present article. On the other hand, we shall limit ourselves to
Helmholtz equation with Neumann boundary conditions. Dirichlet boundary conditions (for quan-
tum waveguides for example) can be treated completely similarly. Thus, we can construct quantum
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waveguides supporting trapped modes.

All through the article, for the sake of simplicity, we shall restrict to a very simple 2D waveg-
uide. However, the techniques can be extended in a straightforward way to higher dimension and
more complex geometries (see the discussion in Section 5). We will consider scattering problems in
T-shaped waveguides. In [30, 35], the authors study the existence of discrete spectrum (spectrum
below the continuous spectrum) for Dirichlet problems in such geometries. Let us mention also that
the present work shares connections with [44, 9, 3, 18]. In the latter papers, the authors investigate
the existence of trapped modes associated with eigenvalues embedded in the continuous spectrum
in geometries similar to ours via numerical investigations or simplified models.

The outline is as follows. In Section 2, for a given wavenumber below the first positive thresh-
olds (monomode case), we explain how to construct geometries where the transmission coefficient
is zero. In Section 3, we show how to design situations, playing both with the geometry and the
wavenumber, such that trapped modes exist. In Section 4, we provide numerical illustrations of
the results. In the conclusion, we discuss possible generalizations of the present approach as well
as open questions. Finally, in a short Annex, we detail the proofs of two auxiliary results used in
the analysis. The main results of this work are Theorem 2.1 (zero transmission) and Theorem 3.1
(existence of trapped modes).

2 Zero transmission
In this first section, for a given wavenumber we explain how to construct waveguides where the
transmission coefficient is zero.

2.1 Setting

L− 1

`

ωL

x

y

Channel 1 Channel 2

−H H

ω∞

Channel 1 Channel 2

Channel 3

Figure 1: Geometries of ωL (left) and ω∞ (right).

For ` > 0 and L > 1, let ωL ⊂ R2 be an open set which coincides with the domain

{(x, y) ∈ R× (0; 1) ∪ (−`/2; `/2)× [1;L)} (1)

outside a bounded region independent of `, L. We assume that ωL is connected and has Lipschitz
boundary ∂ωL. We call channel 1 (resp. channel 2) the branch of ωL which coincides at infinity
with (−∞; 0) × (0; 1) (resp. with (0; +∞) × (0; 1)) (see Figure 1 left). We work in an academic
geometry for the ease of presentation. In the conclusion (Section 5), we discuss possible extensions
(see also Figure 7 right). We consider the problem with Neumann boundary condition

∆u+ k2u = 0 in ωL
∂nu = 0 on ∂ωL.

(2)
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Here ∆ is the 2D Laplace operator, k corresponds to the wavenumber. Moreover, n stands for the
normal unit vector to ∂ωL directed to the exterior of ωL. We take k ∈ (0;π) so that

w±1 (x, y) =
1
√

2k
e∓ikx and w±2 (x, y) =

1
√

2k
e±ikx

are the only propagating modes in channels 1 and 2. More precisely, for i = 1, 2, the plane mode w+
i

(resp. w−i ) is outgoing (resp. ingoing) in channel i. Introduce χl ∈ C∞(R2) (resp. χr ∈ C∞(R2)) a
cut-off function equal to one for x ≤ −2H (resp. x ≥ 2H) and to zero for x ≥ −H (resp. x ≤ H).
Here H is a parameter such that ωL coincides with R × (0; 1) for |x| > H. We emphasize that
the value of χl (resp. χr) in the region −2H < x < −H (resp. H < x < 2H) is not important.
This cut-off function is simply used to impose behaviour at infinity in channel 1 (resp. channel 2).
In order to describe the scattering process of the incident waves w−i propagating in channel i, we
introduce the following scattering solutions

u1 = χl (w−1 + s11w
+
1 ) + χr s12w

+
2 + ũ1

u2 = χl s21w
+
1 + χr (w−2 + s22w

+
2 ) + ũ2,

(3)

where sij ∈ C and where ũ1, ũ2 decay exponentially as O(e−
√
π2−k2|x|) for x → ±∞. It is known

(see e.g. [33, Chap. 5, §3.3, Thm. 3.5 p.160]) that Problem (2) admits solutions of the form (3).
The complex constants sij , i, j ∈ {1, 2} in (3) are uniquely defined. Moreover the scattering matrix

S :=
(
s11 s12
s21 s22

)
∈ C2×2 (4)

is unitary (SS> = Id2×2) and we have s21 = s12, i.e. S is symmetric (even for a non symmetric
geometry). For the proof of the two latter properties, see Lemma 6.1 in Annex. Classically, s11, s22
are called reflection coefficients while s12 = s21 are transmission coefficients. In this section, for a
given wavenumber k ∈ (0;π), we explain how to construct geometries such that s12 = 0.

2.2 Asymptotic analysis of the scattering coefficients

The scattering coefficients defined in (3), (4) depend on the geometry, in particular on L. In this
paragraph, we compute an asymptotic expansion of s11 = s11(L), s12 = s21(L), s22 = s22(L) as
L → +∞. In the analysis, the properties of Problem (2) set in the geometry ω∞ (see (1) right)
obtained from ωL making L → +∞, play a key role. We call channel 3 the branch of ω∞ which
coincides at infinity with (−`/2; `/2) × (0; +∞) (see Figure 1 right). Channels 1 and 2 of ω∞ are
defined as for ωL. We assume that ` ∈ (0;π/k) so that

w±3 (x, y) =
1
√

2k`
e±iky

are the only propagating modes in channel 3. For ` > π/k, the analysis below must be adapted (see
[6, Section 5] for more details). In ω∞, there are the solutions

u∞1 = χl(w−1 + s∞11w
+
1 ) + χr s

∞
12w

+
2 + χt s

∞
13w

+
3 + ũ∞1

u∞2 = χl s
∞
21w

+
1 + χr (w−2 + s∞22w

+
2 ) + χt s

∞
23w

+
3 + ũ∞2

u∞3 = χl s
∞
31w

+
1 + χr s

∞
32w

+
2 + χt (w−3 + s∞33w

+
3 ) + ũ∞3 ,

(5)

where ũ∞1 , ũ∞2 , ũ∞3 decay exponentially at infinity. Here χt ∈ C∞(R2) is a cut-off function equal to
one for y ≥ 1 + 2τ and to zero for y ≤ 1 + τ , where τ ≥ 0 is a given constant such that ω∞ coincides
with (−`/2; `/2)× R for y ≥ τ . The scattering matrix

S∞ :=

 s∞11 s∞12 s∞13
s∞21 s∞22 s∞23
s∞31 s∞32 s∞33

 ∈ C3×3 (6)
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is uniquely defined, unitary (S∞S∞> = Id3×3) and symmetric (work as in the proof of Lemma 6.1
in Annex to show the two latter properties). For u1, u2, following for example [24, Chap. 5, §5.6],
we make the ansatzs

u1 = u∞1 + a1(L)u∞3 + . . .
u2 = u∞2 + a2(L)u∞3 + . . .

(7)

where a1(L), a2(L) are some gauge functions to determine and where the dots correspond to small
remainders. On (−`/2; `/2) × {L}, the conditions ∂nu1 = 0, ∂nu2 = 0 lead to choose a1(L), a2(L)
such that

s∞13 e
ikL + a1(L) (−e−ikL + s∞33 e

ikL) = 0 ⇔ a1(L) =
s∞13

e−2ikL − s∞33

s∞23 e
ikL + a2(L) (−e−ikL + s∞33 e

ikL) = 0 ⇔ a2(L) =
s∞23

e−2ikL − s∞33
.

We shall consider ansatzs (7) when |s∞33| 6= 1 (when |s∞33| = 1, see §6.2 in Annex). In this case, the
gauge functions a1(L), a2(L) are well-defined for all L > 1. Then we can prove that S = Sasy(L)+. . . ,
with

Sasy(L) := (sasy
ij )1≤i,j≤2 =

(
s∞11 s∞12
s∞21 s∞22

)
+
(
a1(L)
a2(L)

)(
s∞31 s∞32

)
. (8)

In other words, we get

s11 = s∞11 +
s∞13 s

∞
31

e−2ikL − s∞33
+ . . . s12 = s∞12 +

s∞13 s
∞
32

e−2ikL − s∞33
+ . . .

s21 = s∞21 +
s∞23 s

∞
31

e−2ikL − s∞33
+ . . . and s22 = s∞22 +

s∞23 s
∞
32

e−2ikL − s∞33
+ . . . .

(9)

Here the dots stand for exponentially small terms. More precisely, we can establish (work as in
[24, Chap. 5, §5.6], [6, Prop. 8.1]) an error estimate of the form ‖S− Sasy(L)‖ ≤ C e−β`L where C
is a constant independent of L > 1 and β` :=

√
(π/`)2 − k2. Since S∞ is symmetric, we see from

(9) that Sasy(L) is also symmetric. Moreover, after some calculations reproduced in the proof of
Lemma 6.2 in Annex and based on the fact that S∞ is unitary, one can check that for all L > 1,
the matrix Sasy(L) is unitary. Denote C := {z ∈ C | |z| = 1} the unit circle. As L tends to +∞, the
coefficients sasy

11 , sasy
12 = sasy

21 and sasy
22 run respectively on the sets

γ11 := {s∞11 + s∞13 s
∞
31

z − s∞33
| z ∈ C }, γ12 := {s∞12 + s∞13 s

∞
32

z − s∞33
| z ∈ C }, γ22 := {s∞22 + s∞23 s

∞
32

z − s∞33
| z ∈ C }. (10)

Using classical results concerning the Möbius transform (see e.g. [19, Chap. 5]), one finds that γ11,
γ12, γ22 are circles centered respectively at

z11 := s∞11 + s∞13 s
∞
33 s
∞
31

1− |s∞33|2
, z12 := s∞12 + s∞13 s

∞
33 s
∞
32

1− |s∞33|2
, z22 := s∞22 + s∞23 s

∞
33 s
∞
32

1− |s∞33|2
(11)

of radii
ρ11 := |s∞13 s

∞
31|

1− |s∞33|2
, ρ12 := |s∞13 s

∞
32|

1− |s∞33|2
, ρ22 := |s∞23 s

∞
32|

1− |s∞33|2
. (12)

In the following, we assume that the coefficients s∞12, s∞13, s∞23 in (5) are such that s∞12 s
∞
13 s
∞
23 6= 0.

This assumption is needed so that couplings exist between the three channels of ω∞. We refer the
reader to §4.1 for an example of situation where numerically this assumption is satisfied. When
s∞12 s

∞
13 s
∞
23 6= 0, as a consequence of the unitary structure of S∞, we have |s∞33| 6= 1 and the three

radii ρ11, ρ12, ρ22 are located in (0; 1).

Proposition 2.1. Assume that the coefficients s∞12, s∞13, s∞23 in (5) satisfy s∞12 s
∞
13 s
∞
23 6= 0. Then the

circle γ12 (the asymptotic orbit for the transmission coefficient) passes through zero.
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Proof. We have
s∞12 + s∞13 s

∞
32

z − s∞33
= 0 ⇔ z = s∞33 −

s∞13 s
∞
32

s∞12
.

Therefore, it is sufficient to prove that

|s∞33 −
s∞13 s

∞
32

s∞12
| = 1. (13)

Set C = |s∞33|2|s∞12|2 + |s∞13|2|s∞32|2 − 2<e (s∞13 s
∞
33 s
∞
32s
∞
12) − |s∞12|2. A direct computation shows that

(13) is true if and only if C = 0. Since S∞ is unitary, we have

s∞11s
∞
31 + s∞12s

∞
32 + s∞13s

∞
33 = 0 ⇔ s∞12s

∞
32 + s∞13s

∞
33 = −s∞11s

∞
31.

Squaring the second equality above, we deduce that

2<e (s∞13 s
∞
33 s
∞
32s
∞
12) = |s∞11|2|s∞31|2 − |s∞12|2|s∞32|2 − |s∞13|2|s∞33|2.

Using again the fact that S∞ is unitary, we can write

C = |s∞33|2(|s∞12|2 + |s∞13|2) + |s∞32|2(|s∞12|2 + |s∞13|2)− |s∞11|2|s∞31|2 − |s∞12|2

= |s∞33|2(1− |s∞11|2) + |s∞32|2(1− |s∞11|2)− |s∞11|2|s∞31|2 − |s∞12|2

= 1− |s∞31|2 − |s∞11|2 − |s∞12|2 = 0.

This gives the desired result.

Proposition 2.1 together with the error estimate ‖S − Sasy(L)‖ ≤ C e−β`L show that the curve
L 7→ s12(L) for the transmission coefficient goes as close as we wish to zero as L→ +∞. In the next
paragraph, we prove that due to the unitary structure of S, the curve L 7→ s12(L) passes exactly
through zero.

2.3 Zero transmission

Now we state and prove the main result of this section.

Theorem 2.1. Assume that the coefficients s∞12, s∞13, s∞23 in (5) satisfy s∞12 s
∞
13 s
∞
23 6= 0. Then the

complex curve L 7→ s12(L) for the transmission coefficient passes through zero an infinite number
of times as L→ +∞.

Remark 2.1. In Section 4, §4.1 below, we provide an example of situation where numerically the
assumption of Theorem 2.1 is satisfied.

Proof. According to Proposition 2.1, we know that there is L? > 0 such that sasy
12 (L?) = 0. Since

L 7→ sasy
12 (L) is π/k-periodic (see (8), (9)), we deduce that sasy

12 (L? + nπ/k) = 0 for all n ∈ N :=
{0, 1, . . . }. Define the interval

In := (L? +
nπ

k
−

1
n+ 1 ; L? +

nπ

k
+

1
n+ 1 ) .

Since the circle γ12 passes through zero, there is η ∈ (−π/2;π/2] such that γ12 is tangent to the line
{ρ eiη ∈ C, ρ ∈ R}. Define the quadrants

Q1 := {ρ eiθ ∈ C | ρ > 0, η − π/4 < θ < η + π/4}
Q2 := {ρ eiθ ∈ C | ρ < 0, η − π/4 < θ < η + π/4},

see Figure 2. On In, the curve L 7→ sasy
12 (L) meets both quadrants Q1 and Q2. On the other hand,

we have |s12(L) − sasy
12 (L)| ≤ C e−β`L. As a consequence, there is N ∈ N such that for all n ≥ N ,

the maps L 7→ s12(L) intersects both Q1 and Q2 on In.
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γ12

s12(an)

s12(bn) L 7→ s12(L)

Q1

Q2

{ρ eiη ∈ C, ρ ∈ R}

Figure 2: Notation used in the proof of Theorem 2.1.

Assume by contradiction that for all n ≥ N , L 7→ s12(L) does not pass through zero on In.
Let us first describe the idea that we will use before making it rigorous. Since S is unitary, there
holds

s11(L) s12(L) + s12(L) s22(L) = 0. (14)

As a consequence, we can write s12(L)/s12(L) = −s11(L)/s22(L) for all L ∈ In. But if L 7→ s12(L)
does not pass through zero on In, the point s12(L)/s12(L) = e2iarg(s12(L)) must run rapidly on the
unit circle for L ∈ In as n → +∞. On the other hand, s11(L)/s22(L) tends to a constant on In as
n→ +∞. This way we obtain a contradiction. We emphasize that the unitary structure of S is the
key ingredient of the proof.

Now we make this discussion rigorous. If L 7→ s12(L) does not vanish on In, since L 7→ s12(L)
is continuous and intersects both Q1, Q2 on In, we deduce that for all n ≥ N , there are an, bn ∈ In
such that s12(an) = tn e

i(η−π/4) and s12(bn) = t̃n e
i(η+π/4), with tn, t̃n ∈ R\{0}. Taking successively

L = an, L = bn in (14), we obtain

s11(an) = −ie2iηs22(an) and s11(bn) = ie2iηs22(bn). (15)

Pick ε small enough so that the open balls1 B(ie2iηsasy
22 (L?), ε) and B(−ie2iηsasy

22 (L?), ε) do not
intersect. This is possible because |sasy

22 (L?)| = 1 (remember that sasy
12 (L?) = 0). We know that

there is M large enough such that, for all n ≥ M , we have s11(an), s11(bn) ∈ B(sasy
11 (L?), ε/2) and

s22(an), s22(bn) ∈ B(sasy
22 (L?), ε/2). From (15), we deduce that we must have both

B(sasy
11 (L?), ε/2) ∩B(ie2iηsasy

22 (L?), ε/2) 6= ∅ and B(sasy
11 (L?), ε/2) ∩B(−ie2iηsasy

22 (L?), ε/2) 6= ∅.

This is impossible because there holds B(sasy
22 (L?), ε)∩B(−sasy

22 (L?), ε) = ∅. This shows that for all
n ≥ max(M,N), L 7→ s12(L) cancels on In. As a consequence, L 7→ s12(L) passes through zero an
infinite number of times as L→ +∞. More precisely, it passes trough zero almost periodically with
a period π/k.

1For z0 ∈ C (resp. z0 ∈ R2), B(z0, r) denotes the open ball of C (resp. R2) of radius r > 0 centered at z0.
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3 Trapped modes

In the previous section, for a given wavenumber k0 ∈ (0;π), we showed how to construct geometries
with two open channels such that the transmission coefficient s12 defined in (3) is equal to zero.
Now, from a given waveguide Ω∞ where we know that s12 = 0, truncating one open channel, we
explain how to find a geometry ΩL with one open channel supporting trapped modes for Problem
(2) at wavenumbers k close to k0. We remind the reader that we say that u is a trapped mode
for Problem (2) if u belongs to the Sobolev space H1(ΩL) and verifies (2). Note that Ω∞, the
waveguide where s12 = 0, can result from the construction of the previous section (Ω∞ = ωL), but
not necessarily.

3.1 Augmented scattering matrix

Ω∞

−H H

x

y

L

ΩL

Figure 3: Geometries of Ω∞ (left) and ΩL (right).

Let us start with a waveguide Ω∞ ⊂ R2 which coincides for ±x > H, where H > 0 is given, with the
strip R× (0; 1) (see Figure 3 left). Again, this geometry is chosen only to simplify the presentation
and other settings where the analysis below can be conducted are discussed in Section 5. For a given
wavenumber k ∈ (0;π), we assume that Ω∞ is such that the transmission coefficient s12 appearing
in (3) is equal to zero (zero transmission). We refer the reader to Section 2 or to [6, 7] for the
construction of such domains. Then for L > 0, we define the half-waveguide (unbounded in the left
direction)

ΩL := {(x, y) ∈ Ω∞ |x < H + L}.

In the following, we explain how to find L > 0 such that trapped modes exist for Problem (2) in ΩL.
We impose Neumann boundary conditions on {H+L}×(0; 1) but we could also work with Dirichlet.

Set β :=
√
π2 − k2 ∈ R and

W±1 (x, y) = w±1 (x, y) =
1
√

2k
e∓ikx, W±2 (x, y) =

1
√

2β
(e−βx ∓ ieβx) cos(πy).

Note the particular definition of the functions W±2 which are “wave packets”, combinations of
exponentially decaying and growing modes as x→ −∞ (observe that limx→−∞ |W±2 (x, y)| = +∞).
The modes W±2 are defined this way with an exponentially decaying part so that the new scattering
matrix S defined in (17) becomes sensitive to certain trapped modes (see Lemma 3.1). On the other
hand, we have to incorporate an exponentially growing behaviour to keep a unitary structure for S.
The normalisation coefficients for W±1 , W±2 are also chosen so that S is unitary. In [34, 21, 28, 31],
it is proved that in the half-waveguide ΩL, there are the solutions

U1 = W−1 + S11W
+
1 + S12W

+
2 + Ũ1

U2 = W−2 + S21W
+
1 + S22W

+
2 + Ũ2

(16)

where Ũ1, Ũ2 decay as O(e
√

4π2−k2x) when x → −∞. The complex constants Sij , i, j ∈ {1, 2} in
(16) are uniquely defined. They allow us to define the augmented scattering matrix introduced in
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[34, 21, 28, 31]

S :=
(
S11 S12
S21 S22

)
∈ C2×2. (17)

Working exactly as in the proof of Lemma 6.1 in Annex, one can show that S is unitary (S S> =
Id2×2) and symmetric (S21 = S12). This augmented scattering matrix provides an algebraic criterion
to detect the presence of trapped modes (see e.g. [31, Thm. 2]):

Lemma 3.1. If S22 = −1, then U2 is a trapped mode for Problem (2) set in ΩL.

Remark 3.1. Note that S22 = −1 is only a sufficient criterion of existence of trapped modes.
Indeed the geometry ΩL can support trapped modes for Problem (2) with S22 6= −1. In this case,
these trapped modes must decay as O(e

√
4π2−k2x) when x→ −∞.

Proof. If S22 = −1, since S is unitary, then S21 = 0. In such a situation, according to (16), we have
U2 = −i

√
2/β eβx cos(πy) +O(e

√
4π2−k2x) as x→ −∞. This shows that U2 6≡ 0 belongs to H1(ΩL).

In other words U2 is a trapped mode.

3.2 Asymptotic analysis of the coefficients of the augmented scattering matrix

The augmented scattering matrix S depends on L. In this section, we compute an asymptotic
expansion of all the elements of S(L) as L → +∞. In particular, we will show that the dominant
asymptotic term of L 7→ S22(L) hits the unit circle.
To proceed, we work exactly as in §2.2. In the geometry Ω∞ (see Figure 3 right) obtained from ΩL

making L→ +∞, there are the solutions

U∞1 = χl(W−1 + S∞11 W
+
1 + S∞12 W

+
2 ) + χr S

∞
13 W

+
1 + Ũ∞1

U∞2 = χl(W−2 + S∞21 W
+
1 + S∞22 W

+
2 ) + χr S

∞
23 W

+
1 + Ũ∞2

U∞3 = χl(S∞31 W
+
1 + S∞32 W

+
2 ) + χr (W−1 + S∞33 W

+
1 ) + Ũ∞3 ,

where Ũ∞1 , Ũ∞2 , Ũ∞3 decay as O(e
√

4π2−k2x) for x→ −∞ and as O(e−
√
π2−k2x) for x→ +∞. Here

χl, χr are the cut-off functions introduced in (3). The scattering matrix

S∞ :=

 S∞11 S∞12 S∞13
S∞21 S∞22 S∞23
S∞31 S∞32 S∞33

 ∈ C3×3 (18)

is unitary and symmetric. For U1, U2, we make the ansatzs

U1 = U∞1 +A1(L)U∞3 + . . .
U2 = U∞2 +A2(L)U∞3 + . . . .

On {H + L} × (0; 1), the conditions ∂nU1 = 0, ∂nU2 = 0 lead to choose A1(L), A2(L) such that

S∞13 e
ikL +A1(L) (−e−ikL + S∞33 e

ikL) = 0 ⇔ A1(L) =
S∞13

e−2ikL − S∞33

S∞23 e
ikL +A2(L) (−e−ikL + S∞33 e

ikL) = 0 ⇔ A2(L) =
S∞23

e−2ikL − S∞33
.

As in §2.2, we assume that |S∞33 | 6= 1 (see §6.2 in the Annex for the case |S∞33 | = 1). Then we have
S = Sasy(L) + . . . , with

Sasy(L) = (Sasy
ij )1≤i,j≤2 :=

(
S∞11 S∞12
S∞21 S∞22

)
+
(
A1(L)
A2(L)

)(
S∞31 S∞32

)
.
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In other words, we have

S11 = S∞11 +
S∞13 S

∞
31

e−2ikL − S∞33
+ . . . S12 = S∞12 +

S∞13 S
∞
32

e−2ikL − S∞33
+ . . .

S21 = S∞21 +
S∞23 S

∞
31

e−2ikL − S∞33
+ . . . and S22 = S∞22 +

S∞23 S
∞
32

e−2ikL − S∞33
+ . . . .

(19)

The dots stand for exponentially small terms. More precisely, we can establish an error estimate
of the form ‖S − Sasy(L)‖ ≤ C e−βL where C is a constant independent of L > 0. Since S∞ is
symmetric, Sasy(L) is also symmetric. Moreover working as in Lemma 6.2 in Annex, one can check
that for all L > 0, Sasy(L) is unitary. As L tends to +∞, the coefficients S11, S12 = S21 and S22
run respectively on the sets

Γ11 := {S∞11 + S∞13 S
∞
31

z − S∞33
| z ∈ C }, Γ12 := {S∞12 + S∞13 S

∞
32

z − S∞33
| z ∈ C }, Γ22 := {S∞22 + S∞23 S

∞
32

z − S∞33
| z ∈ C }.

(20)
As in the previous section, one finds that Γ11, Γ12, Γ22 coincide with circles centered respectively at

Z11 := S∞11 + S∞13 S
∞
33 S

∞
31

1− |S∞33 |2
, Z12 := S∞12 + S∞13 S

∞
33 S

∞
32

1− |S∞33 |2
, Z22 := S∞22 + S∞23 S

∞
33 S

∞
32

1− |S∞33 |2
(21)

of radii
P11 := |S∞13 S

∞
31 |

1− |S∞33 |2
, P12 := |S∞13 S

∞
32 |

1− |S∞33 |2
, P22 := |S∞23 S

∞
32 |

1− |S∞33 |2
. (22)

Working exactly as in the proof of Proposition 2.1, we can show the following statement.

Proposition 3.1. Assume that the coefficients S∞12 , S∞13 , S∞23 in (18) satisfy S∞12 S
∞
13 S

∞
23 6= 0. Then

the circle Γ12 passes through zero. As a consequence, since Sasy(L) is unitary, we deduce that the
circles Γ11, Γ22 intersect the unit circle C at exactly one point.

Remark 3.2. From this proposition, it follows that the dominant asymptotic term of L 7→ S22(L)
hits the unit circle. This is the property that will be used below to prove the existence of trapped
modes.

Remark 3.3. As in the previous section, we assume that S∞12 S
∞
13 S

∞
23 6= 0, which implies |S∞33 | 6= 1,

so that couplings exist between the modes in Ω∞.

3.3 The particular case where zero transmission occurs in Ω∞
In Ω∞, there are also the classical solutions u1, u2 introduced in (3) which allow one to define
the usual scattering matrix S ∈ C2×2 in (4) (for the identity relating S ∈ C2×2 and S∞ ∈ C3×3,
we refer the reader to [31, Thm. 3]). In this section, we are interested in situations (geometries)
where s12 = s21 = 0 (zero transmission). In this case, we establish an additional property for the
asymptotic circle Γ22 defined in (20).

Proposition 3.2. Assume that the coefficients S∞12 , S∞13 , S∞23 in (18) satisfy S∞12 S
∞
13 S

∞
23 6= 0. As-

sume also that we have s12 = 0 (zero transmission in Ω∞). Then the circle Γ22 intersects the unit
circle C at the point of affix −1 + 0i (see Figure 9).

Proof. If s12 = 0, starting from (3), we see that there is some λ ∈ C such that u1 (defined in (3))
admits the expansion

u1 = χl (W+
1 + s11W

−
1 + λ (W+

2 −W
−
2 )) + û1

with û1 which decays as O(e
√

4π2−k2x) for x → −∞ and as O(e−
√
π2−k2x) for x → +∞. Define

the symplectic (sesquilinear and anti-hermitian (q(u, v) = −q(v, u))) form q(·, ·) such that for all u,
v ∈ H1

loc(Ω∞)

q(u, v) =
∫

Σ−2H∪Σ2H

∂u

∂n
v − u

∂v

∂n
dσ. (23)
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Here Σ±2H := {±2H} × (0; 1), ∂n = ±∂x at x = ±2H and H1
loc(Ω∞) refers to the Sobolev space of

functions ϕ such that ϕ|O ∈ H1(O) for all bounded domains O ⊂ Ω∞. Using that U∞2 , U∞3 and u1
satisfy the homogeneous Helmholtz equation in Ω∞, integrating by parts, one obtains q(U∞2 , u1) =
q(U∞3 , u1) = 0. On the other hand, decomposing these three functions in Fourier series on Σ±2H ,
one finds

0 = q(U∞2 , u1) = S∞21 s11 − S∞22 λ− λ (24)

0 = q(U∞3 , u1) = S∞31 s11 − S∞32 λ. (25)

Coupling (24) and (25), we get the additional relation

S∞31 =
S∞32 S

∞
21

1 + S∞22
(26)

for the coefficients of the augmented scattering matrix S∞ when s12 = 0. Note that since by
assumption S∞23 6= 0, we have S∞22 6= −1. Actually the latter property is true as soon as there is
no trapped mode in the geometry Ω∞. Now, we explain how to use Identity (26) to show that the
circle Γ22 defined in (20) passes through the point of affix −1 + 0i. From (21), we know that the
center of Γ22 is given by

Z22 = S∞22 + S∞23 S
∞
33 S

∞
32

1− |S∞33 |2
= S∞22(|S∞31 |2 + |S∞32 |2) + S∞23 S

∞
33 S

∞
32

|S∞31 |2 + |S∞32 |2
.

Using that S∞21S
∞
31 + S∞22S

∞
32 + S∞23S

∞
33 = 0 (S∞ is unitary), we obtain

Z22 = S∞22 |S∞31 |2 − S∞32S
∞
21S
∞
31

|S∞31 |2 + |S∞32 |2
.

With (26), we deduce

Z22 =
|S∞32 |2 |S∞21 |2

|S∞31 |2 + |S∞32 |2

(
S∞22

|1 + S∞22 |2
−

1
1 + S∞22

)
= −

|S∞32 |2 |S∞21 |2

|S∞31 |2 + |S∞32 |2
1

|1 + S∞22 |2

= −
|S∞31 |2

|S∞31 |2 + |S∞32 |2
= −1 + P22.

The last equality in the above equation has been obtained using the expression of P22 in (22). Since
P22 stands for the radius of Γ22, this shows that Γ22 passes through the point of affix −1 + 0i.

Proposition 3.2 together with the error estimate ‖S − Sasy(L)‖ ≤ C e−βL show that the curve
L 7→ S22(L) passes as close as we wish to the point of affix −1 + 0i as L → +∞ when we know
that s12 = 0. Unfortunately, contrary to what has been done in the previous section to prove that
L 7→ s12(L) passes through zero as L→ +∞ (see the proof of Theorem 2.1), the unitary structure
of S is not sufficient to guarantee that L 7→ S22(L) passes exactly through the point of affix −1 + 0i
as L→ +∞. In our analysis, we will have to play also with the wavenumber k.

Remark 3.4. Let us present a simple calculation allowing one to feel that the situation s12 = 0 in
Ω∞ is interesting to construct trapped modes in ΩL. When s12 = s21 = 0, the function u2 in (3)
admits the expansion

u2 = χr (w−2 + s22w
+
2 ) + ũ2,

where ũ2 decays exponentially as x → ±∞. Due to conservation of energy, s12 = 0 implies s22 =
eiη for some η ∈ [0; 2π). As a consequence, on {H + L} × (0; 1), we find ∂n(w−2 + s22w

+
2 ) =

ik(−e−ik(H+L) + eiηeik(H+L))/
√

2k. Thus, there is a periodic sequence (Ln) such that ∂n(w−2 +
s22w

+
2 ) = 0 on {Ln}× (0; 1). Of course, this does not show that u2 is a trapped mode in ΩLn (∂nu2

is exponentially small on {H+Ln}×(0; 1) but not zero). However it leads to think there is a trapped
mode “close to” (k,ΩLn).
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3.4 Proof of existence of trapped modes

The coefficient S22 depends both on L and k. Up to now, we have found pairs (L, k) such that
the dominant asymptotic term of S22 is equal to −1. Now, we will show that there is a sequence
(Ln, kn) such that we have exactly S22 = −1 (indeed, from Lemma 3.1, we know that this proves
the existence of trapped modes).

Assume that there is k0 ∈ (0;π) such that the transmission coefficient s12 in (3) is zero. As-
sume also that the coefficients S∞12 , S∞13 , S∞23 in (18) satisfy S∞12 S

∞
13 S

∞
23 6= 0 at the wavenumber k0.

Since S∞ depend smoothly on the wavenumber, there is ε > 0 such that we have S∞12 S
∞
13 S

∞
23 6= 0

for all k ∈ [k0 − ε; k0 + ε]. For k ∈ [k0 − ε; k0 + ε], as L→ +∞, we know from Proposition 3.1 that
there is a sequence (Ln(k)) such that |S22(Ln(k), k)| = 1. Introduce αn(k) ∈ [0; 2π) such that

S22(Ln(k), k) = eiαn(k).

The sequence (αn(k)) tends to α∞(k) where α∞(k) ∈ [0; 2π) is such that

Γ22(k) ∩ C = {eiα∞(k)}.

Assume that
The map k 7→ =mZ22(k) changes sign at k = k0. (27)

We remind the reader that Z22 is the center of the circle Γ22 defined in (21) such that =mZ22(k0) = 0
(Proposition 3.2). Observe that (27) is true for example if =m∂kZ22|k=k0 6= 0. In this case,
since α∞(k0) = π (again Proposition 3.2), we know that there is ε > 0 (smaller than the already
introduced ε > 0) such that α∞(k0 − ε) − π and α∞(k0 + ε) − π have different signs. Pick N ∈ N
large enough so that for all n ≥ N , the quantities αn(k0 − ε)− π and αn(k0 + ε)− π have different
signs. Since the map k 7→ αn(k) is continuous, we know that there is k?n ∈ [k0 − ε; k0 + ε] such that
αn(k?n) = π. Then we have

S22(Ln(k?n), k?n) = eiαn(k?
n) = −1.

This shows the existence of trapped modes for Problem (2) at the wavenumber k?n in the geometry
ΩLn(k?

n). Note that as n→ +∞, we have k?n → k0. Moreover, (Ln(k?n)) is almost periodic of period
π/k. We summarize these results in the following theorem.

Theorem 3.1. Assume that there holds s12 = 0 (zero transmission in Ω∞) at the wavenumber
k0 ∈ (0;π). Assume also that the coefficients S∞12 , S∞13 , S∞23 in (18) satisfy S∞12 S

∞
13 S

∞
23 6= 0 at

the wavenumber k0 and that (27) is true. Then there are sequences (Ln), (kn) such that Prob-
lem (2) admits trapped modes in the geometry ΩLn at the wavenumber kn. Moreover, there hold
limn→+∞Ln = +∞ and limn→+∞ kn = k0.

Remark 3.5. In Section 4, §4.2 below, we provide an example of situation where numerically the
assumptions of Theorem 3.1 are satisfied.

4 Numerical experiments

4.1 Zero transmission

In the first series of experiments, we set M := (0.2, 0.4) and

ωL := {(x, y) ∈ R× (0; 1) ∪ (−1/2; 1/2)× [1;L)} \B(M, 0.3)

(see Figure 6). Here B(M, 0.3) corresponds to the open ball centered at M of radius 0.3. Note
that there is no symmetry in the geometry. For each L in a given range, we compute numerically
the coefficients of the scattering matrix S ∈ C2×2 defined in (4). To proceed, we use a P2 finite
element method in a truncated waveguide. On the artificial boundary created by the truncation, a
Dirichlet-to-Neumann operator with 15 terms serves as a transparent condition. We take k = 0.8π
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and ` = 1. In Figure 4, we display the scattering coefficients for L ∈ (1.1; 6). In accordance with the
results obtained in §2.2, we observe that when L → +∞, asymptotically L 7→ s11(L), L 7→ s12(L)
and L 7→ s22(L) run on circles. More precisely, computing the coefficients of the scattering matrix
S∞ ∈ C3×3 defined in (6), we indeed check that asymptotically L 7→ s11(L), L 7→ s12(L) and
L 7→ s22(L) run respectively on the circles γ11, γ12 and γ22 obtained in (20). The asymptotic sets
γ11, γ12, γ22 are displayed in Figure 4 but are mostly covered by the marks of s11(L), s12(L), s22(L)
(we remind the reader that the convergence is exponentially fast). We also note that, as predicted
by Theorem 2.1, the curve L 7→ s12(L) indeed passes through zero as L→ +∞.
In Figure 5, we display the curve L 7→ − ln |s12(L)| for L ∈ (1.1; 6). The peaks correspond to the
values of L such that s12(L) = 0 (zero transmission). According to the proof of Theorem 2.1, we
expect that the peaks are almost periodic with a distance between two peaks tending to π/k = 1.25
as L → +∞. The numerical results we get are coherent with this value. Finally, in Figure 6, we
represent the real part of the total field u1 defined in (3) for L = 2.496 (second peak of Figure 5).
We can observe that the field is indeed exponentially decaying as x→ +∞.

−1 −0.5 0 0.5 1
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−0.8

−0.6

−0.4
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0

0.2

0.4

0.6

0.8

1

 

 

Coefficient s11
Coefficient s12
Coefficient s22

Figure 4: Coefficients L 7→ s11(L), L 7→ s12(L) and L 7→ s22(L) for L ∈ (1.1; 6). The thin black
circles (mostly hidden by the symbols) correspond to the asymptotic circles γ11, γ12 and γ22 defined
in (20). According to the conservation of energy, we know that the scattering coefficients are located
inside the unit disk marked by the black bold line.
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Figure 5: Curve L 7→ − ln |s12(L)| for L ∈ (1.1; 6). The peaks correspond to the values of L for
which there is zero transmission in ωL.
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Figure 6: Real part of the total field u1 defined in (3) for a setting where s12(L) = 0 (L = 2.496).
The incident field is coming from the left.

Figure 7: Real part of the total field in two other geometries where the transmission coefficient is
zero. For the picture on left, we played with the height of the vertical branch. For the picture on
right, we played with the length of the diagonal branch (the waveguide is unbounded in the left and
down directions). The incident field is coming from the left.

4.2 Trapped modes

In the second series of experiments, we set M := (0.2, 0.4) as in §4.1, L := 2.496 (this is the value
obtained in the numerical experiments leading to Figure 6) and, for L > 0,

ΩL := {(x, y) ∈ (−∞; 1/2 + L)× (0; 1) ∪ (−1/2; 1/2)× [1;L)} \B(M, 0.3).

The domain ΩL is pictured in Figure 11. According to the results of §4.1, we know that s12 = 0
in Ω∞ (zero transmission) at the wavenumber k = 0.8π. For each L in a given range, we compute
numerically the coefficients of the augmented scattering matrix S ∈ C2×2 defined in (17). To
proceed, again we use a P2 finite element method set in a truncated waveguide. We emphasize
here that we need to work with a well-suited Dirichlet-to-Neumann map to deal with the wave
packet W+

2 appearing in the decompositions of U1, U2 in (16). In Figures 8, 9, 10, we display the
coefficients L 7→ S11(L), L 7→ S12(L), L 7→ S22(L) for L ∈ (0.1; 3.5) and respectively k = 0.78π,
k = 0.8π, k = 0.82π. In these figures, we also display the asymptotic circles Γ11, Γ12 and Γ22 defined
in (20). In accordance with the results of §3.2, we observe that asymptotically as L → +∞, the
coefficients L 7→ S11(L), L 7→ S12(L), L 7→ S22(L) run respectively on Γ11, Γ12, Γ22. Moreover,
the curves L 7→ S12(L) pass through zero (Proposition 3.1). In Figure 9, we see that for k = 0.8π,
the circle Γ22 passes through the point of affix −1 + 0i as shown in Proposition 3.2. Comparing
Figures 8, 9 and 10, we observe that the center Z22 of Γ22 passes from the upper half plane to the
lower half plane as k goes from 0.8π− to 0.8π+. As a consequence, we are tempted to think that
the map k 7→ =mZ22(k) changes sign at k = 0.8π (Assumption (27)). In Figure 11 we display a
trapped mode in ΩL for L = 1.354 at the wavenumber k = 2.512... ≈ 0.8π. Figure 12 represents
the symmetrised version with respect to the line {x = H + L} of the trapped mode of Figure 11.
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Figure 8: Coefficients L 7→ S11(L), L 7→ S12(L) and L 7→ S22(L) for L ∈ (0.1; 3.5). The thin black
circles (mostly hidden by the symbols) correspond to the asymptotic circles Γ11, Γ12 and Γ22 defined
in (20). Here k = 0.78π.
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Figure 9: Coefficients L 7→ S11(L), L 7→ S12(L) and L 7→ S22(L) for L ∈ (0.1; 3.5). The thin black
circles (mostly hidden by the symbols) correspond to the asymptotic circles Γ11, Γ12 and Γ22 defined
in (20). Here k = 0.8π.
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Figure 10: Coefficients L 7→ S11(L), L 7→ S12(L) and L 7→ S22(L) for L ∈ (0.1; 3.5). The thin
black circles (mostly hidden by the symbols) correspond to the asymptotic circles Γ11, Γ12 and Γ22
defined in (20). Here k = 0.82π.

Figure 11: Trapped mode for Problem (2) in ΩL. Here k = 2.5125645 ≈ 0.8π and L = 1.354.

Figure 12: Symmetrization of the trapped mode of Figure 11.

16



5 Conclusion and discussion
In this article, first we explained how to construct waveguides with two open channels such that
the transmission coefficient in monomode regime is zero. In that case, the energy carried by an
ingoing mode propagating in one channel is completely backscattered, this is the mirror effect. The
principal novelty of this study is that there is no assumption of symmetry of the geometry. Then in a
second step, from a geometry where it is known that the transmission coefficient is zero, truncating
one of the channel, we showed how to create half-waveguides supporting trapped modes. All the
techniques presented here can be adapted in higher dimension (waveguides of Rd with d ≥ 3).
Moreover, Neumann boundary conditions can be replaced by Dirichlet boundary conditions, the
developments are exactly the same. For the construction of completely reflecting geometries, we
have assumed that outside a compact domain, the waveguide coincides with the strip R × (0; 1).
This is not needed in the analysis and configurations like the ones of Figure 7 right or Figure 13
top can be considered as well. More precisely, the two open channels can be oriented in different
directions and their height can differ. Similarly, to provide examples of half-waveguides supporting
trapped modes, we can start from geometries as the ones of Figure 13 top such that the transmission
coefficient is zero and truncate one branch.
To continue this work, there are many directions to investigate. Dealing with the case of waveguides
with N open channels for N ≥ 3 (see Figure 13 bottom) seems an interesting one. For this problem,
again several questions can be considered. For example, can one find a geometry such that the
energy carried by an ingoing mode propagating in one channel is completely backscattered? In this
case, we have to cancel N − 1 transmission coefficients (s12, . . . , s1N ). Playing with one branch is
probably not enough. Can we do it with N − 1 branches? And then, starting from a geometry
like the one of Figure 13 bottom where the mirror effect occurs (s12 = · · · = s1N = 0), truncating
channel 1, can we create waveguides supporting trapped modes? This sounds more easily achievable.
Another interesting direction would be to study what happens at higher wavenumber when several
modes can propagate. For the moment, this is highly open.

L
L

L1
L2

1 2

3x

y

Figure 13: Top: other types of waveguides where the approaches presented above work. Bottom:
example of waveguide with three open channels.
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In Figure 14, we represent another geometry ωL where the branch of finite length used in the article
has been replaced by a half disk of radius L. We also add a fixed non penetrable (Neumann)
obstacle in the domain to break the symmetry of the geometry. In Figure 15 left, we computed the
scattering coefficients (see (3)) with respect to L ∈ (0.5; 2). Again we observe that even though ωL
is completely not symmetric, the transmission coefficient passes through zero as L increases. This
is confirmed when we draw the curve L 7→ − ln |s12(L)| (Figure 15 top right). In Figure 15 bottom
right, we represent the real part of the total field in a situation where the transmission coefficient
is zero. All that results are numerical results. It would be interesting to prove them rigorously.
However the asymptotic analysis for this problem is different from the one presented above.

L

ωL
x

y

Figure 14: Geometry of ωL.
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Figure 15: Left: coefficients L 7→ s11(L), L 7→ s12(L) and L 7→ s22(L) for L ∈ (0.5; 2) in the geometry
of Figure 14. According to the conservation of energy, we know that the scattering coefficients are
located inside the unit disk marked by the black bold line. Top right: curve L 7→ − ln |s12(L)| for
L ∈ (0.5; 2). Bottom right: real part of the total field u1 defined in (3) for a setting where s12(L) = 0
(L = 1.265488). The incident field is coming from the left.

Finally, let us remark that very similar questions of zero transmission, perfect transmission, existence
of guided modes, ... arise in the theory of gratings [41, 42, 17]. It would be interesting to study
which of the phenomena explained in the present article also occur in these devices.

6 Annex

6.1 Properties of the scattering matrices

In this paragraph, for the convenience of the reader, we provide the details of the proofs of two
results used in the previous analysis. We start with a well-known lemma.

Lemma 6.1. The scattering matrix S defined in (4) is unitary and symmetric.
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Proof. Let us work with the symplectic form q(·, ·) introduced in (23) such that

q(u, v) =
∫

Σ−2H∪Σ2H

(
∂u

∂n
v − u

∂v

∂n

)
dσ, ∀u, v ∈ H1

loc(ΩL).

Integrating by parts and using that the functions u1, u2 defined in (3) satisfy the Helmholtz equation,
we obtain q(ui, uj) = 0 for i, j ∈ {1, 2}. On the other hand, decomposing u1, u2 in Fourier series
on Σ±2H , we find

q(u1, u1) = (−1 + |s11|2 + |s12|2) i, q(u2, u2) = (−1 + |s22|2 + |s21|2) i
q(u1, u2) = −q(u2, u1) = s11s21 + s12s22.

These relations allow us to prove that SS> = Id2×2, that is to conclude that S is unitary. On the
other hand, one finds q(u1, u2) = 0 = −s21 + s12. We deduce that S is symmetric.

Lemma 6.2. For all L > 1, the matrix Sasy(L) ∈ C2×2 defined in (8) is unitary.

Proof. A direct computation using the definitions of the coefficients of Sasy(L) (see (9)) gives

|sasy
11 |2 + |sasy

12 |2 = |s∞11|2 + |s∞12|2 +
|s∞13|2 (|s∞13|2 + |s∞23|2)
|e−2ikL − s∞33|2

+ 2<e
s∞13 (s∞11 s

∞
13 + s∞12 s

∞
23)

e−2ikL − s∞33

= |s∞11|2 + |s∞12|2 +
|s∞13|2 (1− |s∞33|2)
|e−2ikL − s∞33|2

− 2|s∞13|2<e
s∞33

e−2ikL − s∞33

= |s∞11|2 + |s∞12|2 + |s∞13|2
|e−2ikL − s∞33|2

|e−2ikL − s∞33|2
= 1.

To obtain the equalities above, we used several times the fact that S∞ ∈ C3×3 is unitary. Analo-
gously, one finds |sasy

12 |2 + |sasy
22 |2 = 1. On the other hand, we have

sasy
11 sasy

12 + sasy
12 sasy

22

= s∞11 s
∞
12 + s∞12 s

∞
22 +

|s∞13|2 s∞13 s
∞
23 + |s∞23|2 s∞13 s

∞
23

|e−2ikL − s∞33|2
+
s∞13 (s∞13 s

∞
12 + s∞23 s

∞
22)

e−2ikL − s∞33
+
s∞23 (s∞11 s

∞
13 + s∞12 s

∞
23)

e2ikL − s∞33

= s∞11 s
∞
12 + s∞12 s

∞
22 + s∞13 s

∞
23

1− |s∞33|2

|e−2ikL − s∞33|2
−

s∞13 s
∞
33 s
∞
23

e−2ikL − s∞33
−

s∞23 s
∞
13 s
∞
33

e2ikL − s∞33

= s∞11 s
∞
12 + s∞12 s

∞
22 + s∞13 s

∞
23 = 0.

Since Sasy(L) is symmetric, this is sufficient to conclude that Sasy(L) is unitary.

6.2 Particular cases in the asymptotic analysis of the scattering matrices

When |s∞33| = 1, the asymptotic (9) of the scattering matrix S with respect to L is different from
what has been obtained above. More precisely, if |s∞33| = 1, since S∞ is unitary and symmetric,
then s∞31 = s∞32 = 0, s∞13 = s∞23 = 0. In such a situation, we can show that as L → +∞, the matrix
S = S(L) defined in (4) tends to (

s∞11 s∞12
s∞21 s∞22

)
∈ C2×2.

A similar phenomenon appears in the asymptotic (19) of S when |S∞33 | = 1. In this situation, we
have S∞31 = S∞32 = 0, S∞13 = S∞23 = 0 and one can prove that S tends to(

S∞11 S∞12
S∞21 S∞22

)
∈ C2×2.

In this article, we do not consider these exceptional cases which are not interesting for our analysis.
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