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The radio detection of cosmic rays consists in the estimation of the properties of a primary cosmic ray by
observing the electric field emitted by the extensive air shower (EAS) created when the primary cosmic ray
enters the atmosphere. This technique is fully operative nowadays and presents a good degree of maturity.
In addition, several projects intend to employ this technique for the detection of neutrinos. In order for
the technique to be useful, accurate methods for computing the electric field created by a particle shower in
the context of a particular experiment must exist. Although current ground-based radio experiments lie
on the air-soil interface and some planned experiments on the South Pole envision antennas near the air-ice
interface, most of the analytical approaches and Monte Carlo codes used for calculating the electric field
either do not take into account the effect of the boundary or calculate the radiation fields only (direct,
reflected and transmitted radiation fields). When the particle shower and the antenna are close to the
boundary, compared to the observation wavelength, the far-field approximation breaks down, which is the
case for the low-frequency EXTASIS experiment, for instance. We present in this work a new formula for
calculating the exact field emitted by a particle track in two semi-infinite media separated by a planar
boundary. We also explore the validity of the far-field approximation and make some predictions for EAS
using a simple shower model.

DOI: 10.1103/PhysRevD.99.063009

I. INTRODUCTION

Due to the low flux of cosmic rays with energies above
1015 eV (∼3 · 10−4 m−2min−1), high-energy cosmic rays
cannot be directly detected and indirect methods must be
used. When a cosmic ray enters the atmosphere, it creates
an extensive air shower (EAS) that can be detected and
whose properties give us information on the primary
cosmic ray. The detection of these EAS is carried out
nowadays with the help of three main techniques: the
surface detection technique, consisting in the measurement
of the particles arriving at ground level and, the fluores-
cence detection, which consists in the collection of the
fluorescent light left by the EAS upon its passage through
the atmosphere, and finally, the radio detection technique.
The charged particles in the EAS emit an electric field

that can be detected using antennas. This is the principle of
the radio detection technique. The radio technique is well
established nowadays [1], and it presents the capability of
measuring the most important properties of cosmic rays,
namely, their arrival direction, energy, and composition
with urcentainties competitive with respect to the fluores-
cence detection [2,3]. Radio experiments such as
CODALEMA [4], AERA [5], LOFAR [6] or Tunka-Rex
[7] detect and analyze cosmic rays on a routinary basis,
proving the maturity of the technique at the present time.

Radio detection could be used for detecting neutrinos as
well, since neutrinos create a particle shower when they
interact within dense media. Initiatives like ARIANNA [8]
and ARA [9] try to pave the way for the radio detection of
neutrinos on the South Pole. Due to the low cost of the
detectors, and if radio detection of neutrinos is feasible, it
could be possible to build a radio-based neutrino observa-
tory with an instrumentation volume bigger than the
planned new-generation neutrino observatories (IceCube-
Gen2 [10], KM3NeT 2.0 [11], or GRAND [12]) with a
relatively low cost.
In order for the radio technique to be useful, the electric

field emitted by the particle showers must be understood.
Monte Carlo codes such as SELFAS3 [13,14], ZHAIRES [15]
or COREAS [16] allow the calculation of the emitted field,
which enables the reconstruction of the primary cosmic ray
upon comparison with the measured data.
Although ZHAIRES can take into account the reflection

on the ground for calculating the field received by balloon-
borne antennas [17], when calculating the field seen by
antennas near ground level the effect of the boundary is
usually not taken into account by these codes. Only direct
fields, as if there were no boundary, are calculated. This is
justified by the fact that if the distance between the emitting
particles and the receiving antenna is large with respect to
the observation wavelength (what is called the far field or
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radiation field), the influence of the boundary can be
included either by calculating the reflected field (applying
the Fresnel coefficients on the direct field) or knowing the
reception pattern of the antenna when the boundary is
present, by means of the reciprocity theorem [18,19].
However, this is not true if the observation wavelength
is large enough (or, equivalently, the frequency low
enough), as such is the case for the EXTASIS experiment

]14,20,21 ], where the observation frequency is less than
5 MHz (λ > 60 m). When antennas are located at few
hundreds of meters away from the shower core, the exact
field emitted by the shower particles hit the ground cannot
be obtained by adding the direct and reflected field since
geometrical optics no longer apply.
What is the interest, then, of detecting cosmic rays at low

frequency? Several experiments, such as Akeno [22] and
EAS-TOP [23] have measured an important low-frequency
emission from cosmic ray showers (see [24] for a complete
review). At low frequencies, the coherence of the shower is
expected to be greater, giving rise to an electric field that
has more reach than in the standard [20–80] MHz band.
This larger reach at low frequency has been partially
confirmed by EXTASIS [20,21]. Another important feature
at low frequency is the prediction of a pulse created by the
coherent deceleration of the shower particles when the
shower particles hit the ground, called the sudden death
pulse (SDP) [14]. This pulse has not been seen by
EXTASIS, although it might be detected by a low-
frequency experiment at a higher altitude. Besides, in
[14,24,25], the SDP has been approximated by the direct
emission only, disregarding the effect of the interface.
We present in this work a complete approach that includes
the effect of the boundary.
Another physical case for which the effect of the

boundary on the electric field is important corresponds
to the detection of neutrinos in ice, with experiments like
the aforementioned ARA and ARIANNA. Whether the
antennas are located over the ice or inside the ice, neutrino-
induced showers can cross the air/ice interface, and there-
fore the antennas will receive field coming from both
sides of the boundary. In the far field, the problem can be
interpreted as a transition radiation problem and the
resulting electric field can be calculated using the far-field
formula for a track as a basis to obtain the direct, reflected
and transmitted fields [26,27]. Nevertheless, if the antenna
and the particle track are close to the surface, the far-field
approach is not valid, in principle. It would be desirable,
then, to have an exact calculation to employ when the far-
field approach breaks down, and also to assess the range of
validity of the far-field approach.
In the present work, we calculate the field for a simple

dipole and then we increase the level of complexity to a
particle track first and then to a shower toy model. We begin
deriving in Sec. II the electric field in frequency domain
for an electric dipole embedded in a space having two

semi-infinite homogeneous media separated by a planar
boundary. In Sec. III we use the field of a dipole to
construct the exact electric field in frequency domain for a
particle track inside the same two semi-infinite media.
Then, we prove how it reduces to the formula in [14] if
there is no boundary, and as a consequence it can be
approximated by the ZHS formula [28] in the far field.
After that, we compare the complete formula with a
decomposition into direct, reflected, and transmitted fields,
both for air/soil and air/ice boundaries. We show as well
that the field of a particle inside soil can be neglected.
Finally, in Sec. IV we propose a simplified model for an
air shower and show that the exact calculation confirms (at
least at a theoretical level) the existence of a pulse created
by the deceleration of particles at ground level (the SDP),
which was already predicted in a less rigorous fashion by
ignoring the air/soil interface.

II. FIELD OF A DIPOLE IN TWO SEMI-INFINITE
MEDIA SEPARATED BY A PLANAR BOUNDARY

Let us assume a three-dimensional space divided by a
planar boundary at z ¼ 0. We define the upper region
(z > 0) as medium 1, and the lower region (z < 0) as
medium 2. Both media are nonmagnetic, that is, their
permeability is equal to μ0, the vacuum permeability. Each
medium has a relative permittivity ϵjr (j ¼ 1, 2), that can
present an imaginary part, indicating absorption. We
assume that both media have a conductivity σj. Using
the e−iωt time dependence for the Fourier transform,1 the
wave number is equal to

kj ¼ ω
ffiffiffiffiffi
μ0

p �
ϵ0ϵjr þ i

σj
ω

�
1=2

; ð1Þ

where ϵ0 corresponds to the vacuum permittivity. We
demand that the complex square root in Eq. (1) lies in
the upper part of the complex plane, so that the imaginary
part of kj is always positive or zero (ℑðkjÞ ≥ 0).
Let us now consider a vertical unit dipole vibrating at a

given frequency ω, with a current density expressed in the
following way:

Jðx;ωÞ ¼ ẑδðxÞδðyÞδðz − z0ÞδðωÞ; ð2Þ

where z0 is the vertical coordinate of the dipole. Note that
we have set the dipole moment equal to 1 Am, which will
be convenient later for writing the field of a particle track.
We can drop the δðωÞ factor in Eq. (2) knowing that it must
multiply the resulting dipole field (since the dipole vibrates
at one given frequency ω only), and write the new dipole
current as

1Or, equivalently, defining the Fourier transform as f̃ðωÞ ¼R
fðtÞeiωtdt.
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Jðx;ωÞ ¼ ẑδðxÞδðyÞδðz − z0Þ: ð3Þ

Although one can calculate the electromagnetic poten-
tials or the Hertz potential and derivate to obtain the electric
and magnetic fields, for the general case of a dipole in an
arbitrary direction it is actually simpler to operate directly
with Maxwell’s equations expressed as a function of the
electric and magnetic fields. The main reason is that the
enforcement of the boundary conditions can get a bit
cumbersome using the potential formalism, while they
are naturally expressed in terms of the fields. We begin by
transforming Maxwell’s equations to the Fourier space
ðkx; ky; z;ωÞ, with the transform defined as:

Aðkx; ky; z;ωÞ ¼
Z

∞

−∞
dx dy dt eiωt−ikxx−ikyyAðx; tÞ: ð4Þ

With this definition, we transform the horizontal coordi-
nates ðx; yÞ to the Fourier space ðkx; kyÞ and we switch from
time domain to frequency domain as well. The vertical
coordinate z remains untouched. Defining the ∇̃ as

∇̃ ¼ ikxx̂þ ikyŷþ
∂
∂z ẑ; ð5Þ

Maxwell’s equations in ðkx; ky; z;ωÞ space are formally
identical to the standard equations in frequency domain.

∇̃ ×Ej ¼ iωBj

∇̃ ×Bj ¼ −
ik2j
ω

Ej þ μ0J ð6Þ

with J given by Eq. (3). The subscript j indicates the upper
(1) or lower (2) half-space. Eq. (6) can be decomposed into
components and combined in order to obtain solutions
given in terms of imaginary exponentials. After that, the
resulting electric fields and magnetic fields are required
to be continuous. In our case, magnetic fields must be
continuous since both media are non-magnetic. The tan-
gential electric field must be continuous as well. The
normal component of the electric field must present a
discontinuity. If we define the complex electric displace-
ment as the regular electric displacement for a dielectric
medium added to a term with the ohmic charge density:

D̃ ¼ ϵEþ i
ω
σE ¼ ϵEþ i

ω
Johm ≡ ϵ̃E; ð7Þ

which implies that the divergence of D̃ depends only on the
free, non-ohmic current:

∇ · D̃¼∇ðϵEÞþ i
ω
∇ ·Johm¼ ρf−ρohm ¼ ρf;n−ohm; ð8Þ

where ρf;n−ohm is the free, non-ohmic charge density, ρf is
the charge density, and ρohm is the ohmic current. We have
used the continuity equation for the ohmic current:

−iωρohm þ∇ · Johm ¼ 0: ð9Þ

Since the only free, nonohmic current or charge density
present in the configuration is the one given by the
dipole, Eq. (8) implies that the normal component of the
electric field at the boundary, whether in ðx;ωÞ space or
ðkx; ky; z;ωÞ space must satisfy the condition:

ϵ̃1E1z − ϵ̃2E2zjz¼0 ¼ k21E1z − k22E2zjz¼0 ¼ 0: ð10Þ

The calculation of the fields in each half-space and the
enforcing of the boundary conditions can be found in [29].
We will adapt their formulas to our case. Throughout this
paper, we will assume that the observer lies in the upper
half-space and will calculate the electric field from a source
located in the upper and the lower half-space. Of course, if
the observer lies in the lower half-space, the fields can be
obtained by inverting the z coordinate and swapping the
two media.

A. Electric field from a vertical dipole located
in the upper half-space

If both the observer and the dipole are located in medium
1 (z > 0, see Fig. 1), the electric field can be written as a
sum of direct field and the field created by the boundary.
The boundary field can be decomposed into the field
created by a perfect image and an integral involving
Bessel functions:

FIG. 1. Sketch of the geometry for the dipole electric field. The
figure shows a plane with a fixed azimuthal angle φ. The dipole is
located on the z axis, at z0. The observer lies at a radial distance ρ
and a height z. The arrows indicate the radial and vertical
components of the electric field.
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Ev1ðx;ωÞ¼EdirectþEboundary¼Ed
v1þEim

v1þEint
v1: ð11Þ

We assume the dipole is located at ð0; 0; z0 ≥ 0Þ and the
observer at ðρ cosφ; ρ sinφ; zÞ. We define r1 as the distance
between the dipole and the observer. The radial and vertical
components of the direct field can be written as [29]:

Ed
1ρ ¼ −

ωμ0
4πk21

eik1r1
�
ik21
r1

−
3k1
r21

−
3i
r31

��
ρ

r1

��
z − z0

r1

�

Ed
1z ¼

ωμ0
4πk21

eik1r1
�
ik21
r1

−
k1
r21

−
i
r31

−
�
z − z0

r1

�
2
�
ik21
r1

−
3k1
r21

−
3i
r31

��
: ð12Þ

Defining r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðzþ z0Þ2

p
, that is, the distance

between the observer and the dipole image at ð0; 0;−z0Þ,
the image field is readily written:

Eim
1ρ ¼ −

ωμ0
4πk21

eik1r2
�
ik21
r2

−
3k1
r22

−
3i
r32

��
ρ

r2

��
zþ z0

r2

�

Eim
1z ¼ ωμ0

4πk21
eik1r2

�
ik21
r2

−
k1
r22

−
i
r32

−
�
zþ z0

r2

�
2
�
ik21
r2

−
3k1
r22

−
3i
r32

��
: ð13Þ

The remaining part of the field is expressed with the help of
an integral containing a Bessel function [29]:

Eint
1ρ ¼

iωμ0k22
2πk21

Z
∞

0

γ1eiγ1ðzþz0Þ

N
J1ðkρρÞk2ρdkρ

Eint
1z ¼ −

ωμ0k22
2πk21

Z
∞

0

eiγ1ðzþz0Þ

N
J0ðkρρÞk3ρdkρ: ð14Þ

kρ is an integration variable, J0 and J1 are the Bessel
functions of the first kind of zeroth and first order. γj, with
j ¼ 1, 2 is defined as

γj ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2j − k2ρ

q
; ð15Þ

and N is equal to

N ≡ k21γ2 þ k22γ1: ð16Þ

Equations (12)–(14) must be added to obtain the total field,
as in Eq. (11). While the direct and image field are
expressed in a closed form, the integral in Eq. (14) is
not expressible in a closed form in general, and must be
computed numerically. Several approximations can be
made in order to simplify it. For instance, one can assume
[29] that jk1j ≫ jk2j, ρ ≥ 5z, and ρ ≥ 5z0, but the first of
these conditions is not satisfied when medium 1 is the

atmosphere. We will show that another useful approxima-
tion consists in using the direct field (or the ZHS formula)
paired to the Fresnel coefficients when the observer lies
in the far field (ℜðk1Þr1 ≫ 1 and ℜðk1Þr2 ≫ 1). See
Sec. III F.
Due to the oscillatory nature and long tail of the Bessel

functions and the imaginary exponential, the integrals in
Eq. (14) present a very slow convergence, and partition
extrapolation methods have to be used to keep the compu-
tation time reasonable. We explain it in Sec. II E.

B. Electric field from a vertical dipole located
in the lower half-space

Let us place the dipole now at ð0; 0; z0 < 0Þ, in the lower
half-space, while retaining the observer at ðρ cosφ; ρ sinφ;
z > 0Þ. The radial and vertical components of the electric
field E2→1 in such a case can be written as [29]:

E2→1;ρ ¼ −
iωμ0
2π

Z
∞

0

γ1e−γ2z
0
eiγ1z

N
J1ðkρρÞk2ρdkρ

E2→1;z ¼
ωμ0
2π

Z
∞

0

e−iγ2z
0
eiγ1z

N
J0ðkρρÞk3ρdkρ: ð17Þ

Equation (17) corresponds to Eqs. (3.3.13) and (3.3.14) in
[29] performing a rotation of π around the x axis, which
implies the changes Ez → −Ez, z → −z, z0 → −z0, and
γ1 → γ2. As opposed to Eq. (11), Eq. (17) implies that the
field from a dipole in the lower half-space can be written as
a single integral with no evident closed form, although we
will show in Sec. III F that in the far field it is equivalent to
the direct field (or ZHS formula) paired with the Fresnel
coefficients.

C. Electric field from a horizontal dipole located
in the upper half-space

Having obtained the field for a vertical dipole, we can
solve Maxwell’s equations for a horizontal dipole. Instead
of Eq. (3), we choose the following current along the x axis:

Jðx;ωÞ ¼ x̂δðxÞδðyÞδðz − z0Þ; ð18Þ

which is the current of a horizontal unit dipole. The
obtention of the field is analogous to the vertical dipole
case, and can be found in [29]. Once again, the field for the
horizontal dipole in medium 1 when the observer is in the
same medium can be expressed as a sum of three terms.

Eh1ðx;ωÞ¼EdirectþEboundary¼Ed
h1þEim

h1þEint
h1: ð19Þ

In this case, however, for an observer at ðρ cosφ; ρ sinφ; zÞ,
the azimuthal component of the field is not zero, in general.
The direct field is expressed as [29]:

DANIEL GARCÍA-FERNÁNDEZ et al. PHYS. REV. D 99, 063009 (2019)

063009-4



Ed
1ρ ¼

ωμ0
4πk21

cosφeik1r1
�
2k1
r21

þ 2i
r31

þ ðz − z0Þ2
r21

�
ik21
r1

−
3k1
r21

−
3i
r31

��

Ed
1φ ¼ −

ωμ0
4πk21

sinφeik1r1
�
ik21
r1

−
k1
r21

−
i
r31

�

Ed
1z ¼ −

iωμ0
4πk21

cosφeik1r1
�
ρ

r1

��
z − z0

r1

��
k21
r1

þ 3ik1
r21

−
3

r31

�
:

ð20Þ

Equation (20) can be obtained from the direct field for the
vertical dipole [Eq. (12)] after performing two rotations,
which shows that the calculations are consistent (see
Appendix). The image field can be written as

Eim
1ρ ¼ ωμ0

4πk21
cosφeik1r2

�
2k1
r22

þ 2i
r32

þ ðzþ z0Þ2
r22

�
ik21
r2

−
3k1
r22

−
3i
r32

��

Eim
1φ ¼ −

ωμ0
4πk21

sinφeik1r2
�
ik21
r2

−
k1
r22

−
i
r32

�

Eim
1z ¼ −

iωμ0
4πk21

cosφeik1r2
�
ρ

r2

��
zþ z0

r2

��
k21
r2

þ 3ik1
r22

−
3

r32

�
:

ð21Þ

The integrals for the horizontal case are slightly more
complicated than the ones found for the vertical case [29]:

Eint
1ρ ¼ −

ωμ0
4πk21

cosφ
Z

∞

0

�
γ1
2
ðQ − 1Þ½J0ðkρρÞ − J2ðkρρÞ�

−
k21
2γ1

ðPþ 1Þ½J0ðkρρÞ þ J2ðkρρÞ�
�
eiγ1ðzþz0Þkρdkρ

Eint
1φ ¼ ωμ0

4πk21
sinφ

Z
∞

0

�
γ1
2
ðQ − 1Þ½J0ðkρρÞ þ J2ðkρρÞ�

−
k21
2γ1

ðPþ 1Þ½J0ðkρρÞ − J2ðkρρÞ�
�
eiγ1ðzþz0Þkρdkρ

Eint
1z ¼

iωμ0
2πk21

cosφ
Z

∞

0

ðQ − 1ÞJ1ðkρρÞeiγ1ðzþz0Þk2ρdkρ;

ð22Þ

with

P≡ γ2 − γ1
γ2 þ γ1

; ð23Þ

and

Q≡ k21γ2 − k22γ1
k21γ2 þ k22γ1

: ð24Þ

D. Electric field from a horizontal dipole located
in the lower half-space

With the same geometry as in Sec. II B the field from a
horizontal dipole in medium 2 seen by an observer in
medium 1 is

E2→1;ρ ¼ −
ωμ0
4π

cosφ
Z

∞

0

�
M−1½J0ðkρρÞ þ J2ðkρρÞ�

þ γ1γ2
N

½J0ðkρρÞ − J2ðkρρÞ�
�
eið−γ2z0þγ1zÞk2ρdkρ

E2→1;φ ¼ ωμ0
4π

sinφ
Z

∞

0

�
M−1½J0ðkρρÞ − J2ðkρρÞ�

þ γ1γ2
N

½J0ðkρρÞ þ J2ðkρρÞ�
�
eið−γ2z0þγ1zÞkρdkρ

E2→1;z ¼
iωμ0
2π

cosφ
Z

∞

0

γ2
N
J1ðkρρÞeið−γ2z0þγ1zÞk2ρdkρ:

ð25Þ
Equation (17) corresponds to Eqs. (5.4.35), (5.4.36) and
(5.4.37) in [29] performing a rotation of π around the x
axis, which implies the changes Ez→−Ez, z → −z, z0 →
−z0, Eφ → −Eφ, φ → −φ, and γ1 → γ2. M is defined as:

M ¼ γ1 þ γ2: ð26Þ

E. Evaluation of Bessel integrals

Due to the presence of ordinary Bessel functions Jn,
the integrals in Eqs. (14), (17), (22) and (25) contain long
oscillating tails that are difficult to evaluate numerically
while keeping the computation time reasonable. A slow but
easy way to calculate them is to compute the subintegrals in
several intervals of the real number line: ½0; a1�, ½a1; a2�,
½a2; a3�, etc., and stop when the sum of the subintegrals
reaches convergence with the desired precision. This
method is computationally intensive, and the evaluation
time of a single integral is of the order of a few seconds.
In order to compute the electric fields in a faster way, we

have used an extrapolation method called the partition
extrapolation method [30]. Our application of this method
goes as follows. We take the intervals ½0; b�; ½b; 2b�;
½2b; 3b�;…; ½ðn − 1Þb; nb�, and we calculate the integrals
of the function in each interval, I1; I2;…; In, using a
quadrature adaptative method such as QAG from the
GNU Scientific Library (also available via Scipy in
Python). Once the value of these integrals is known, the
partial sums for each interval are needed, defined as:
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Sk ¼
Xk
i¼1

Ii: ð27Þ

Let us order these partial sums, ½S1; S2;…; Sn�. The
partition extrapolation method tells us that we can obtain
an estimation of the ½0;∞Þ integral operating on this array
by using a triangular scheme. Starting from the array
½S1; S2;…; Sn� containing the partial sums, we define
another array with n − 1 elements, and where each element
is an average of two contiguous elements of our original
array.

�
1

2
ðS1 þ S2Þ;

1

2
ðS2 þ S3Þ;…;

1

2
ðSn−1 þ SnÞ

�

≡
h
Sð1Þ1 ; Sð1Þ2 ;…; Sð1Þn−1

i
: ð28Þ

Each iteration can be computed, then, knowing that for the
step k, the element i is calculated using the elements from
the previous step k − 1,

SðkÞi ¼ 1

2

�
Sðk−1Þi þ Sðk−1Þiþ1

�
: ð29Þ

After n − 1 iterations we end up with an array containing a

single element, Sðn−1Þ1 . This element is an estimation for the
Bessel integral, and this estimation converges much faster
than the brute-force approach [30]. The main idea behind
the partition extrapolation method is that the averaging of
the partial sums tends to dampen the oscillations of the
Bessel function, while converging towards the true value of
the integral. The partition extrapolation method allows the
use, in general, of different weights for the averaging of the
partial sums. However, we have chosen the simple 1

2
factor

because the different weights proposed in [30] resulted in
numerical instabilities for our particular integrals.
Depending on the wave number k and the radial distance

ρ, as well as on the desired precision, a different number of
intervals are needed. We will use b ¼ π=ρ for the period,
while for the number of intervals, we have chosen:

n ¼ max

�
25;

	
16

ν

1 MHz
ρ

1 km


�
: ð30Þ

ν represents the linear frequency. For certain observers too
close to the dipole, we will use the double of intervals and
a period of b=

ffiffiffi
2

p
. With this convention, the relative error

of the integral is always less than 10−5 for the range of
frequencies and distances explored throughout this paper.
Once the solution for the field of a dipole is known,

we can use it to obtain the complete field created by a
particle track.

III. FIELD OF A PARTICLE TRACK IN TWO
SEMI-INFINITE MEDIA SEPARATED

BY A PLANAR BOUNDARY

Let us consider a particle with charge q at rest at the point
x ¼ x1. At a time t ¼ t1 the particle is suddenly accelerated
and begins to travel in a straight line with a velocity v.
Then, at t ¼ t2 the particle is abruptly stopped and stays at
that place. This trajectory is called a particle track, and it
constitutes the building block for particle physics
Monte Carlo codes in general, and in particular for the
codes that calculate the radio emission from particle
showers, such as SELFAS [13], ZHAIRES [15], COREAS
[16], or ZHS [28]. The current density of a particle track can
be written in time domain as:

Jtrackðx; tÞ ¼ qvδ3ðx0 − x1 − vðt0 − t1ÞÞ
× ½Θðt0 − t1Þ − Θðt0 − t2Þ�; ð31Þ

where Θ is the Heaviside step function. We do not need the
charge density for our calculations, since our frequency
domain formulas are complete using the current density
only, i.e., charge conservation is automatically taken into
account if we solve the curl equations in frequency
[Eq. (6)], as it has been done for obtaining the dipole
fields. Equation (31) can be transformed to frequency
domain to yield:

Jtrackðx;ωÞ ¼ qv
Z

t2

t1

dt0eiωt0δ3ðx − x1 − vðt0 − t1ÞÞ ð32Þ

The electric field created by this current can be calculated
as a superposition of the fields for a vertical and a
horizontal unit dipole. Since a frame where the track
velocity has no y component can always be found, we
can assume without loss of generality:

v ¼ vxx̂þ vzẑ≡ vðcos θx̂þ sin θẑÞ: ð33Þ

Equations (12), (13), (14), (17), (20), (21), (22), (25) for the
fields have been calculated for a dipole located at ð0; 0; z0Þ,
but they are still valid for a dipole at x0 ¼ ðx0; 0; z0Þ
provided the cylindrical coordinate system ðρ;φ; zÞ is
correctly centered on the vertical axis that passes through
the dipole position. Let EvðhÞðx;x0;ωÞ be the field created
by a vertical (horizontal) unit dipole at x0 ¼ ðx0; 0; z0Þ. The
field for a particle track can be expressed as a combination
of these fields:

Etrackðx;ωÞ ¼
qv

1 A · m

Z
t2

t1

dt0eiωt0 ½cos θEhðx;x0ðt0Þ;ωÞ

þ sin θEvðx;x0ðt0Þ;ωÞ�; ð34Þ

where x0ðt0Þ is the trajectory of a particle track:
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x0ðt0Þ ¼ x1 þ ðt0 − t1Þðvxx̂þ vzẑÞ: ð35Þ

We have included a dimensional factor of 1 A · m, since the
unit dipole possesses a moment of the same magnitude. We
can define a magnetic field for a particle track in the same
way, making the substitution E → B in Eq. (34) and taking
BvðhÞ as the magnetic field from a unit dipole:

Btrackðx;ωÞ ¼
qv

1 A · m

Z
t2

t1

dt0eiωt0 ½cos θBhðx;x0ðt0Þ;ωÞ

þ sin θBvðx;x0ðt0Þ;ωÞ�: ð36Þ

EvðhÞðx;x0;ωÞ satisfies the following Maxwell’s equations:

∇×Ev;hðx;x0;ωÞ ¼ iωBv;hðx;x0;ωÞ

∇×Bv;hðx;x0;ωÞ ¼ −
ik2j
ω

Ev;hðx;x0;ωÞ þ μ0Jv;hðx;x0;ωÞ;
ð37Þ

j ¼ 1, 2 and where the currents are given by

Jvðx;x0;ωÞ ¼ ẑδðx − x0ÞδðyÞδðz − z0Þ
Jhðx;x0;ωÞ ¼ x̂δðx − x0ÞδðyÞδðz − z0Þ; ð38Þ

which means that the track current can be expressed by:

Jtrackðx;ωÞ ¼ q
Z

t2

t1

dt0 eiωt0 ðvxJhðx;x0ðt0Þ;ωÞ

þ vzJvðx;x0ðt0Þ;ωÞÞ; ð39Þ

with x0ðt0Þ taken from Eq. (35). Equation (37) implies that
the field of a track as defined in Eq. (34) satisfies Maxwell’s
equations as well and yields the correct current density
[Eq. (32)]. The equation for the curl of the electric field
is trivially satisfied if we define the magnetic field
Btrackðx;ωÞ as in Eq. (36), since the dipole fields satisfy
∇ ×EvðhÞ ¼ iωBvðhÞ, and our track field is a linear combi-
nation of the dipole fields. As for the curl of the mag-
netic field,

∇ ×Btrackðx;ωÞ ¼
q

1 A · m

Z
t2

t1

dt0eiωt0∇ × ½vxBhðx;x0ðt0Þ;ωÞ þ vzBvðx;x0ðt0Þ;ωÞ�

¼ q
1 A · m

Z
t2

t1

dt0 eiωt0
�
−
ik2j
ω

ðvxEh þ vzEvÞ þ μ0ðvxJh þ vzJvÞ
�

¼ −
ik2j
ω

Etrack þ μ0Jtrack; ð40Þ

where we have used Eq. (39). Equation (40) implies that
our solution for the electric field of a particle track
[Eq. (34)] satisfies Maxwell’s equations, and the source
current is precisely the current of a particle track, as
intended.

A. Comparison with previous analytical calculations

With Eqs. (12) and (34), the radial component of the
direct electric field created by a vertical track is

Ed
track;1ρ ¼ −

qvωμ0
4πk21

Z
t1

t1

dt0 eiωt0eik1r1
�
ik21
r1

−
3k1
r21

−
3i
r31

�

×

�
ρ

r1

��
z − z0

r1

�
: ð41Þ

r1 ¼ r1ðt0Þ, the distance from particle to observer, is now a
function of time. Also, z0ðtÞ ¼ z1 þ vt0. Analogously, for
the z component one finds:

Ed
track;1z ¼

qvωμ0
4πk21

Z
t1

t1

dt0eiωt0eik1r1
�
ik21
r1

−
k1
r21

−
i
r31

−
�
z − z0

r1

�
2
�
ik21
r1

−
3k1
r21

−
3i
r31

��
: ð42Þ

Equations (41) and (42) are the same, but with a different
notation, as Eqs. (12) and (13) for a vertical track found
in [31]. If we make k21 ¼ ω2μ0ϵ, and b ¼ ik1 − 1=r1, we
arrive at the same expression, and as a consequence the
direct fields of the present work are completely equivalent.
This implies as well that they are equivalent to the fields in
[25] and that they yield the ZHS formula [28] as a far-field
approximation.

B. Evaluation of the field for a single particle track

After integrand in Eq. (34) is known, the integral from t1
to t2 must be computed. Equation (34) in conjunction with
Eqs. (11) and (19) tells us that if observer and track are in
medium 1, the electric field can be written as a super-
position of the direct field, the image field, and the integral
field from the unit dipole:
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Etrackðx;ωÞ ¼
qv

1 A · m

Z
t2

t1

dt0 eiωt0 ½Ed
1 þ Eim

1 þEint
1 �

≡ Ed
track þ Eim

track þEint
track; ð43Þ

having defined Ed;im;int
1 as a combination of the vertical and

horizontal unit dipole fields,

Ed;im;int
1 ≡ cos θEd;im;int

h;1 þ sin θEd;im;int
v;1 : ð44Þ

Ed
vðhÞ;1 is found in Eq. (12) [Eq. (20)], Eim

vðhÞ;1 in Eq. (13)

[Eq. (21)], and Eint
vðhÞ;1 in Eq. (14) [Eq. (22)]. The integral in

Eq. (43) can be numerically evaluated with a Riemann sum.
However, Ed

vðhÞ;1 and Eim
vðhÞ;1 exhibit a eikr dependence,

which allows us to invoke the Fraunhofer approximation. If
the parameter

η≡ k1L2

r
sin θobs ≪ 1; ð45Þ

where L is the length of the track and sin θobs the angle
between the track velocity and the line joining the track and
the observer, we can make the following assumptions:
(1) Fraunhofer approximation for the phase:

kr ¼ kjx − x0j ≈ k½R − vðt − t0Þ cos θobs�; ð46Þ

where R is the distance from the observation point to
a reference point along the track where the particle is
located at a reference time t0. For our analysis, the
reference point taken will be the middle point of
the track.

(2) We assume the distances from track to observer can
be taken as constant (except for the one present in
the phase), or equivalently

L
R
≪ 1: ð47Þ

If the above conditions are not fulfilled, we can always
subdivide the track until they are. With the above approx-
imations, the integrals can be analytically computed, with
the result:

Ed
track ≈

qv
1 A · m

eikd·vt0

�
eiðω−kd·vÞt2 − eiðω−kd·vÞt1

iðω − kd · vÞ
�

× Ed
1ðx;x0

0; t0Þ; ð48Þ

with the track position fixed at:

x0
0 ¼ x1 þ vðt0 − t1Þ; ð49Þ

t0 being:

t0 ¼
t1 þ t2

2
; ð50Þ

and kd defined as the wave number times the unit vector
from x0

0 to the observer in x:

kd ¼ k1
x − x0

0

jx − x0
0j
: ð51Þ

Equation (48) reduces to the ZHS formula when dropping
all the terms that fall faster than 1

r (far-field approximation).
The Fraunhofer approximation can be used for the image
field as well, but keeping in mind that the expansion has to
be made around the image point:

x0
0;im ¼ x0x̂ − z0ẑ; ð52Þ

which is the mirror point of the middle of the track. This
modifies as well the definition of the wave number vector:

kim ¼ k1
x − x0

0;im

jx − x0
0;imj

: ð53Þ

Other than that, the Fraunhofer approximation for the
image field is analogous to Eq. (48):

Eim
track ≈

qv
1 A · m

eikim·vt0

�
eiðω−kim·vÞt2 − eiðω−kim·vÞt1

iðω − kim · vÞ
�

×Eim
1 ðx;x0

0;im; t0Þ; ð54Þ

Equations (48) and (54) can be as accurate as numerical
integration, provided the Fraunhofer conditions are
satisfied.
Calculating Eint

track, in principle, needs to be done numeri-
cally. We can use, for instance, a simple Riemann sum or a
Gauss-Legendre quadrature method for an appropriate
number of subdivisions of the ½t1; t2� interval. We show
in Fig. 2 that the Fraunhofer approximation for the integral
is appropriate for the direct and image fields. We have
placed a 1.2 m long electron track whose medium point is at
5 m from the interface, heading for the ground with a π=4
angle with respect to the vector normal to the interface.
Medium 1 is air with ϵr ¼ ð1.0001Þ2 and no conductivity,
and medium 2 is an average soil at the Nançay Observatory,
where the EXTASIS experiment is located, having ϵr ¼ 12
and a conductivity of σ ¼ 5 mS=m.We have placed several
observers 20 m above the boundary and at radial distances
of 50, 200, and 500 m. The direct and image fields have
been calculated using a Riemann sum after dividing the
integrand in intervals of T=1000, where T is the period for
each frequency, and also with the Fraunhofer approxima-
tion by enforcing η < 10−2 [Eq. (45)]. On top of Fig. 2 we
have plotted the modules of the electric field for the direct
and image fields (points represent the Riemann sum and
lines the Fraunhofer approximation), and on the bottom the
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relative error the Fraunhofer approximation. The agreement
is better than < 10−4, which is more than satisfactory for
our purposes. We have checked that the complex compo-
nents of the fields agree, and not only the modules, which is
vital to correctly account for interference between particle
fields. All of this means that we can use either Eqs. (48)
and (54), subdividing when necessary or integrating with
whatever numerical method we prefer. The approximation
is still valid, as it should, when the track or the observer are
far from the boundary.
If the track is in medium 2 and the observer in medium 1,

the transmitted field must be obtained with the help of
Eqs. (17) and (25):

Etrack;2→1ðx;ωÞ

¼ qv
1 A · m

Z
t2

t1

dt0eiωt0 ½cos θEh;2→1 þ sin θEv;2→1�:

ð55Þ

We will integrate Eq. (55) numerically, as with Eint
track.

C. Direct, boundary, and total fields

Although Eq. (43) for the field of a track in medium 1
conveniently divides the electric field in direct, image, and
integral fields, it is physically more sound to treat the image

and integral fields together as a single entity, since their
sum is the field created by the boundary between the two
media and that is what must be added to the direct field
created by the track. Symbolically,

Etrackðx;ωÞ ¼ Ed
track þ Eim

track þ Eint
track ≡Ed

track þ Ebound
track ;

ð56Þ

where Ebound
track represents the field created by the boundary

as a response to the particle track. Let us place a 1.2 m long
vertical electron track, reaching the ground and stopping at
the boundary. Medium 1 is air and medium 2 is an average
soil, as in the previous Section. In Fig. 3, top, we find the

FIG. 3. Top: Components of the electric field as a function of
frequency for a 1.2 m long vertical electron track traveling at a
speed ∼c. The end point of the track lies at the boundary. The
vertical (z, dashed lines) and horizontal (x, solid lines) compo-
nents are shown. The direct (blue), boundary (red) and total
(black) fields are depicted. The observer is located at ρ ¼ 50 m
and z ¼ 2 m Bottom: Same as top, but for a horizontal track at
z ¼ 0.6 m, traveling toward the þx̂ direction.

FIG. 2. Top: Electric field as a function of frequency created by
a 1.2 m long electron track traveling at a speed ∼c. The middle
point of the track is 5 m above the interface and the electron is
traveling towards the boundary with an angle of π=4 with respect
to the normal. The observers are located at 20 m above the ground
at radial distances of 50 (red circles), 200 (black circles) 500 m
(blue circles), and 1000 m (magenta circles). Solid lines represent
direct fields, dashed lines represent image fields, and dash-dotted
lines represent the integral fields. Lines have been calculated
using the Fraunhofer approximation and points have been
calculated performing a Riemann sum. Bottom: Relative error
for the Fraunhofer approximation compared to the Riemann sum.
See text for details.
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field seen by an observer located at ρ ¼ 50 m and z ¼ 2 m.
The field created by the boundary is quite important. The x
component (solid lines) is completely dominated by the
boundary field, while for the z component (dashed lines)
there is an interplay between the direct and boundary field,
whose interference gives rise to the final form of the total
field. In Fig. 3, bottom, we show the field created by a
horizontal track at z ¼ 2 m. In this case, the x component
(solid lines) is suppressed at low frequencies by the
boundary, while the z component (dashed lines) is boosted.
In any case, the conclusion drawn from Fig. 3 is clear. A

particle track near the ground creates a non-zero electric
field at the position of an observer that lies near ground
level also. Moreover, the boundary field plays an important
role, which means that for obtaining a rigorous field for
particles near a boundary, the direct field is not enough.
We show in Fig. 4 the electric field for a vertical track

near the boundary as a function of the radial distance to the
observer. At 1 MHz and 5 MHz, the boundary amplifies the
emission of the track. However, at 50 MHz, the direct field
and the boundary field interfere destructively, and at several
hundreds of meters the field is quite attenuated. Since
50 MHz is near the middle of the bands usually employed
by ground-based cosmic ray detection, Fig. 4 implies that
we should expect less emission from the shower particles
near ground level at standard frequencies. However, at
frequencies below 5 MHz, where most of the EXTASIS
[14,20,21] band is contained, the total field for a track is
greater than the direct field, and the coherence at these
frequencies between different parts of the shower suggests
that the emission from the ground particles of a shower will
be amplified thanks to the boundary as well.

D. Field from an underground track

Using Eq. (55) along with Eqs. (17) and (25), we can
calculate the field from a particle track immersed in soil,
which is useful to assess how the emission in air from the
ground particles of the shower relate to the emission in soil,
after they reach the ground. We will consider to that effect a
vertical electron track that travels 1.2 m in air with an angle
of π=4 with respect to the boundary, reaches the ground,
and then travels another 0.12 m in soil in the same
direction. We expect the underground particles for a
particle shower to be stopped after a few centimeters, so
the length of the underground track is reasonable. We show
in Fig. 5 the electric fields created by the track, both in air
and in soil. We see that the field emitted underground is
two orders of magnitude lower than the field emitted in air.
We have checked that for vertical tracks, this difference is
slightly larger. Therefore, for downward-going tracks, we
can ignore the field from the underground track and
calculate only the emission when the track is in the
atmosphere.

E. Influence of observer height on the electric
field from a track

The field created by the boundary depends on the
observer’s position with respect to it. As a result, the
height of the observer will influence the total field seen by
the observer. To illustrate this influence, we have taken a
vertical track with z0 ¼ 100 m over a ground with ϵr ¼ 12
and σ ¼ 5 mS=m, and we have calculated the field for a
series of observers located at ρ ¼ 100 m and variable

FIG. 4. Module of the electric field as a function of radial
observer distance for a 1.2 m long vertical electron track traveling
at a speed ∼c. The end point of the track lies at the boundary. The
direct (blue, dashed lines), boundary (red, dash-dotted lines) and
total (black, solid lines) fields are depicted, for the frequencies of
1 MHz (circles), 5 MHz (crosses) and 50 MHz (diamonds). The
observers are located at z ¼ 2 m.

FIG. 5. Module of the electric field as a function of frequency
for an electron track traveling at a speed ∼c towards the ground
and forming a π=4 angle with the interface. The track covers
1.2 m in air, crosses the boundary, and travels 0.12 m in an
average soil (ϵr ¼ 12, σ ¼ 5 mS=m). The emission in air (solid
lines) and in soil (dashed lines) for observers at radial distances of
50 (circles), 200 (crosses), and 500 m (diamonds) are shown. The
observers are located at z ¼ 2 m. See text for details.
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height. The results are shown in Fig. 6. We show the fields
for 1, 5, and 10 MHz. At 1 MHz, the dependence of the total
field strength with height is less pronounced than at 5 and
10 MHz. At 10 MHz, the observation wavelength (∼30 m)
is about one third of the track’s height (100 m), and since the
ground lies near the far-field region of the track, the total
field presents an interference pattern similar to the one
created by the sum of a direct and a reflected field. We
explain in the next section that this is indeed the case.

F. Far field. Decomposition into direct, reflected,
and transmitted components

If either the emitting track or the observer are far away
from the boundary compared to the wavelength (z or
z0 ≪ λ), the field should reduce to a sum of direct and
reflected fields if the track is in medium 1. With the help
of Fresnel coefficients, and using the direct [Eq. (48)]
and image [Eq. (54)] fields, the far-field approximation can
be written as:

Efar
track ¼ Ed

track þ rkEim
track;k þ r⊥Eim

track;⊥: ð57Þ

The image field has been divided into the polarizations
perpendicular and parallel to the reflection plane. The
parallel (rk) and perpendicular (r⊥) Fresnel reflection
coefficients can be written with the help of the following
equations, knowing the complex wave numbers k1 and k2
for each medium and the reflection angle θ1:

ℜðk2Þ sin θ2 ¼ ℜðk1Þ sin θ1; α≡ cos θ2
cos θ1

; β≡ k2
k1
ð58Þ

rk ¼
α − β

αþ β
; r⊥ ¼ 1 − αβ

1þ αβ
: ð59Þ

Note that θ2 is the transmitted angle, given by Snell’s law.
We can compare now the exact calculation [Eq. (43)] with
the Fresnel approximation [Eq. (57)]. We will also compare
with the ZHS-TR method [26], that combines the ZHS
formula and the Fresnel coefficients. If we keep only the
leading terms that fall with 1

r in Eqs. (12), (20), (13), and
(21), we arrive at the same formula. In [31] it is proven that
the direct field of a vertical track reduces to the ZHS
formula in the far field. Since the field from a horizontal
track can be obtained upon rotation (Appendix), the field
from a horizontal track reduces as well to the ZHS formula
in the far field. The image field, and therefore the reflected
field, has the same functional dependence [compare
Eqs. (12) and (20) to Eqs. (13) and (21)], which implies
that it reduces as well to the ZHS formula in the far field.
Adding the Fresnel coefficients to the direct and image
ZHS fields EZHS, we retrieve the ZHS-TR method:

Efar
ZHS ¼ Ed

ZHS þ rkEim
ZHS;k þ r⊥Eim

ZHS;⊥: ð60Þ

We show in Fig. 7 a comparison between the exact calcu-
lation [Eq. (43)], the Fresnel approximation [Eq. (57)] and
the ZHS-TR formula for a downward going vertical
electron track (top) and a horizontal electron track (bottom)
at three heights: 10, 100 and 1000 m. We have placed an
observer, at a radial distance of 100 m and 10 m of height.
Figure 7 shows that the exact approach, the Fresnel
approximation and the ZHS-TR method agree in the far
field. However, for low enough frequencies, neither the
Fresnel approximation nor the ZHS-TR method agree with
the field predicted by the exact method. When the obser-
vation wavelength is 3 times smaller than the distance
between the track and the interface, the relative error is
around 10%.

z0

λ
≳ 3 ⇒ error ≲ 10%: ð61Þ

Putting it in terms of the frequency, for air:

ν

1 MHz
z0

1 km
≳ 1 ⇒ error ≲ 10% ð62Þ

We can also check that the field emitted by a track in
medium 2 can be expressed in the far field as a transmitted
field with the help of the Fresnel coefficients. In this case,
we are going to assume that medium 1 is air as before, and
medium 2 is lossless Antarctic ice with a refractivity of
nice ¼ 1.78045. Several observers are placed at a radial
distance of 100 m and heights of 10, 100 and 100 m. This
physical configuration is similar to the setup for the

FIG. 6. Module of the electric field as a function of observer
height for a 1.2 m long vertical electron track traveling at a speed
∼c. The direct (dashed lines), boundary (dash-dotted lines) and
total fields (black lines) for 1 (circles), 5 (crosses), and 10 MHz
(diamonds) are shown. The observers are located at ρ ¼ 100 m.
See text for details.
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ARIANNA [8] antennas that are located on snow, although
with larger heights.2

The exact field Etrack;2→1 when the particle is in medium
2 and the observer in medium 1can be approximated in the

far field using the direct field for medium 2 (we suppose
that there is no medium 1), the Fresnel transmission
coefficients, a rotation matrix, and a phase to correct for
the actual path taken by the wave:

Efar
track;2→1 ¼ eiðk1−k2Þd1 ½Rðθ1 − θ2ÞTkEd2

track;kðxstraightÞ
þ T⊥Ed2

track;⊥ðxstraightÞ� ð63Þ

d1ð2Þ is the distance traveled by the radiation in medium
1 (2). The phase is there to account for the fact that the
direct field in medium 2 does not consider the propagation
in medium 1. The direct field is calculated for a point
named xstraight, which is the point that lies at a distance
d1 þ d2 and along a line that forms a θ2 angle with the
normal to the boundary.3 This is necessary to ensure that the
radiation dependence goes as 1=ðd1 þ d2Þ as intended, as
well as for calculating the correct emission angle for the
radiation which gives the correct polarization. In this case
θ2 is the angle that forms the incident wave with the normal
and θ1 the refracted angle. We have calculated these angles
numerically, since given two points at each side of the
interface, there is no general analytical solution for the
incident and refracted angles. See Fig. 8 for visual help.

FIG. 7. The four figures are called A, B, C, and D from top to
bottom. A: Electric field as a function of frequency created by a
1.2 m long electron track traveling at a speed ∼c. The middle point
of the track is located at 10, 100 and 1000 m above the interface
and the track is traveling downwards (−ẑ) towards the boundary.
The observer is located at ρ ¼ 100 m and z ¼ 10 m. Medium 1 is
air and medium 2 is an average soil. The exact fields, the Fresnel
(direct plus reflected) approximation and the ZHS-TR formula are
shown. B: relative errors of the Fresnel and ZHS-TR approaches
with respect to the exact formula. The dashed magenta lines
indicate errors of 0.01 (1%) and 0.1 (10%). C and D: Same as A
and B, but for a horizontal (þx̂) track. See text for details.

FIG. 8. Sketch explaining the transmission geometry. The
figure depicts the refraction plane. The track lies in medium 2,
emitting an electromagnetic wave with an emission angle θem.
The wave field parallel to the refraction plane (Ekinc) arrives at the
boundary, and its direction of propagation forms an angle θ2 with
the vector normal to the boundary. The field is refracted and
enters medium 1 forming a θ1 angle with the normal to the
boundary. As a consequence, the transmitted field E⊥trans is
rotated with respect to the incident field. The transmitted field
then arrives at the observer located in x. d2ð1Þ is the distance
traveled by the wave in medium 2(1). xstraight denotes the apparent
position of x seen from the track position.

2Note that the present work’s formalism can also be applied to
study the influence of the air/ice interface when the antennas and
the emitted particles are embedded in ice. It suffices to identify
medium 1 as ice, place the antennas and particles there, and
identify medium 2 as air.

3Or, equivalently, the apparent location of the observer if we
consider the opposite optical path—a ray emitted by the observer
that reaches the particle’s position.
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The parallel (Tk) and perpendicular (T⊥) transmission
coefficients are the Fresnel transmission coefficients multi-
plied by a correcting factor. Fresnel coefficients are meant
to be used for plane waves, but the refraction that takes
place when the wave goes from a dense medium to a
light medium induces a divergence of the rays, effectively
diminishing the electric field. Following [26,27], we write
this factor as:

dθ2
dθ1

¼ ℜðk1Þ cos θ1
ℜðk2Þ cos θ2

; ð64Þ

which multiplied by the Fresnel transmission coefficients
results in:

Tk ¼
2ℜðk1Þ cos θ1

ℜðk1Þ cos θ2 þℜðk2Þ cos θ1
;

T⊥ ¼ 2ℜðk1Þ cos θ1
ℜðk2Þ cos θ2 þℜðk1Þ cos θ1

: ð65Þ

The rotation matrix Rðθ1 − θ2Þ in Eq. (63) represents a
rotation of an angle θ1 − θ2 around the vector normal to the
refraction plane, and it is due to the fact that the refraction
rotates the polarization of the parallel component of the
incident wave. See Fig. 8.
Let us now consider an electron track in ice (medium 2)

whose middle point is at z0 ¼ −2. The track is going
upwards, forming a π=4 angle with the normal to the
boundary. We place several observers at ρ ¼ 100 m and
z ¼ 10, 100, and 1000 m. As we can see in Fig. 9, the exact,
Fresnel and ZHS-TR calculations agree when frequency
is high enough, as it happened with Fig. 7. In this case
what changes is the distance from the boundary to the
observer (and not the track), but the criterion for the relative
error remains unchanged nonetheless. When the z coor-
dinate is 3 times greater than the wavelength, the error is
less than 10%.

z
λ
≳ 3 ⇒ error ≲ 10%: ð66Þ

We can conclude that if the particles or the antennas
are at a distance from boundary three times larger than
the observation wavelength, the decomposition into direct,
reflected and transmitted components coupled to the
Fresnel coefficients is a good approximation (∼10% of
accuracy) to the exact field. If it is not the case, the exact
approach should be used. These results validate the far-field
approaches taken in [26,27].

IV. SHOWER TOY MODEL. SUDDEN
DEATH PULSE

After developing and studying the field from a particle
track in Sec. III, it would be desirable to implement the

formulas in a Monte Carlo code like SELFAS in order to
obtain an accurate prediction for the influence of the
ground on the electric field emitted by an EAS.
However, the numerical integration of Eqs. (14) and (22)
requires an important CPU time. Even applying the Fresnel
approximation when the track is far enough from the
ground (as explained in Sec. III F), the computation of
the field of a track under 20 MHz takes ∼10 s for a single
antenna, since each particle trajectory is made up of several
tracks, and the field must be known for a set of frequencies.
A shower comprised of ten million particles (whether they

FIG. 9. The four figures are named A, B, C, and D from top to
bottom. A: Electric field as a function of frequency created by a
1.2 m long electron track traveling at a speed ∼c. The middle
point of the track is located at z ¼ −2 m, below the interface
(medium 2) and the track is traveling towards the boundary with
an angle of π=4 with respect to the normal. The observers are
located at ρ ¼ 100 m and z ¼ 10 m, 100, and 1000 m. The exact
fields, the Fresnel (transmitted) approximation and the ZHS-TR
formula are shown. B: relative errors of the Fresnel and ZHS-TR
approaches with respect to the exact formula. The dashed
magenta line indicates an error of 0.01 (1%). See text for details.
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are sampled as in SELFAS or thinned as in ZHAIRES and
COREAS) would take 108 s, more than 3 years.
As an alternative, we will undertake the calculation of

the field emitted by a simple model for an EAS. As our goal
is primarily to check whether the SDP still exists or not
when considering near field effects at the interface, we can
consider in our toy model only the contribution of the
charge-excess mechanism to the electric field, because the
SDP is created by the charge-excess contribution. The aim
of this model is to elucidate the modification of the direct
field induced by the interface, which constitutes a correc-
tion to the direct field prediction shown in [25], and also to
verify if the sudden death pulse induced by the coherent
deceleration of the shower front is still present.
Let us model the shower as a collection of straight lines

stretching from an altitude of 10 km to the ground level.
These lines are positioned at the following radial distances
from the shower core: ρ ¼ f10; 30; 50; 70; 90g m. The
choice of these distances is justified because most of the
shower particles are contained within the Molière radius,
which is ∼80 m near sea level. At higher altitudes,
however, the radius is larger because it scales with the
inverse of the density, so the model should perform a bit
worse for high altitudes. For each one of these distances,
we place eight vertical lines at the azimuthal angles
φ ¼ f0; π=4; π;…; 7π=4g. In total, our toy model is made
up of 40 long lines. Each line is divided into 3 m long
particle tracks whose charge depends on the height z and
the radial distance to the shower core:

qi ¼ −0.2NðziÞfðρiÞAi; ð67Þ

NðziÞ is the number of particles at the height zi, taken from
a Gaisser-Hillas distribution for a 1 EeV shower in our case.
The factor −0.2 comes from the negative excess charge in
the shower. fðρiÞ represents the lateral distribution of the
shower particles, modeled by a Nishimura-Kamata-Greisen
(NKG) function. Since our model effectively transforms the
shower into a set of one-dimensional subshowers each one
of these subshowers approximate a portion of the shower
front with an area given by

Ai ¼
π

4

��
ρi þ

Δρ
2

�
2

−
�
ρi −

Δρ
2

�
2
�
; ð68Þ

with Δρ ¼ 20 m.
The 80 subshowers start developing at z ¼ 10 km,

traveling at v ∼ c. Every 3 m, the tracks are stopped and
another track having a different charge emerges from the
stopping point. This process is repeated until the whole
shower arrives at ground level, zg. The field is calculated for
a given observer and several frequencies under 20 MHz,
where the boundary effects are going to be more prominent.
If the height of the track is greater than the wavelength by a
factor of 10, the field is calculated using the Fresnel

approximations [Eq. (57)]. Otherwise, the exact field is
calculated by means of Eq. (34). Once the fields for the
chosen set of frequencies has been calculated, the data are
filtered using an eight-order low-pass Butterworth filter
(with νc ¼ 10 MHz as critical frequency) zero-padded, and
transformed to time domain to obtain the time trace of the
electric field.
We must stress that using this simple model we are only

calculating the excess charge emission from the particle
shower, but this is fine because we are interested only in
knowing what happens with the SDP emission near the
boundary. The main contribution to the electric field
emitted by a real air shower comes from the geomagnetic
effect, although the ratio of the geomagnetic and excess
charge emission mechanisms depends on the shower arrival
direction and the local geomagnetic field. The charge
excess mechanism typically represents ∼15% − 20% of
the electric field of a real shower.
We can find in Fig. 10 the electric field in time domain

given by our model for a vertical shower. Ground (or
emission) altitude is zg ¼ 0 m, and we have placed two
observers at 300 and 500 m of radial distance and at 9 m of
height, which is the height of the antennas used for the
EXTASIS experiment. Medium 1 is air, with an ϵr ¼
ð1.0001Þ2 and no conductivity, and medium 2 is again an
average soil with ϵr ¼ 12 and σ ¼ 5 mS=m. The direct
[Eq. (48), dashed black lines], direct plus reflected [Fresnel
approximation, Eq. (57), dash-dotted blue lines] and exact
[Eq. (34), solid red lines] are plotted. The left part of the
trace is due to the shower maximum. Since the maximum
is located at several kilometers of altitude, the Fresnel

FIG. 10. Electric field in time domain created by our model
shower traveling at a speed ∼c. Medium 1 is air and medium 2 is
an average soil. The observers are located at ρ ¼ 300 (lower
curves) and 500 m (upper curves, electric field offset by
30 μV=m) and z ¼ 9 m. The exact fields (solid red line), the
Fresnel approximation (directþ reflected, dash-dotted line) and
the direct (dashed black lines) are shown. See text for details.
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approximation and the exact calculation agree on the
emission from the shower maximum. As time passes and
the shower develops, the particles get closer to the ground
and the Fresnel approximation ceases to be valid. When
the particles stop at ground level, their sudden deceler-
ation creates the second peak that can be seen around
2000 ns for the observer at 300 m (bottom) and aroud
2500 ns for the observer at 500 m (top). This is the sudden
death pulse (SDP) already discussed in [14,25], although
in those references only the direct emission had been
computed. The present work’s approach shows that
although the exact calculation and the direct emission

differ, the SDP is however still present and presents
similar properties to the ones outlined by the direct
calculation:
(1) The amplitudes and durations of the exact and direct

SDPs are of the same order of magnitude.
(2) The delay between the principal pulse and the SDP

is directly proportional to the distance from the
shower core to the observer (see Fig. 13, bottom), as
with the direct case.

(3) The amplitude of the SDP falls with the inverse of
the distance from shower core to observer (see
Fig. 13, top), as it happened with the direct case.

FIG. 11. Polarization map of the SDP emitted by a 30° zenith angle shower coming from the −ŷ direction (φ ¼ 180°), with the core at
(0,0). Black points indicate the position of the antennas, located on two rings 300 m and 500 m away from the shower core. Arrows
indicate the direction and amplitude of the horizontal polarization while the radius of the circles indicate the amplitude of the vertical
polarization (pointing always on the ẑ direction). Ground altitude is 1400 m. Top left: direct field. Top right: directþ reflected fields
(Fresnel approximation). Bottom: total exact field. See text for details.
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One interesting feature found in Fig. 10 is the different
time at with the maximum of the SDP occurs for the direct
(or directþ reflected) and the exact calculation. The
exact maximum arrives slightly later than the direct or
directþ reflected maximum, and the reason for that is the
surface wave (or lateral wave) that propagates along the
boundary and therefore has a longer path than the direct
and reflected waves.
When the shower is vertical, the SDP presents vertical

polarization only. This is related to the fact that, in our
model, the deceleration at ground level lies along the ẑ
direction. To know if other polarizations are possible, we
have simulated a θ ¼ 30° zenith angle shower coming from
the azimuth φ ¼ 180°. We show a polarization map for the
direct, directþ reflected and total exact fields in Fig. 11,
where the arrows indicate the horizontal polarization and
the size of the circles represent the vertical polarization.
When comparing the direct vertical component (Fig. 11,
top left) with the exact one (Fig. 11, bottom), we see that
the surface wave enhances the total vertical component.
However, the horizontal polarization is slightly suppressed
and its direction differs from that obtained for the direct
field. We have checked that the Fresnel approximation
(directþ reflected) does not suffice for understanding this
behavior, as depicted in Fig. 11 (top right). Our calculations
show that the amplitude of the vertical component of the
SDP is similar to the direct field, and therefore the vertical
polarization of the SDP for a real shower should be similar
to the ones in [14]. However, the horizontal (east-west and
north-south) polarizations in [14] for the SDP do not
constitute a good approximation, in principle.
We show in Fig. 12 the influence of the type of ground

on the total field. The ground altitude is fixed at zg ¼ 0 m.
We have chosen an average soil used for the EXTASIS
antennas simulations (ϵr ¼ 12, σ ¼ 5 mS=m), the soil
present at the AERA experiment [32] both for dry
(ϵr ¼ 2, σ ¼ 1 mS=m) and damp conditions (ϵr ¼ 10,
σ ¼ 1 mS=m), and seawater [33] (ϵr ¼ 70, σ ¼ 5 S=m).
As it was already expected, since the emission from the
shower maximum can be approximated by a direct and a
reflected component, and the reflected component
depends on the properties of the soil, the amplitude
of the principal pulse (left) varies with the type of soil
used. In fact, choosing between a dry or damp ground
changes the field more than 10%, which reminds the
importance of knowing the ground and its influence on
the measuring antennas. The SDP (right pulse) is also
heavily affected by the type of ground, since the
properties of the surface wave are related to the proper-
ties of the ground. A higher conductivity results in a
larger surface wave, while the influence of the permit-
tivity seems to be more complicated.
Although the resulting SDP fields present an important

component that is created by the surface wave, which is a
nonradiative type of field since it does not carry energy

towards the infinity (it vanishes at large distances from the
interface, where the radiative direct and reflected compo-
nents dominate), we can see in Fig. 13, top, that the SDP
amplitudes for a vertical shower according to the model fall
with the inverse of the distance to the shower core, as if it
were a pure radiation field. This result is in agreement with
the direct field calculation in [14]. We retrieve as well that
the SDP amplitude increases when the ground altitude is
higher, due to the larger number of particles arriving at
the ground.
We show in Fig. 13, bottom, the arrival time of the SDP

as a function of distance. t ¼ 0 is the time the shower
reaches ground. The data for 1400 and 2500 m of altitude
have been offset for clarity. The arrival times grow linearly
with distance as evidenced by the superposed linear fits.
The inverses of the fit slopes are 0.2966, 0.2961 and
0.2958 mns−1 for 0, 1400, and 2500 m of altitude
respectively. The speed of light in air is ∼0.2998 mns−1,
which is slightly larger, reflecting the fact that the surface
wave travels close to the boundary and therefore has a
lower effective speed than the direct and reflected compo-
nents. However, there is a linear relation between the SDP
arrival time computed using the surface wave and the
distance to the shower core, as it was the case for the direct
field only [14].
Although this simple model does not consider geo-

magnetic effects, we expect that for pure geomagnetic
emission the effect of the boundary on the principal pulse
will be well approximated by the far-field calculation, as it
is the case for the excess charge effect. However, the SDP is
created precisely by the excess of negative charge that is

FIG. 12. Vertical component of the total exact electric field
predicted by our shower model for a vertical shower. Different
grounds have been used: average soil at EXTASIS (solid black
line, ϵr ¼ 12, σ ¼ 5 mS=m), damp AERA soil (dashed red line,
ϵr ¼ 10, σ ¼ 1 mS=m), dry AERA soil (dash-dotted blue line,
ϵr ¼ 2, σ ¼ 1 mS=m) and seawater (solid magenta line, ϵr ¼ 70,
σ ¼ 5 S=m) See text for details.
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suddenly decelerated, meaning that for a purely geomag-
netic emission there would be no SDP.

V. SUMMARY AND CONCLUSIONS

Since the field of a dipole can be used to calculate the
field created by more complex configurations, we have
discussed the exact frequency-domain electric field created
by a unit dipole in two semi-infinite media separated by a
planar boundary. If the dipole and the observer are in the

same medium, the field can be separated in three fields:
a direct field, an ideal image field, and an integral that
contains information about the lateral wave created by the
boundary. If the observer and the dipole lie in different
media, the whole field can be expressed with a single
integral that yields the field that passes through the
boundary. In both cases, the integrals have to be numeri-
cally evaluated, in general. The integrals contain Bessel
functions with long oscillating tails that present a very low
convergence. To keep the computation time reasonable, we
have chosen the partition extrapolation method as our
method of integration.
Then, we have presented a frequency-domain equation

produced by a particle track that takes into account the
effect of the boundary on the electric field at all frequencies.
This field has been obtained by integrating the solution for
the electric field of a dipole, previously obtained. As with
the dipole case, the track field can be divided into direct,
image, and integral fields if the observer and the track lie in
the same medium [Eq. (43)]. However, in this case the three
partial fields have to be numerically integrated, in general.
We have shown that the Fraunhofer approximation for
integrating the direct and image fields is a good approxi-
mation. In the far field, where either the track or the
observer are far away from the boundary, the track field is
expressible by the sum of a direct and reflected field (using
Fresnel coefficients). Our formula is also equivalent to the
ZHS-TR formalism [26] in the far field. We have also
obtained a solution for the case when the observer and the
track are in different media [Eq. (55)], which reduces in the
far field to a transmitted wave calculated using a modified
Fresnel coefficient as in [26,27]. The transmitted field
calculated in the present work is also consistent with ZHS-
TR. As a rule of thumb, when either the distance from track
to boundary or the distance from observer to boundary is 3
times greater than the observation wavelength, the relative
error of the far-field approximation is less than 10%.
We have studied the spectra for a track in air near a soil

ground. For frequencies under 10 MHz, which is the domain
of the EXTASIS experiment, the boundary creates a surface
wave that interferes constructively with the direct field. The
behavior of these spectra with radial distance shows that,
under 10 MHz, the contribution of the surface wave is quite
relevant up to radial distances of several hundreds of meters.
We have also calculated the field from a short underground
track seen by an observer in the atmosphere and found that
the underground field is two orders of magnitude smaller
than the field emitted by a typical particle track traveling in
air near the boundary, which implies that the underground
particles can be ignored.
Since the computation time for the exact electric field

from a realistic shower simulated with a Monte Carlo code
seems unmanageable, we have proposed a simple model for
a EAS. We have calculated the exact field under 10 MHz
for a set of one-dimensional subshowers presenting a

FIG. 13. Top: Amplitude of the SDP maximum created by a
vertical shower as function of the distance to the shower core. The
observers are located at a height of 2 m above the ground. Ground
altitudes are 0 m (lower curve), 1400 m (middle curve) and
2500 m (upper curve). Points represent the SDP amplitudes and
lines show a 1=R fit to the data, with R being the distance from
the observer to the shower core. Medium 1 is air and medium 2 is
an average soil. Bottom: Same setup as top, but now the y axis
shows the arrival time of the SDP maximum, zero being the time
when the shower reaches the ground (data for 1400 m and 2500 m
are offset by 200 and 400 ns, respectively). Lines indicate a linear
fit for the arrival time. See text for details.
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Gaisser-Hillas longitudinal profile together with a NKG
lateral distribution. The results show that the emission
coming from the shower maximum is not modified by the
boundary field, but when the shower is near the ground the
influence of the boundary is rather important. The exact
calculation confirms that a sudden death pulse (SDP) is
created when the shower abruptly stops at ground level,
which had already been obtained in a less rigorous way in
[14] using the direct field only. The order of magnitude of
the vertical component of the SDP predicted by the exact
calculation is the same as that predicted by the exact
calculation, which means that the direct emission is a
decent approximation for the vertical field and the calcu-
lations of [14] for the vertical component remain valid.
The horizontal components, on the other hand, are not well
approximated by the direct emission or the Fresnel
approximation (directþ reflected emission), and the sur-
face wave is needed to produce an accurate amplitude and
polarization.
The exact calculation also shows that, although the

surface wave is a non-radiative field, the exact SDP
amplitude falls with the inverse of the distance to the
shower core, as pure radiation field would do. The arrival
time of the SDP maximum is proportional to the distance to
the shower core as well, with a velocity of propagation
speed slightly inferior to the speed of light in air, since the
surface wave propagates near the boundary and not through
the direct path joining emitter and observer.
We must point out that while the present work provides a

way of calculating the electric field of a track when a planar
boundary is present, we have not discussed the voltage
this field would induce in an antenna. Antennas are well
understood when working in the far-field regime, with
radiating sources. When the sources are near and the field is
a mixture of radiating and non-radiating components the
reception patterns become more complicated. A proper
understanding of the antenna response in the near-field
regime of an EAS is capital for a correct prediction of the
final voltage.
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APPENDIX: OBTAINING THE HORIZONTAL
DIRECT FIELD FROM THE VERTICAL FIELD

The direct field created by the horizontal dipole can be
obtained from the direct field emitted by the vertical dipole
with the appropriate coordinate transformations. This stems
from the fact that the direct field is precisely the field
calculated as if there were no boundary. Starting with
Eq. (12), let us make z0 ¼ 0 and place an observer at
ðx; 0; zÞ, so that Eρ ¼ Ex and Ey ¼ 0, without loss of

generality. Then, we make the following change of
coordinates—we rotate −π along the y axis, so that the
dipole is oriented towards theþx̂ unit vector in thenew frame:

x0 ¼ z

y0 ¼ y

z0 ¼ −x: ðA1Þ

This transformation (note that in this case z0 denotes the new z
coordinate and not the dipole height) must be applied to the
electric field as well:

Ex0 ¼ Ez

Ey0 ¼ Ey

Ez0 ¼ −Ex: ðA2Þ

With the observer at ðx; 0; zÞ, Eq. (12) changes to the form:

Ed
x ¼ −

ωμ0
4πk21

eik1r1
�
ik21
r1

−
3k1
r21

−
3i
r31

��
x
r1

��
z
r1

�

Ed
z ¼

ωμ0
4πk21

eik1r1
�
ik21
r1

−
k1
r21

−
i
r31

−
�
z
r1

�
2
�
ik21
r1

−
3k1
r21

−
3i
r31

��
:

ðA3Þ

Applying Eqs. (A1) and (A2), along with the identity
x02 ¼ r21 − z02, we arrive at

Ed
x0 ¼

ωμ0
4πk21

eik1r1
�
2k1
r21

þ 2i
r31

þ ðz0Þ2
r21

�
ik21
r1

−
3k1
r21

−
3i
r31

��

Ed
z0 ¼ −

iωμ0
4πk21

eik1r1
�
x0

r1

��
z0

r1

��
k21
r1

þ 3ik1
r21

−
3

r31

�
; ðA4Þ

which is the particular case of Eq. (20) when the observer
is located at ðx; 0; zÞ and the dipole is at the origin. We
now perform a rotation of an angle α around the x0 axis.
Using the fact that y0 ¼ 0 and Ey0 ¼ 0, the transformations
are:

x00 ¼ x0

y00 ¼ sin αz0

z00 ¼ cos αz0 ðA5Þ

and

Ex00 ¼ Ex0

Ey00 ¼ sin αEz0

Ez00 ¼ cos αEz0 : ðA6Þ
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Let us begin with Ez00 . Equations (A5) and (A6) imply that

Ed
z00 ¼ cosαEd

z0

¼ − cosα
iωμ0
4πk21

eik1r1
�
x00

r1

��
z00

cosαr1

��
k21
r1

þ 3ik1
r21

−
3

r31

�
;

ðA7Þ

and using cylindrical coordinates ðρ;φ; z00Þ we have that
x00 ¼ ρ cosφ and therefore:

Ed
z00 ¼ −

iωμ0
4πk21

eik1r1 cosφ

�
ρ

r1

��
z00

r1

��
k21
r1

þ 3ik1
r21

−
3

r31

�
;

ðA8Þ

which is the same as the z component in Eq. (20) if we drop
the two primes from the z00. On the other hand, Ex00 and Ey00

can be written as:

Ed
x00 ¼ Ed

x0

¼ ωμ0
4πk21

eik1r1
�
2k1
r21

þ 2i
r31

þ ðz00Þ2
cos2αr21

�
ik21
r1

−
3k1
r21

−
3i
r31

��

ðA9Þ

Ed
y00 ¼ sinαEd

z0

¼ −
sinα
cosα

iωμ0
4πk21

eik1r1
�
ρ cosφ
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��
z00

r1

��
k21
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þ 3ik1
r21

−
3

r31

�
:

ðA10Þ

The sines and cosines of φ can be expressed in the
following way:

cosφ ¼ x00

ρ
ðA11Þ

sinφ ¼ y00

ρ
¼ sin αz0

ρ
¼ sin αz00

cos αρ
; ðA12Þ

from which we derivate the identity:

sinφ
sin α
cos α

z00 ¼ sin2 α
ρ

z002

cos2 α
: ðA13Þ

We know that the radial field can be obtained by combin-
ing the horizontal fields:

Eρ ¼ Ex00 cosφþ Ey00 sinφ; ðA14Þ

which, in conjunction with Eqs. (A9), (A10) and (A13)
gives:

Ed
ρ ¼

ωμ0
4πk21

cosφeik1r1
�
2k1
r21

þ 2i
r31

þ ðz00Þ2
r21

�
ik21
r1

−
3k1
r21

−
3i
r31

��
;

ðA15Þ

which is consistent with Eq. (20). Finally, expressing the
azimuthal field as

Eϕ ¼ −Ex00 sinφþ Ey00 cosφ; ðA16Þ

along with the following identity:

sinφz002

r21cos
2α

þ cos2φ
sin α
cos α

ρz00

r21
¼ sinφ

z002

r21
þ sin αρz0

r21

¼ sinφ
r21

ðρ2 þ z002Þ

¼ sinφ; ðA17Þ

leads us to the final expression for the azimuthal field:

Ed
φ ¼ −

ωμ0
4πk21

eik1r1 sinφ

�
ik21
r1

−
k1
r1

−
i
r31

�
; ðA18Þ

which is the same as in Eq. (20). Equations (A8), (A15)
and (A18) show that the direct field of a horizontal dipole
can be obtained from the field of a vertical dipole.
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