R. O. Hynes, The extracellular matrix: not just pretty fibrils, Science, vol.326, pp.1216-1219, 2009.

H. Jarvelainen, A. Sainio, M. Koulu, T. N. Wight, and R. Penttinen, Extracellular matrix molecules: potential targets in pharmacotherapy, Pharmacol Rev, vol.61, pp.198-223, 2009.

J. F. Bateman, R. P. Boot-handford, and S. R. Lamande, Genetic diseases of connective tissues: cellular and extracellular effects of ECM mutations, Nature Rev Genet, vol.10, pp.173-183, 2009.

T. Rozario and D. W. Desimone, The extracellular matrix in development and morphogenesis: a dynamic view, Dev Biol, vol.341, pp.126-140, 2010.

R. O. Hynes and A. Naba, This review gives a complete list of ECM proteins that are part of the matrisome, and describes the ECM structure and function modifiers and the evolution of the matrisome, Cold Spring Harb Perspect Biol, vol.4, p.4903, 2012.

P. Lu, K. Takai, V. M. Weaver, and Z. Werb, Extracellular matrix degradation and remodeling in development and disease, Cold Spring Harb Perspect Biol, vol.3, 2011.
DOI : 10.1101/cshperspect.a005058

URL : http://cshperspectives.cshlp.org/content/3/12/a005058.full.pdf

C. Frantz, K. M. Stewart, and V. M. Weaver, The extracellular matrix at a glance, J Cell Sci, vol.123, pp.4195-4200, 2010.

G. Zhen and X. Cao, Targeting TGF? signaling in subchondral bone and articular cartilage homeostasis, Trends Pharmacol Sci, vol.35, pp.227-236, 2014.
DOI : 10.1016/j.tips.2014.03.005

URL : http://europepmc.org/articles/pmc4058854?pdf=render

J. Gross and C. M. Lapiere, Collagenolytic activity in amphibian tissues: a tissue culture assay, Proc Natl Acad Sci USA, vol.48, pp.1014-1022, 1962.
DOI : 10.1073/pnas.48.6.1014

URL : http://www.pnas.org/content/48/6/1014.full.pdf

L. A. Hite, J. D. Shannon, J. B. Bjarnason, and J. W. Fox, Sequence of a cDNA clone encoding the zinc metalloproteinase hemorrhagic toxine from Crotalus atrox: evidence for signal, zymogen, and disintegrin-like structures, Biochemistry, vol.31, pp.6203-6211, 1992.

K. Kuno, Molecular cloning of a gene encoding a new type of metalloproteinase-disintegrin family protein with thrombospondin motifs as an inflammation associated gene, J Biol Chem, vol.272, pp.556-562, 1997.

G. Murphy, The ADAMs: signalling scissors in the tumour microenvironment, Nature Rev Cancer, vol.8, pp.929-941, 2008.

J. M. White, ADAMs: modulators of cell-cell and cell-matrix interactions, Curr Opin Cell Biol, vol.15, pp.598-606, 2003.
DOI : 10.1016/s0955-0674(03)00110-8

S. S. Apte, A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif (ADAMTS) superfamily: functions and mechanisms, J Biol Chem, vol.284, pp.31493-31497, 2009.
DOI : 10.1074/jbc.r109.052340

URL : http://www.jbc.org/content/284/46/31493.full.pdf

J. S. Bond, K. Rojas, J. Overhauser, H. Y. Zoghbi, and W. Jiang, The structural genes, MEP1A and MEP1B, for the ? and ? subunits of the metalloendopeptidase meprin map to human chromosomes 6p and 18q, respectively, Genomics, vol.25, pp.300-303, 1995.

G. P. Bertenshaw, M. T. Norcum, and J. S. Bond, Structure of homo-and hetero-oligomeric meprin metalloproteases. Dimers, tetramers, and high molecular mass multimers, J Biol Chem, vol.278, pp.2522-2532, 2003.
DOI : 10.1074/jbc.m208808200

URL : http://www.jbc.org/content/278/4/2522.full.pdf

C. Herzog, R. S. Haun, A. Ludwig, S. V. Shah, and G. P. Kaushal, ADAM10 is the major sheddase responsible for the release of membrane-associated meprin A, J Biol Chem, vol.289, pp.13308-13322, 2014.

M. N. Kruse, Human meprin ? and ? homooligomers: cleavage of basement membrane proteins and sensitivity to metalloprotease inhibitors, Biochem J, vol.378, pp.383-389, 2004.

C. Broder, Metalloproteases meprin? and meprin? are C-and N-procollagen proteinases important for collagen assembly and tensile strength, Proc Natl Acad Sci USA, vol.110, pp.14219-14224, 2013.
DOI : 10.1073/pnas.1305464110

URL : http://www.pnas.org/content/110/35/14219.full.pdf

T. Jefferson, The substrate degradome of meprin metalloproteases reveals an unexpected proteolytic link between meprin ? and ADAM10, Cell Mol Life Sci, vol.70, pp.309-333, 2013.

N. Geurts, Meprins process matrix metalloproteinase-9 (MMP-9)/gelatinase B and enhance the activation kinetics by MMP-3, FEBS Lett, vol.586, pp.4264-4269, 2012.
DOI : 10.1016/j.febslet.2012.10.033

R. Khokha, A. Murthy, and A. Weiss, Metalloproteinases and their natural inhibitors in inflammation and immunity, Nature Rev Immunol, vol.13, pp.649-665, 2013.
DOI : 10.1038/nri3499

A. H. Baker, D. R. Edwards, and G. Murphy, Metalloproteinase inhibitors: biological actions and therapeutic opportunities, J Cell Sci, vol.115, pp.3719-3727, 2002.
DOI : 10.1242/jcs.00063

URL : http://jcs.biologists.org/content/115/19/3719.full.pdf

H. W. Smith and C. J. Marshall, Regulation of cell signalling by uPAR, Nature Rev Mol Cell Biol, vol.11, pp.23-36, 2010.
DOI : 10.1038/nrm2821

A. Bonnefoy and C. Legrand, Proteolysis of subendothelial adhesive glycoproteins (fibronectin, thrombospondin, and von Willebrand factor) by plasmin, leukocyte cathepsin G, and elastase, Thromb Res, vol.98, pp.323-332, 2000.

P. Giuffrida, P. Biancheri, and T. T. Macdonald, Proteases and small intestinal barrier function in health and disease, Curr Opin Gastroenterol, vol.30, pp.147-153, 2014.

M. M. Mohamed and B. F. Sloane, Cysteine cathepsins: multifunctional enzymes in cancer, Nature Rev Cancer, vol.6, pp.764-775, 2006.

M. Fonovic and B. Turk, Cysteine cathepsins and extracellular matrix degradation, Biochim Biophys Acta, vol.1840, pp.2560-2570, 2014.

K. Uchimura, HSulf-2, an extracellular endoglucosamine-6-sulfatase, selectively mobilizes heparin-bound growth factors and chemokines: effects on VEGF, FGF-1, and SDF-1, BMC Biochem, vol.7, issue.2, 2006.

N. Barker, Identification of stem cells in small intestine and colon by marker gene Lgr5, Nature, vol.449, pp.1003-1007, 2007.

T. Hasebe, Thyroid hormone-induced cell-cell interactions are required for the development of adult intestinal stem cells, Cell Biosci, vol.3, issue.18, 2013.

Y. Su, Y. Shi, M. A. Stolow, and Y. B. Shi, Thyroid hormone induces apoptosis in primary cell cultures of tadpole intestine: cell type specificity and effects of extracellular matrix, J Cell Biol, vol.139, pp.1533-1543, 1997.

D. Patterton, W. P. Hayes, and Y. B. Shi, Transcriptional activation of the matrix metalloproteinase gene stromelysin-3 coincides with thyroid hormone-induced cell death during frog metamorphosis, Dev Biol, vol.167, pp.252-262, 1995.

A. Ishizuya-oka, This paper showed that MMP11 is required for cell fate determination and cell migration during morphogenesis, most probably through ECM remodelling, J Cell Biol, vol.150, pp.1177-1188, 2000.

T. Amano, O. Kwak, L. Fu, A. Marshak, and Y. B. Shi, The matrix metalloproteinase stromelysin-3 cleaves laminin receptor at two distinct sites between the transmembrane domain and laminin binding sequence within the extracellular domain, Cell Res, vol.15, pp.150-159, 2005.

K. Fujimoto, K. Nakajima, and Y. Yaoita, Expression of matrix metalloproteinase genes in regressing or remodeling organs during amphibian metamorphosis, Dev Growth Differ, vol.49, pp.131-143, 2007.

T. Hasebe, R. Hartman, L. Fu, T. Amano, and Y. B. Shi, Evidence for a cooperative role of gelatinase A and membrane type-1 matrix metalloproteinase during Xenopus laevis development, Mech Dev, vol.124, pp.11-22, 2007.

P. Simon-assmann, M. Kedinger, D. Arcangelis, A. Rousseau, V. Simo et al., Extracellular matrix components in intestinal development, Experientia, vol.51, pp.883-900, 1995.

P. Simon-assmann, M. Kedinger, and K. Haffen, Immunocytochemical localization of extracellularmatrix proteins in relation to rat intestinal morphogenesis, Differentiation, vol.32, pp.59-66, 1986.

P. Simon-assmann, F. Bouziges, J. N. Freund, F. Perrin-schmitt, and M. Kedinger, Type IV collagen mRNA accumulates in the mesenchymal compartment at early stages of murine developing intestine, J Cell Biol, vol.110, pp.849-857, 1990.

P. Simon-assmann, The laminins: role in intestinal morphogenesis and differentiation, Ann NY Acad Sci, vol.859, pp.46-64, 1998.

Z. X. Mahoney, T. S. Stappenbeck, and J. H. Miner, Laminin ? 5 influences the architecture of the mouse small intestine mucosa, J Cell Sci, vol.121, pp.2493-2502, 2008.

J. F. Beaulieu, Integrins and human intestinal cell functions, Front Biosci, vol.4, pp.310-321, 1999.

Y. D. Benoit, Integrin ?8?1 regulates adhesion, migration and proliferation of human intestinal crypt cells via a predominant RhoA/ROCK-dependent mechanism, Biol Cell, vol.101, pp.695-708, 2009.

Y. D. Benoit, Integrin ?8?1 confers anoikis susceptibility to human intestinal epithelial crypt cells, Biochem Biophys Res Commun, vol.399, pp.434-439, 2010.

J. F. Groulx, Collagen VI is a basement membrane component that regulates epithelial cellfibronectin interactions, Matrix Biol, vol.30, pp.195-206, 2011.

S. J. Henning, Meprin mRNA in rat intestine during normal and glucocorticoid-induced maturation: divergent patterns of expression of ? and ? subunits, FEBS Lett, vol.462, pp.368-372, 1999.

T. Sato and H. Clevers, Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications, Science, vol.340, pp.1190-1194, 2013.

H. Y. Kim and C. M. Nelson, Extracellular matrix and cytoskeletal dynamics during branching morphogenesis, Organogenesis, vol.8, pp.56-64, 2012.

R. Goetz and M. Mohammadi, Exploring mechanisms of FGF signalling through the lens of structural biology, Nature Rev Mol Cell Biol, vol.14, pp.166-180, 2013.

H. P. Makarenkova, Differential interactions of FGFs with heparan sulfate control gradient formation and branching morphogenesis, Sci Signal, vol.2, p.55, 2009.

V. N. Patel, Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis, Development, vol.134, pp.4177-4186, 2007.

H. E. Kim, Disruption of the myocardial extracellular matrix leads to cardiac dysfunction, J Clin Invest, vol.106, pp.857-866, 2000.

J. Bondeson, S. Wainwright, C. Hughes, and B. Caterson, The regulation of the ADAMTS4 and ADAMTS5 aggrecanases in osteoarthritis: a review, Clin Exp Rheumatol, vol.26, pp.139-145, 2008.

F. Echtermeyer, Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis, Nature Med, vol.15, pp.1072-1076, 2009.

J. A. Martignetti, Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome, Nature Genet, vol.28, pp.261-265, 2001.

H. B. El-serag, Hepatocellular carcinoma, N Engl J Med, vol.365, pp.1118-1127, 2011.

N. F. Boyd, L. J. Martin, M. J. Yaffe, and S. Minkin, Mammographic density and breast cancer risk: current understanding and future prospects, Breast Cancer Res, vol.13, issue.223, 2011.

P. Biancheri, The role of transforming growth factor (TGF)-? in modulating the immune response and fibrogenesis in the gut, Cytokine Growth Factor Rev, vol.25, pp.45-55, 2013.

F. Verrecchia, M. L. Chu, and A. Mauviel, Identification of novel TGF-? /Smad gene targets in dermal fibroblasts using a combined cDNA microarray/ promoter transactivation approach, J Biol Chem, vol.276, pp.17058-17062, 2001.

T. A. Wynn and T. R. Ramalingam, This review summarizes our current understanding of the molecular and cellular pathways controlling fibrosis, with special focus on the immune response, as well as the key pathways for therapeutic targeting, Nature Med, vol.18, pp.1028-1040, 2012.

M. Giannandrea and W. C. Parks, Diverse functions of matrix metalloproteinases during fibrosis, Dis Model Mech, vol.7, pp.193-203, 2014.

J. S. Duffield, M. Lupher, V. J. Thannickal, and T. A. Wynn, Host responses in tissue repair and fibrosis, Annu Rev Pathol, vol.8, pp.241-276, 2013.

T. Mchedlidze, Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis, Immunity, vol.39, pp.357-371, 2013.

J. R. Bailey, IL-13 promotes collagen accumulation in Crohn's disease fibrosis by downregulation of fibroblast MMP synthesis: a role for innate lymphoid cells?, PLoS ONE, vol.7, 2013.

D. L. Clarke, A. M. Carruthers, T. Mustelin, and L. A. Murray, Matrix regulation of idiopathic pulmonary fibrosis: the role of enzymes, Fibrogen Tissue Repair, vol.6, p.20, 2013.

F. Rieder, The gut microbiome in intestinal fibrosis: environmental protector or provocateur?, Sci Transl Med, vol.5, pp.190-200, 2013.

M. W. Parker, This paper demonstrates that fibrotic ECM stimulates fibroblasts to produce more ECM through downregulation of miR-29, J Clin Invest, vol.124, pp.1622-1635, 2014.

S. Bhattacharyya, Fibronectin EDA promotes chronic cutaneous fibrosis through Toll-like receptor signaling, Sci Transl Med, vol.6, pp.232-50, 2014.

N. Ding, A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response, Cell, vol.153, pp.601-613, 2013.

M. F. Chan, Protective effects of matrix metalloproteinase-12 following corneal injury, J Cell Sci, vol.126, pp.3948-3960, 2013.

D. Jiang, Inhibition of pulmonary fibrosis in mice by CXCL10 requires glycosaminoglycan binding and syndecan-4, J Clin Invest, vol.120, pp.2049-2057, 2010.

B. S. Ding, Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis, Nature, vol.505, pp.97-102, 2014.

K. Atabai, Mfge8 diminishes the severity of tissue fibrosis in mice by binding and targeting collagen for uptake by macrophages, J Clin Invest, vol.119, pp.3713-3722, 2009.

M. J. Bissell and W. C. Hines, Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression, Nature Med, vol.17, pp.320-329, 2011.

X. Tian, High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat, Nature, vol.499, pp.346-349, 2013.

P. Lu, V. M. Weaver, and Z. Werb, The extracellular matrix: a dynamic niche in cancer progression, J Cell Biol, vol.196, pp.395-406, 2012.

J. V. Burnier, Type IV collagen-initiated signals provide survival and growth cues required for liver metastasis, Oncogene, vol.30, pp.3766-3783, 2011.

A. Bergamaschi, Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome, J Pathol, vol.214, pp.357-367, 2008.

I. Poola, Identification of MMP-1 as a putative breast cancer predictive marker by global gene expression analysis, Nature Med, vol.11, pp.481-483, 2005.

M. J. Paszek, Tensional homeostasis and the malignant phenotype, Cancer Cell, vol.8, pp.241-254, 2005.

J. T. Erler, Lysyl oxidase is essential for hypoxia-induced metastasis, Nature, vol.440, pp.1222-1226, 2006.

K. R. Levental, This study describes how ECM stiffening through LOX drives tumour progression and shows that inhibiting collagen crosslinking delays tumorigenesis, Cell, vol.139, pp.891-906, 2009.

J. T. Erler, Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche, Cancer Cell, vol.15, pp.35-44, 2009.

J. K. Mouw, Tissue mechanics modulate microRNA-dependent PTEN expression to regulate malignant progression, Nature Med, vol.20, pp.360-367, 2014.
DOI : 10.1038/nm.3497

URL : http://europepmc.org/articles/pmc3981899?pdf=render

R. R. Valiathan, M. Marco, B. Leitinger, C. G. Kleer, and R. Fridman, Discoidin domain receptor tyrosine kinases: new players in cancer progression, Cancer Metastasis Rev, vol.31, pp.295-321, 2012.
DOI : 10.1007/s10555-012-9346-z

URL : http://europepmc.org/articles/pmc3351584?pdf=render

C. Hidalgo-carcedo, Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6, Nature Cell Biol, vol.13, pp.49-58, 2011.

K. Zhang, The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis, Nature Cell Biol, vol.15, pp.677-687, 2013.
DOI : 10.1038/ncb2743

URL : http://europepmc.org/articles/pmc3794710?pdf=render

S. Sengupta, MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins, Proc Natl Acad Sci USA, vol.105, pp.5874-5878, 2008.
DOI : 10.1073/pnas.0801130105

URL : http://www.pnas.org/content/105/15/5874.full.pdf

J. Chou, GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression, Nature Cell Biol, vol.15, pp.201-213, 2013.
DOI : 10.1038/ncb2672

URL : http://europepmc.org/articles/pmc3660859?pdf=render

E. Enerly, miRNA-mRNA integrated analysis reveals roles for miRNAs in primary breast tumors, PLoS ONE, vol.6, 2011.
DOI : 10.1371/journal.pone.0016915

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0016915&type=printable

D. A. Cheresh and D. G. Stupack, Regulation of angiogenesis: apoptotic cues from the ECM, Oncogene, vol.27, pp.6285-6298, 2008.

F. Saupe, Tenascin-C downregulates wnt inhibitor dickkopf-1, promoting tumorigenesis in a neuroendocrine tumor model, Cell Rep, vol.5, pp.482-492, 2013.
DOI : 10.1016/j.celrep.2013.09.014

URL : https://doi.org/10.1016/j.celrep.2013.09.014

J. D. Mott and Z. Werb, Regulation of matrix biology by matrix metalloproteinases, Curr Opin Cell Biol, vol.16, pp.558-564, 2004.

J. K. Burgess and M. Weckmann, Matrikines and the lungs, Pharmacol Ther, vol.134, pp.317-337, 2012.
DOI : 10.1016/j.pharmthera.2012.02.002

A. Sudhakar, Human ?1 type IV collagen NC1 domain exhibits distinct antiangiogenic activity mediated by ?1?1 integrin, J Clin Invest, vol.115, pp.2801-2810, 2005.
DOI : 10.1172/jci24813

URL : http://www.jci.org/articles/view/24813/files/pdf

S. J. Ray, The collagen binding ?1?1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection, Immunity, vol.20, pp.167-179, 2004.
DOI : 10.1016/s1074-7613(04)00021-4

URL : https://doi.org/10.1016/s1074-7613(04)00021-4

J. Song, Extracellular matrix of secondary lymphoid organs impacts on B-cell fate and survival, Proc Natl Acad Sci USA, vol.110, pp.2915-2924, 2013.
DOI : 10.1073/pnas.1218131110

URL : http://www.pnas.org/content/110/31/E2915.full.pdf

L. Sorokin, The impact of the extracellular matrix on inflammation, Nature Rev Immunol, vol.10, pp.712-723, 2010.

J. C. Monboisse, J. B. Oudart, L. Ramont, S. Brassart-pasco, and F. X. Maquart, This review summarizes the involvement of collagen-derived matrikines in cancer, particularly matrikines derived from the NC1 domains of the different constitutive chains of basement membrane-associated collagens, Biochim Biophys Acta, vol.1840, pp.2589-2598, 2014.

A. Gaggar, A novel proteolytic cascade generates an extracellular matrix-derived chemoattractant in chronic neutrophilic inflammation, J Immunol, vol.180, pp.5662-5669, 2008.
DOI : 10.4049/jimmunol.180.8.5662

URL : http://www.jimmunol.org/content/180/8/5662.full.pdf

N. M. Weathington, A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation, Nature Med, vol.12, pp.317-323, 2006.
DOI : 10.1038/nm1361

J. Muto, Hyaluronan digestion controls DC migration from the skin, J Clin Invest, vol.124, pp.1309-1319, 2014.
DOI : 10.1172/jci67947

URL : http://www.jci.org/articles/view/67947/files/pdf

H. Salmon, Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors, J Clin Invest, vol.122, pp.899-910, 2012.

S. Kim, Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis, Nature, vol.457, pp.102-106, 2009.

K. Wolf and P. Friedl, Extracellular matrix determinants of proteolytic and non-proteolytic cell migration, Trends Cell Biol, vol.21, pp.736-744, 2011.

M. Tozluoglu, Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions, Nature Cell Biol, vol.15, pp.751-762, 2013.

G. Bergers, Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis, Nature Cell Biol, vol.2, pp.737-744, 2000.

S. Lee, S. M. Jilani, G. V. Nikolova, D. Carpizo, and M. L. Iruela-arispe, Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors, J Cell Biol, vol.169, pp.681-691, 2005.

N. Ferrara, Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action, Mol Biol Cell, vol.21, pp.687-690, 2010.

T. T. Chen, Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells, J Cell Biol, vol.188, pp.595-609, 2010.

J. J. Phillips, Heparan sulfate sulfatase SULF2 regulates PDGFR? signaling and growth in human and mouse malignant glioma, J Clin Invest, vol.122, pp.911-922, 2012.

I. Grafe, Excessive transforming growth factor-? signaling is a common mechanism in osteogenesis imperfecta, Nature Med, vol.20, pp.670-675, 2014.

L. B. Alcaraz, Tenascin-X promotes epithelial-to-mesenchymal transition by activating latent TGF-?, J Cell Biol, vol.205, pp.409-428, 2014.

F. M. Watt and W. T. Huck, Role of the extracellular matrix in regulating stem cell fate, Nature Rev Mol Cell Biol, vol.14, pp.467-473, 2013.

J. Debnath and J. S. Brugge, Modelling glandular epithelial cancers in three-dimensional cultures, Nature Rev Cancer, vol.5, pp.675-688, 2005.

T. W. Ridky, J. M. Chow, D. J. Wong, and P. A. Khavari, Invasive three-dimensional organotypic neoplasia from multiple normal human epithelia, Nature Med, vol.16, pp.1450-1455, 2010.

P. D. Yurchenco, Basement membranes: cell scaffoldings and signaling platforms, Cold Spring Harb Perspect Biol, vol.3, issue.004911, 2011.

S. B. Seif-naraghi, Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction, Sci Transl Med, vol.5, pp.173-198, 2013.

B. Lee, Perlecan domain V is neuroprotective and proangiogenic following ischemic stroke in rodents, J Clin Invest, vol.121, pp.3005-3023, 2011.

M. M. Martino, Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing, Science, vol.343, pp.885-888, 2014.

R. J. Giger, E. R. Hollis, and M. H. Tuszynski, Guidance molecules in axon regeneration, Cold Spring Harb Perspect Biol, vol.2, 2010.

S. A. Busch and J. Silver, The role of extracellular matrix in CNS regeneration, Curr Opin Neurobiol, vol.17, pp.120-127, 2007.

W. J. Alilain, K. P. Horn, H. Hu, T. E. Dick, and J. Silver, Functional regeneration of respiratory pathways after spinal cord injury, Nature, vol.475, pp.196-200, 2011.

S. A. Back, Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation, Nature Med, vol.11, pp.966-972, 2005.

V. Barry-hamilton, This study demonstrates that inhibiting LOXL2 using a monoclonal antibody decreases fibrosis in models of lung and liver fibrosis and reduces metastasis in xenografted tumours, Nature Med, vol.16, pp.1009-1017, 2010.

L. M. Coussens, B. Fingleton, and L. M. Matrisian, Matrix metalloproteinase inhibitors and cancer: trials and tribulations, Science, vol.295, pp.2387-2392, 2002.

L. Devy and D. T. Dransfield, New strategies for the next generation of matrix-metalloproteinase inhibitors: selectively targeting membrane-anchored MMPs with therapeutic antibodies, Biochem Res Int, 2011.

M. Zeisberg, Stage-specific action of matrix metalloproteinases influences progressive hereditary kidney disease, PLoS Med, vol.3, p.100, 2006.

M. R. Junttila and F. J. De-sauvage, Influence of tumour micro-environment heterogeneity on therapeutic response, Nature, vol.501, pp.346-354, 2013.

H. Miyamoto, Tumor-stroma interaction of human pancreatic cancer: acquired resistance to anticancer drugs and proliferation regulation is dependent on extracellular matrix proteins, Pancreas, vol.28, pp.38-44, 2004.

T. Sethi, Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo, Nature Med, vol.5, pp.662-668, 1999.

I. Eke, K. Storch, M. Krause, and N. Cordes, Cetuximab attenuates its cytotoxic and radiosensitizing potential by inducing fibronectin biosynthesis, Cancer Res, vol.73, pp.5869-5879, 2013.

N. C. Henderson, Targeting of ?v integrin identifies a core molecular pathway that regulates fibrosis in several organs, Nature Med, vol.19, pp.1617-1624, 2013.

B. Psaila and D. Lyden, The metastatic niche: adapting the foreign soil, Nature Rev Cancer, vol.9, pp.285-293, 2009.

R. N. Kaplan, VEGFR1-positive haematopoietic bone marrow progenitors initiate the premetastatic niche, Nature, vol.438, pp.820-827, 2005.

T. Oskarsson, Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs, Nature Med, vol.17, pp.867-874, 2011.

I. Malanchi, References 156 and 157 show that ECM components are crucial for providing proliferative, survival and stemness signals during tumour metastasis, Nature, vol.481, pp.85-89, 2011.

C. M. Ghajar, The perivascular niche regulates breast tumour dormancy, Nature Cell Biol, vol.15, pp.807-817, 2013.

A. Pietras, Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth, Cell Stem Cell, vol.14, pp.357-369, 2014.

N. E. Reticker-flynn, A combinatorial extracellular matrix platform identifies cellextracellular matrix interactions that correlate with metastasis, Nature Commun, vol.3, p.1122, 2012.

K. Kessenbrock, V. Plaks, and Z. Werb, Matrix metalloproteinases: regulators of the tumor microenvironment, Cell, vol.141, pp.52-67, 2010.

A. Ishizuya-oka and T. Hasebe, Establishment of intestinal stem cell niche during amphibian metamorphosis, Curr Top Dev Biol, vol.103, pp.305-327, 2013.