A. Niemi, J. Bear, and J. Bensabat, Geological storage of CO 2 in deep saline formations, 2017.

F. Zhang, G. T. Yeh, and J. C. Parker, Groundwater reactive transport models, 2012.

C. I. Steefel, C. A. Appelo, B. Arora, D. Jacques, T. Kalbacher et al., Reactive transport codes for subsurface environmental simulation, Comput. Geosci, vol.19, pp.445-478, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01223868

X. Jiang, A review of physical modelling and numerical simulation of long-term geological storage of CO 2, Appl. Energy, vol.88, pp.3557-3566, 2011.

, Intergovernmental Panel on Climate Change (IPCC). (2005) IPCC special report on carbon dioxide capture and storage

R. Al-khoury and J. Bundschuh, Computational models for CO 2 geo-sequestration and compressed air energy storage, 2014.

J. Bear and J. Carrera, Mathematical modeling of CO 2 storage in a geological formation, 2017.

F. Haeberlein, Time space domain decomposition methods for reactive transport-application to CO 2 geological storage, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00634507

V. Lagneau, A. Pipart, and H. Catalette, Reactive transport modelling of CO 2 sequestration in deep saline aquifers, Oil Gas Sci. Technol.-Rev. IFP Energies nouvelles, vol.60, pp.231-247, 2005.

F. Haeberlein, A. Michel, and L. Halpern, A test case for multi-species reactive-transport in heterogeneous porous media applied to CO 2 geological storage, 2009.

N. Ahmad, A. Wörman, A. Bottacin-busolin, and X. Sanchezvila, Reactive transport modeling of leaking CO 2-saturated brine along a fractured pathway, Int. J. Greenh. Gas Con, vol.42, pp.672-689, 2015.

M. Pool, J. Carrera, V. Vilarrasa, O. Silva, and C. Ayora, Dynamics and design of systems for geological storage of dissolved CO 2, Adv. Water Resour, vol.62, pp.533-542, 2013.

N. Ahmad, A. Wörman, X. Sanchez-vila, J. Jarsjö, A. Bottacinbusolin et al., Injection of CO 2 saturated brine in geological reservoir: A way to enhanced storage safety, Int. J. Greenh. Gas Con, vol.54, pp.129-144, 2016.

J. P. Nicot, S. A. Hosseini, and S. V. Solano, Are single-phase flow numerical models sufficient to estimate pressure distribution in CO 2 sequestration projects?, Energy Procedia, vol.4, pp.3919-3926, 2011.

, Table 11. CPU time (s) for the DSA and the SIA

P. Audigane, I. Gaus, I. Czernichowski-lauriol, K. Pruess, and T. Xu, Two-dimensional reactive transport modelling of CO 2 injection in a saline aquifer at the Sleipner site, North Sea, Am. J. Sci, vol.307, pp.974-1008, 2007.

Y. Fan, L. J. Durlofsky, and H. A. Tchelepi, A fully-coupled flow-reactive-transport formulation based on element conservation, with application to CO 2 storage simulations, Adv. Water Resour, vol.42, pp.47-61, 2012.

A. M. Leal, M. J. Blunt, and T. C. Laforce, A robust and efficient numerical method for multiphase equilibrium calculations: Application to CO 2-brine-rock systems at high temperatures, pressures and salinities, Adv. Water Resour, vol.62, pp.409-430, 2013.

L. Nghiem, P. Sammon, J. Grabenstetter, and H. Ohkuma, Modeling CO 2 storage in aquifers with a fully-coupled geochemical eos compositional simulator, SPE-DOE Improved Oil Recovery Symposium Proceedings, 2004.

L. Nghiem, V. Shrivastava, and B. Kohse, Modeling aqueous phase behavior and chemical reactions in compositional simulation, Society of Petroleum Engineers-SPE Reservoir Simulation Symposium, vol.1, pp.454-468, 2011.

M. Saaltink, V. Vilarrasa, D. Gaspari, F. Silva, O. Carrera et al., A method for incorporating equilibrium chemical reactions into multiphase flow models for CO 2 storage, Adv. Water Resour, vol.62, pp.431-441, 2013.

S. Thibeau, L. X. Nghiem, and H. Ohkuma, A modeling study of the role of selected minerals in enhancing CO 2 mineralization during CO 2 aquifer storage, Proceedings-SPE Annual Technical Conference and Exhibition, vol.2, pp.906-922, 2007.

B. M. Huet, J. H. Prevost, and G. W. Scherer, Quantitative reactive transport modeling of portland cement in CO 2-saturated water, Int. J. Greenh. Gas Con, vol.4, pp.561-574, 2010.

N. Jacquemet, J. Pironon, V. Lagneau, and J. Saint-marc, Armouring of well cement in H 2 S-CO 2 saturated brine by calcite coating-experiments and numerical modelling, Appl. Geochem, vol.27, pp.782-795, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00685110

U. Berner, D. A. Kulik, and G. Kosakowski, Geochemical impact of a low-pH cement liner on the near field of a repository for spent fuel and high-level radioactive waste, Phys. Chem. Earth, vol.64, pp.46-56, 2013.

A. Mon, J. Samper, L. Montenegro, A. Naves, and J. Fernández, Long-term non-isothermal reactive transport model of compacted bentonite, concrete and corrosion products in a hlw repository in clay, J. Contam. Hydrol, vol.197, pp.1-16, 2017.

M. Sedighi, H. R. Thomas, A. Masum, S. Vardon, P. J. Nicholson et al., Geochemical modelling of hydrogen gas migration in an unsaturated bentonite buffer, Geol. Soc. Spec. Publ, vol.415, pp.189-201, 2015.

T. Xu, R. Senger, and S. Finsterle, Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effects, Appl. Geochem, vol.23, pp.3423-3433, 2008.

T. Xu, R. Senger, and S. Finsterle, Bentonite alteration due to thermal-hydro-chemical processes during the early thermal period in a nuclear waste repository, Nucl. Technol, vol.174, pp.438-451, 2011.

H. Shao, S. V. Dmytrieva, O. Kolditz, D. A. Kulik, W. Pfingsten et al., Modeling reactive transport in non-ideal aqueous-solid solution system, Appl. Geochem, vol.24, pp.1287-1300, 2009.

N. F. Spycher, E. L. Sonnenthal, and J. A. Apps, Fluid flow and reactive transport around potential nuclear waste emplacement tunnels at yucca mountain, Nevada, J. Contam. Hydrol, vol.62, pp.653-673, 2003.

H. S. Viswanathan, B. A. Robinson, A. J. Valocchi, and I. R. Triay, A reactive transport model of neptunium migration from the potential repository at yucca mountain, J. Hydrol, vol.209, pp.251-280, 1998.

D. Windt, L. Pellegrini, D. Van-der-lee, and J. , Coupled modeling of cement/claystone interactions and radionuclide migration, J. Contam. Hydrol, vol.68, pp.165-182, 2004.

P. C. Lichtner, S. Yabusaki, K. Pruess, and C. I. Steefel, Role of competitive cation exchange on chromatographic displacement of cesium in the vadose zone beneath the hanford s/sx tank farm, Vadose Zone Journal, vol.3, pp.203-219, 2004.

C. I. Steefel, S. Carroll, P. Zhao, and S. Roberts, Cesium migration in hanford sediment: A multi-site cation exchange model based on laboratory transport experiments, J. Contam. Hydrol, vol.67, pp.219-246, 2003.

C. A. Appelo and D. Postma, Geochemistry, Groundwater and Pollution, 2005.

J. Bear, A. H. Cheng, and -. , Modeling groundwater flow and contaminant transport, 2010.

C. Zheng and G. D. Bennett, Applied contaminant transport modeling, 2002.

P. C. Lichtner, Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems, Geochim. Cosmochim. Acta, vol.49, pp.779-800, 1985.

S. Molins, J. Carrera, C. Ayora, and M. W. Saaltink, A formulation for decoupling components in reactive transport problems, Water Resour. Res, vol.40, pp.1-13, 2004.

A. C. Lasaga, J. M. Soler, J. Ganor, T. E. Burch, and K. L. Nagy, Chemical weathering rate laws and global geochemical cycles, Geochim. Cosmochim. Acta, vol.58, pp.2361-2386, 1994.

C. I. Steefel and K. T. Macquarrie, Approaches to modeling of reactive transport in porous media, Rev. Mineral, vol.34, pp.82-129, 1996.

G. T. Yeh and V. S. Tripathi, A model for simulating transport of reactive multispecies components: Model development and demonstration, Water Resour. Res, vol.27, pp.3075-3094, 1991.

D. A. Barry, C. T. Miller, and P. J. Culligan-hensley, Temporal discretisation errors in non-iterative split-operator approaches to solving chemical reaction/groundwater transport models, J. Contam. Hydrol, vol.22, pp.1-17, 1996.

A. J. Valocchi and M. Malmstead, Accuracy of operator splitting for advection-dispersion-reaction problems, Water Resour. Res, vol.28, pp.1471-1476, 1992.

J. Carrayrou, M. Kern, and P. Knabner, Reactive transport benchmark of MoMaS, Comput. Geosci, vol.14, pp.385-392, 2010.
URL : https://hal.archives-ouvertes.fr/halsde-00511694

J. Carrayrou, Looking for some reference solutions for the reactive transport benchmark of MoMaS with SPECY, Comput. Geosci, vol.14, pp.393-403, 2010.
URL : https://hal.archives-ouvertes.fr/halsde-00546921

V. Lagneau and J. Van-der-lee, HYTEC results of the MoMaS reactive transport benchmark, Comput. Geosci, vol.14, pp.435-449, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00505360

L. Amir and M. Kern, A global method for coupling transport with chemistry in heterogeneous porous media, Comput. Geosci, vol.14, pp.465-481, 2010.

C. De-dieuleveult and J. Erhel, A global approach to reactive transport: Application to the MoMaS benchmark, Comput. Geosci, vol.14, pp.451-464, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00512828

J. Hoffmann, S. Kräutle, and P. Knabner, A parallel globalimplicit 2-D solver for reactive transport problems in porous media based on a reduction scheme and its application to the MoMaS benchmark problem, Comput. Geosci, vol.14, pp.421-433, 2010.

K. U. Mayer and K. T. Macquarrie, Solution of the MoMaS reactive transport benchmark with MIN3P-model formulation and simulation results, Comput. Geosci, vol.14, pp.405-419, 2010.

J. Erhel and S. Sabit, Analysis of a global reactive transport model and results for the MoMaS benchmark, Math. Comput. Simulat, vol.137, pp.286-298, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01405698

S. Kräutle and P. Knabner, A new numerical reduction scheme for fully coupled multicomponent transport-reaction problems in porous media, Water Resour. Res, vol.41, pp.1-17, 2005.

S. Kräutle and P. Knabner, A reduction scheme for coupled multicomponent transport-reaction problems in porous media: Generalization to problems with heterogeneous equilibrium reactions, Water Resour. Res, p.43, 2007.

J. Carrayrou, J. Hoffmann, P. Knabner, S. Kräutle, C. De-dieuleveult et al., Comparison of numerical methods for simulating strongly nonlinear and heterogeneous reactive transport problems-the MoMaS benchmark case, Comput. Geosci, vol.14, pp.483-502, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00505371

E. Ahusborde, M. Kern, and V. Vostrikov, Numerical simulation of two-phase multicomponent flow with reactive transport in porous media: application to geological sequestration of CO 2, ESAIM: Proc. Surveys, vol.50, pp.21-39, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01133858

E. Ahusborde, E. Ossmani, and M. , A sequential approach for numerical simulation of two-phase multicomponent flow with reactive transport in porous media, Math. Comput. Simulat, vol.137, pp.71-89, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01759886

X. Dumu, DUNE for multi-Phase, Component, Scale, Physics, 2018.

B. Flemisch, M. Darcis, K. Erbertseder, B. Faigle, A. Lauser et al., } flow and transport in porous media, Adv. Water Resour, vol.34, pp.1102-1112, 2011.

R. Helmig, Multiphase flow and transport processes in the subsurface: a contribution to the modeling of hydrosystems, 1997.

G. Rootfinding, , 2018.

E. Ahusborde, B. Amaziane, E. Ossmani, and M. , Finite volume scheme for coupling two-phase flow with reactive transport in porous media, Finite volumes for complex applications VIII-hyperbolic, elliptic and parabolic problems, Springer Proceedings in Mathematics and Statistics, vol.200, pp.407-415, 2017.

D. H. Kirkham, H. C. Helgeson, and G. C. Flowers, Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 °C and 5 KB, Am. J. Sci, vol.281, pp.1249-1516, 1981.

C. Bethke, B. Farrell, S. Yeakel, and S. Yeakel, The Geochemist's Workbench Ò Release 12-GWB Essentials Guide, 2018.

N. Spycher and K. Pruess, CO 2-H 2 O mixtures in the geological sequestration of CO 2. II. Partitioning in chloride brines at 12-100 °C and up to 600 bar, Geochim. et Cosmochim. Acta, vol.69, pp.3309-3320, 2005.

T. J. Wolery, EQ3/6 software package for geochemical modeling of aqueous systems: Package overview and installation guide (version 8.0), 1992.

B. Xu, K. Nagashima, J. M. Desimone, and C. S. Johnson, Diffusion of water in liquid and supercritical carbon dioxide: an NMR study, J. Phys. Chem. A, vol.107, pp.1-3, 2003.

J. J. Adams and S. Bachu, Equations of state for basin geofluids: algorithm review and intercomparison for brines, vol.2, pp.257-271, 2002.

R. Span and W. Wagner, A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa, J. Phys. Chem. Ref. Data, vol.25, pp.1-88, 1996.

A. Fenghour, W. A. Wakeham, and V. Vesovic, The viscosity of carbon dioxide, J. Phys. Chem. Ref. Data, vol.27, pp.31-44, 1998.

G. E. Hammond, P. C. Lichtner, C. Lu, and R. T. Mills, PFLOTRAN: Reactive flow & transport code for use on laptops to leadership-class supercomputers, Groundwater Reactive Transport Models, pp.141-159, 2012.

G. E. Hammond, P. C. Lichtner, and R. T. Mills, Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN, Water Resour. Res, vol.50, pp.208-228, 2014.

J. J. Beisman, R. M. Maxwell, A. K. Navarre-sitchler, C. I. Steefel, and S. Molins, ParCrunchFlow: an efficient, parallel reactive transport simulation tool for physically and chemically heterogeneous saturated subsurface environments, Comput. Geosci, vol.19, pp.403-422, 2015.