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Abstract

We consider the problem of building a state representation model in a continual
fashion. As the environment changes, the aim is to ef ciently compress the sensory
state's information without losing past knowledge. The learned features are then
fed to a Reinforcement Learning algorithm to learn a policy. We propose to use
Variational Auto-Encoders for state representation, and Generative Replay, i.e. the
use of generated samples, to maintain past knowledge. We also provide a general
and statistically sound method for automatic environment change detection. Our
method provides ef cient state representation as well as forward transfer, and
avoids catastrophic forgetting. The resulting model is capable of incrementally
learning information without using past data and with a bounded system size.

1 Introduction

Building agents capable of learning over extended periods of time in the real world is a long standing
challenge of Reinforcement Learning (RL) research, with direct applications in Robotics. Such an
agent should be able to continually learn about its environment. This involves building a model of
its surroundings, with visuals features, and continually updating this model as its life progresses
and the environment evolves. It is common to use state features to learn to solve tasks using RL
algorithms, a eld known as State Representation Learning (SRL) (Lesori, @04i8). However,

since these models are often neural networks trained using stochastic gradient descent (or any variant),
they forget past knowledge when the training data distribution changes, an infamous problem called
catastrophic forgetting (French, 1999). We propose to use a class of generative models often used
for SRL, Variational Auto-Encoders (VAES), combined to a Continual Learning (CL) approach to
overcome this issue. Previous work have shown that VAEs can learn continually using Generative
Replay [(Anonymous, 2018). The method uses the generative ability of VAEs to remember and re-use
past knowledge. With the goal of an autonomous agent in mind, we complement our approach with a
general method for automatic detection of environment change.

We test our approach on a 2-D rst-person environment with coherent physics, in a scenario where
the environment changes. We measure the ability of our method to retain past knowledge, using
reconstruction error. We also test whether the learned features provide ef cient and high-performing
RL training. Our results show that our approach avoids catastrophic forgetting and has a form of
forward transfer, i.e. the ability to better solve a task using previous knowledge. Additionally, it
respects important desiderata: no access to past data and bounded system size. Finally, the user needs
not to specify environment changes.

Accepted contribution to the Workshop on Continual Learning.
32nd Conference on Neural Information Processing Systems (NeurlPS 2018), Montréal, Canada.
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Figure 1: The two environments considered in this paper.

2 Background

Variational Auto-Encoders (Kingma and Welling, 2013) are a particular kind of auto-encoders that
learn to map their input into a continuous latent representation. The loss function is composed of two
terms: the reconstruction error, and a regularization term that constraints the posterior distribution.
When trained on an agent's inputs, they provide a compressed vectorial representation of what the
agent experience. They have recently shown promising results as State Representation models for RL
(Ha and Schmidhubr, 2018; Wayne et|al., 2018).

While most work in CL is focused on discriminative models, there is a recent interest in CL approaches
for generative model$ (Achille et.gP018; Nguyen et al2017). Proposed methods often rely on
using generated samples to avoid forgetting (Wu £2818; Anonymods, 2018). This technique,
which we use in this paper, is termed Generative Replay. To the best of our knowledge, we found no
previous work on applying these CL approaches to State Representation Learning for RL. The closest
work to this paper is DARLAI(Higgins et al2017), which circumvent the problem of catastrophic
forgetting by learning disantangled representations with a speci ¢ VAE architecture. Their approach
learns features that are robust to minimal modi cations of the environment, while ours continually
update features as environment changes are detected. Our work is also close to Transfer Learning in
a RL context|(Taylor and Stofle, 2009).

3 Continual State Representation Learning with Generative Replay

3.1 Learning continually with Generative Replay

The considered problem is twofold: 1) build a State Representation model 2) which can continually
learn, i.e. without forgetting. For 1), we propose to use VAEs' encoding property to handle the
State Representation. For 2), we propose to use the generative ability of VAESs to generate states of
previously seen environments to avoid forgetting, a technique known as Generative Replay (Shin
et all, 2017). In our case, we encode the sensory state received by the agent.

Once the environment changes, we generate states using the latent space of the VAE trained on
previous environments, and add those generated samples to states collected in the new environment.
Then, we train the VAE on the joint data. This option is scalable (bounded system size) and does not
re-use past data. The environment changes are detected automatically, as described thereafter.

3.2 Automatic environment change detection

Since we aim at constructing an autonomous agent, we complement the proposed method with
automatic detection of changes in the environment. The method is based on a statistical test on VAE
reconstruction error distribution. We use Welctitest (Welch, 1947) to test the hypotheksiig that

two means(y; X, of randomly sampled VAE reconstruction errors have equal mean. We choose this
test over the standatetest because we do not have reasons to assume that the two samples' variance
are equal. The statisttds, underH o, distributed as a Student distribution with a number of degrees



of freedom that can be approximated using the Welch—Satterthwaite equation:

X1 X2 . (N 1)(si+ S%)Z; )

R IE (st+ s3)

with N being the number of samples (assumed equal for both samples, ;@adeing the empirical
standard deviations of samples 1 and 2, respectively.

Using a statistical test is preferable to using a threshold. The threshold is based on an arbitrary scale
which depends on the considered environment. On the contrary, the test is a more general approach
based on statistical principles and thus agnostic to scales. Additionally, we choose to use VAE
reconstruction error distribution over the actual state distribution because we consider changes in the
environment that require the VAE to be updated. For instance, if we add an already existing obstacle
to the environment, the state distribution shifts, while the VAE reconstruction error distribution
does not change because the VAE need not to be updated. The test is lightweight and can thus be
continually performed.

4 Experiments

4.1 Environments and methods

Our experiments use two environments developped in Flatland (Caselles-Dupr2@18}, see Fig.

[. Most elements are identical between the two worlds: both are rooms of the same size with 3 xed
obstacles, 10 randomly placed round blue obstacles and 10 randomly placed round edible items. The
only variation is the color of the edibles items. The navigation task consists in collecting as many
edible items as possible B00timesteps. The input is a 1-D image corresponding to what the agent
sees in front of it. The navigation task, inputs and actions are detailed ip|Fig. 1 and Apjperjdix A.1.

For the State Representation model, we train the VAE with a modi ed version of KL annealing
(Bowman et a}[2015), see Append|x Al.3 for details. For our RL experiments, we use the Proximal
Policy Optimization (PPO) algorithm (Schulman e}/@017) of SRL Toolbox (Raf n et a)[2018).

We selected this method as it is a state-of-the-art policy gradient method, commonly used and robust
to hyperparameter con gurations. Implementation details are provided in Applendix A.3.

4.2 Evaluation

First, we evaluate whether the VAE successfully learned to reconstruct states, generate realistic states
using sampling in the latent space and avoid catastrophic forgetting. We use visualization to measure
performance. We also use the Mean Squared Error (MSE) to evaluate reconstruction quality and
catastrophic forgetting. Then, we evaluate the VAE ability to provide a state representation that
enables ef cient and high-performing RL training, by measuring the performance of an RL agent
using VAE features as input. The aim of SRL here is to have features that enable ef cient behaviour
learning hence the need to evaluate with RL. We compare our approach, Generative Replay, to
learning with raw inputs (no information compression) and to Fine-tuning, where the VAE is naively
ne-tuned on the second environment.

Ground truth Fine-tuning reconstruction Generative Replay reconstruction

Figure 2: Reconstruction comparison: VAE ne-tuned on environment 2 against Generative Replay.

5 Results

Automatic detection of environment change Our proposed automatic detection method tests
whether a VAE trained on the rst environment has a mean reconstruction error statistically different
between states of environments 1 and 2. For that, we use a Welgssto compare two batches



of mean VAE reconstruction error, computed on randomly collected states. The null hypothesis is
rejected if thep-value is greater tha®01. We repeat this experimeB000times. The test is 100%
successful when it should detect an environment change, and 99.5% successful when it should not
detect a change. Any chosen critipalalue betwee:05and0:0001provide similar results. Details

for this experiment are provided in Appendlix ;.2.
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Figure 3: Mean reward and standard error over 5 runs of RL evaluation using PPO with different
inputs. Fine-tuning and Generative Replay models are trained sequentially on the rst and second
environment, and then used to train a policy for both tasks.

Reconstruction evaluation We present in Fig|. ]2 a qualitative evaluation of Fine-tuning and
Generative Replay methods on VAE. The model is sequentially trained on the rst and then the second
environment. Naive Fine-tuning of VAE on the second environment leads to forgetting of the ability to
reconstruct states from the rst environment. On the contrary, Generative Replay successfully avoids
this problem and the resulting VAE is able to properly reconstruct all elements of both environments,
hence successful continual learning. Quantitatively, we observe the same results, sge Table 1. The
MSE of reconstruction oveés00samples is similar for the two method on environment 2, whereas
Generative Replay is one order of magnitude better than Fine-tuning on environment 1.

Table 1: Mean Squared Error (MSE) of reconstruction.

Strategy MSE (environment 1) MSE (environment 2)
Fine-tuning 1:3e10 3 9:3e10 *
Generative Replay 3:3e10 4 6:4e10 4

RL evaluation: Learning curves are presented in Fig. 3, and nal performance are reported in
Table[2 of AppendiX AJ4. We rst verify that using State Representation instead of directly using the
raw states is superior in terms of nal performance and sample ef ciency. Also, it is easier to obtain
better rewards on environment 2. Contrary to tasthe color of the edible items is focused on one
color channel on task, which supposedly facilitates policy learning. We performed an additional
experiment on a different color transition which veri ed that the results persisted, see Appéndix B.

We observe that VAE's features supports a form of zero-shot transfer. Indeed, using features of a
VAE trained on the rst environment to learn to solve tasls remarkably ef cient. Incidentally,

using features of a VAE ne-tuned on the second environment to learn to solveltisklso

quite satisfactory, even if we previously showed that the model has catastrophically forgotten how to
reconstruct states of the rst environment. Yet, there is still signi cant gap in performance compared to
using a model trained on the rst environment, so forgetting is still apparent. Our method, Generative
Replay, completes this gap as it does not forget how to encode states from the rst environment.
Additionally, we observe on taskthat it largely outperforms all other methods. We infer that learning

on both environments produces representations that are more suited for policy learning, a form of
forward transfer. Videos of learned policies using VAE with Generative Replay are provided here:
https://drive.google.com/open?id=1ilkgWtDgL-F2ZZtiBprvrde2x6kC3r9i
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6 Conclusion and future work

We presented a VAE-based State Representation model capable of learning continually, as the
environment changes and with a xed-size system. Our method automatically detects changes and
relies on using generated samples of previous environments. Learned features allow ef cient and
high-performing RL. For future work, we will be experimenting on a more challenging setting,
e.g randomly generated mazes, see [Hig. 6 in Appéndix C and with different environment changes.
Another direction is to extend this method to non-discrete environment changes.
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A Experimental details

A.1 Environments and task for RL experiments

All colors in the environment are xed. In environment 1, the edible items are red, and they are green
in environment 2. The agent receiveB0 reward for each collected edible item, which is its only
source of reward. The goal of the agent is to nd a strategy to get a maximum reward in a xed
amount of timestep$H00). The agent's action space is discrete and composed of 3 actimne
forward, rotate leftandrotate right It receives as input a 1-D image corresponding to what the agent
sees in front of it. The agent always spawns at the same location.

A.2 Automatic detection of environment change

We compare two batches of reconstruction error of a VAE trained on environment 1. There are two
cases:

Environment 1 vs environment 1: if the two batches are reconstruction errors of states
collected on the same environment, the method should not detect a change.

Environment 1 vs environment 2: if the two batches are reconstruction errors of states
collected on different environments, the method should detect a change.

We construct batches as follows: we compute the mean reconstruction error of randomly collected
states oveR0 episode, and we add the value to the batch. We repeat this pibzesees, so that
batches are 10-dimensional vectors.

Then the statistical test is computed by comparing two batches, computing the ppvahek
comparing it to the reference value@b1. If p > 0:01then there is no detected change, otherwise
there is.

The method is 100% successful when it should detect an environment change, and 99.5% successful
when it should not detect a change.

A.3 Architectures and hyperparameters

The size of the 1-D image inputs(§4; 3). We x the size of the latent representation@d. We use
three 1-D convolutional layers followed by one fully connected layer for the encoder and decoder.
We choose the Recti ed Linear Unit activation function. The batch sid2&

We describe here our version of KL annealing used in our experiments. The initial KL annealing
method puts a weight @f on the KL term and smoothly increase ittoWe found standard training
(without KL annealing) and this method ineffective: the models were unable to reconstruct inputs
properly. Our version initializes training with a weight on the KL ternipés in standard training,

then smoothly reduces it until training is stopped when the reconstruction error does not improve.
This inverse annealing scheme allowed successful training, as presented in[§ection 5. The annealing
parameter i9:9995 At each new batch, we update the coef cient in front of the KL term by this
annealing parameter.

For training, we collect states frof000episodes 0600timesteps each, of a random policy. Hence,
the training set is composed 500000states.

For Generative Replay, we sample the same number of states from the latent space of the VAE trained
on environment 1, and append those states t&@#¥®00states collected randomly in environment 2.
To stop training, we use early stopping on the reconstruction error with a threst@Daf If the



reconstruction error does not improve more than the thresholdsoyeochs then we stop training
and select the least recent model.

We use the standard version of PPO in the S-RL Toolbox implementation (Raf t)[204B), see

their code for details. The method learns a policy such that after an update, the next policy is not too
different from the previous policy. This is done using clipping to avoid a too large update. The policy
is a Multi-Layer Perceptron with Relu activations.

A.4 Additional results
The nal performance of the RL evaluation is presented in Thble 2.

Table 2: Mean nal performance of RL evaluation.

Inputs Task 1 Task 2
Raw pixels 9230 58 12395 256
VAE - Trained on source 121:25 53 11175 119
VAE - Fine-tuning 9655 b5:1 1725 115

VAE - Generative Replay 11285 132 25695 10:3

B Additional experiment

We also provide in Fid.]5, results for a similar experiment, but where the edible items in the second
environment are blue rather than green. We call it environment 3, an illustration is provided[ih Fig. 4.
The purpose of this experiment is to show that the results are not speci c to the color of the edible

items.

Environment 3

Figure 4: The third environment considered in this paper.

The experiment con rms that:

Fine-tuning catastrophically forgets.
Generative replay outperforms all other VAE-based methods, and avoids forgetting.

Generative Replay has a form of forward transfer.
VAE features support a form of zero-shot transfer.

Thus, we can hypothesize that the positive results obtained in both experiments do not come from
chance.



Figure 5: Mean reward and standard error over 5 runs of RL evaluation using PPO with different
inputs. Fine-tuning and Generative Replay models are trained sequentially on the rst and third
environment, and then used to train a policy for both tasks.

C Randomly generated mazes

In this environment, a new maze is generated €fithepisodes. Rooms and corridors change
location, size and color. We plan on using this scenario to investigate how to continually learn without
forgetting. This environment extends the considered setting in this paper. We will investigate how
generative models can be used to learn a continual state representation under this more challenging
setting.

Figure 6: An illustration of randomly generated mazes.
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