Non-existence for travelling waves with small energy for the Gross–Pitaevskii equation in dimension $N\geq 3$

Abstract : We prove that the Ginzburg–Landau energy of non-constant travelling waves of the Gross–Pitaevskii equation has a lower positive bound, depending only on the dimension, in any dimension larger or equal to three. In particular, we conclude that there are no non-constant travelling waves with small energy. To cite this article: A. de Laire, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
Document type :
Journal articles
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-01951345
Contributor : André de Laire <>
Submitted on : Tuesday, December 11, 2018 - 1:28:18 PM
Last modification on : Friday, December 21, 2018 - 9:52:37 PM

Links full text

Identifiers

Collections

Citation

André de Laire. Non-existence for travelling waves with small energy for the Gross–Pitaevskii equation in dimension $N\geq 3$. Comptes Rendus Mathématique, Elsevier Masson, 2009, 347 (7-8), pp.375-380. ⟨10.1016/j.crma.2009.02.006⟩. ⟨hal-01951345⟩

Share

Metrics

Record views

29