Chinese restaurant process from stick-breaking for Pitman-Yor
Caroline Lawless, Julyan Arbel

To cite this version:
Caroline Lawless, Julyan Arbel. Chinese restaurant process from stick-breaking for Pitman-Yor. Bayesian learning theory for complex data modelling Workshop, Sep 2018, Grenoble, France. pp.1. <hal-01950662>

HAL Id: hal-01950662
https://hal.archives-ouvertes.fr/hal-01950662
Submitted on 11 Dec 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
INTRODUCTION

- The Chinese restaurant process and the stick-breaking process are the two most commonly used representations of the Pitman–Yor process.
- However, the usual proof of the connection between them is indirect.
- Miller (2018) proved directly that the stick-breaking process gives rise to the Chinese restaurant process representation of the Dirichlet process.
- The Dirichlet process is a special case of the Pitman–Yor process.
- We extend Miller’s proof to Pitman–Yor process random measures.

PITMAN–YOR & DIRICHLET PROCESSES

- The Dirichlet Process (DP) and the Pitman–Yor process (PY, Pitman and Yor, 1997) are discrete random probability measures.
- The PY is parametrized by $d \in (0, 1)$, $\alpha > -d$, and a base probability measure P_0. The DP is recovered by letting $d = 0$.
- The stick-breaking representation (Sethuraman, 1994) is given by

 $$ v_i \sim \text{Beta}(1, \alpha) \quad \text{for DP} $$

 $$ v_i \sim \text{Beta}(1+\alpha+d, \alpha+id) \quad \text{for PY} $$

 $$ \pi_k = v_1 \prod_{i=2}^{k-1} (1-v_i), \quad \phi_k \overset{iid}{\sim} P_0. $$

 We define the random process P by

 $$ P = \sum_{i=1}^{\infty} \pi_k \delta_{\phi_k}. $$

 The Chinese restaurant process (Antoniak, 1974) is the distribution induced on random partitions C given by

 $$ P(C = C) = \begin{cases}
 \frac{\alpha^{c(C)}}{(\alpha)^{c(C)}} \prod_{c \in C} \Gamma(|c|) & \text{for DP} \\
 \frac{\alpha^{d(C)}}{(\alpha)^{d(C)}} \prod_{c \in C} \Gamma(|c|-1) & \text{for PY}.
 \end{cases} $$

THEOREM

Suppose π follows the PY stick-breaking, and

$$ z_1, \ldots, z_n | \pi \overset{iid}{\sim} \pi, \quad \text{that is, } P(z_i = k | \pi) = \pi_k, $$

and C is the partition of $[n]$ induced by z_1, \ldots, z_n. Then C follows the PY Chinese restaurant process.

TECHNICAL LEMMAS

Our proof relies on the following lemmas, which here we will state without proof. Let us abbreviate $z = (z_1, \ldots, z_n)$. Given $z \in \mathbb{N}^n$, let C_z denote the partition $[n]$ induced by z. We define $m(z) = \max \{z_1, \ldots, z_n\}$, and $g_k(z) = \# \{i : z_i \geq k\}$. We define π follows the PY stick-breaking, and

Lemma 1 For any $z \in \mathbb{N}^n$,

$$ P(z = z) = \frac{1}{(\alpha)^{c(C_z)}} \prod_{c \in C_z} \Gamma(|c|+1-d) \prod_{k=1}^{m(z)} \frac{\alpha + (k-1)d}{g_k(z) + \alpha + (k-1)d}. $$

Lemma 2 For any partition C of $[n]$,

$$ \sum_{z \in \mathbb{N}^n} I(C_z = C) \prod_{k=1}^{m(z)} \frac{\alpha + (k-1)d}{g_k(z) + \alpha + (k-1)d} = \frac{d(\frac{\pi}{\alpha})}{\pi}. $$

PROOF OF THEOREM

$$ P(C = C) = \sum_{z \in \mathbb{N}^n} P(C = C | z = z) P(z = z) $$

$$ = (a) \sum_{z \in \mathbb{N}^n} 1(C_z = C) \frac{1}{(\alpha)^{c(C_z)}} \prod_{c \in C_z} \Gamma(|c|+1-d) \prod_{k=1}^{m(z)} \frac{\alpha + (k-1)d}{g_k(z) + \alpha + (k-1)d} $$

$$ = (b) \frac{1}{(\alpha)^{c(C)}} \prod_{c \in C} \Gamma(|c|+1-d) \prod_{z \in \mathbb{N}^n} \sum_{z \in \mathbb{N}^n} 1(C_z = C) \prod_{k=1}^{m(z)} \frac{\alpha + (k-1)d}{g_k(z) + \alpha + (k-1)d} $$

$$ = (c) \frac{1}{(\alpha)^{c(C)}} \prod_{c \in C} \Gamma(|c|+1-d) \prod_{z \in \mathbb{N}^n} \sum_{z \in \mathbb{N}^n} (1-d)_{[c]-1} \prod_{c \in C} (\frac{d(\frac{\pi}{\alpha})}{\pi}) $$

$$ = \frac{d(\frac{\pi}{\alpha})}{\pi} \prod_{j=1}^{m(C)} (1-d)_{[c]-1} $$

where (a) is by Lemma 1, (b) is by Lemma 2, and (c) is since $\Gamma(|c|+1-d) = (|c|-d)\Gamma(|c|-d)$.

FURTHER RESEARCH

- The Dirichlet process and the Pitman–Yor process are only special cases of a broad class of random measures called Gibbs-type random measures.
- An interesting further study would be to investigate the possibility of extending this proof to Gibbs-type random measures.

REFERENCES

