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Emerging and developing multiplicative structure in students’ 

visuospatial representations: Four key configuration types 
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Visuospatial representations of quantities and their relations are widely used to support the 

understanding of basic arithmetic, including multiplicative relationships. These include drawn 

imagery and concrete manipulatives. This paper defines four particular configurations of 

nonstandard representation according to the spatial organization of their visual elements. These are: 

unit containers, unit arrays, array-container blends, and number containers, all of which have been 

observed to support developing multiplicative thinking, allowing low-attaining students to work with 

the equal-groups structures of natural number multiplication- and division-based tasks. Student-

created examples are discussed, and pedagogical and diagnostic implications considered.  
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In their early encounters with quantitative relationships, children become aware of concepts such as 

conservation of number, counting, etc., through interactions with collections of objects. For example, 

addition as the joining of collections and subtraction as removing a subset of objects from a collection 

– in which the ordering of individual objects is unimportant – can be considered conceptual 

‘grounding metaphors’ (Lakoff & Núñez, 2000). Various models of children’s arithmetical problem-

solving development indicate a broadly similar progression from early concrete/enactive-based 

reasoning, to imagic/iconic, to abstract/symbolic reasoning (e.g. Bruner, 1974; Piaget, 1952). Within 

this broad outline, the actual external representations of learners’ thinking during problem-solving 

include many possible sub-varieties (e.g., sets of actual objects, pictures of objects, tally marks in 

different configurations, dot arrays, etc.), and many possible categorizations of these for analytical 

purposes. The construction of appropriate analytical frameworks is necessary for the discerning of 

inter-individual differences and intra-individual trajectories (Meira, 1995; Voutsina, 2012). This is 

particularly the case when studying atypically-developing learners (Fletcher et al., 1998).  

This aim of this paper is to share one aspect from the qualitative analytical framework for student- 

and co-created visuospatial data used in Finesilver (2014), delineating four particular types of 

visuospatial representation and demonstrating their use with selected examples. The project took an 

essentially grounded analytical approach, and so whilst this paper does not report results as such, a 

sample of research data is included with brief description of the process. 

Theoretical background 

To understand multiplication and division represents a significant qualitative change in learners' 

thinking compared to understanding addition and subtraction (Nunes & Bryant, 1996). These authors, 

amongst others, have recommended a replications model of multiplication, which is highly relevant 

both to counting-based strategies and to unitary drawn or modelled representations of multiplicative 

relationships. A central concept for considering this particular aspect of representation is spatial 

structuring: 



We define spatial structuring as the mental act of constructing an organization or form for an object 

or set of objects. The process [. . .] includes establishing units, establishing relationships between 

units [. . .] and recognizing that a subset of the objects, if repeated properly, can generate the whole 

set (the repeating subset forming a composite unit). (Battista & Clements, 1996, p.282)  

There are two main forms of spatial structuring with which unitary visuospatial representations of 

multiplicative relationships emphasise their replicatory structure: by creating some kind of boundary 

to separate groups of units from each other, or by organising them in a pattern based on regular 

spacings. These two organisational strategies roughly correspond to Lakoff and Núñez's (2000) 

grounding metaphors Arithmetic as Object Collection/Construction, and to two of the common 

unitary configuration types I introduce below, Unit containers and Unit arrays (see Figures 1Figures 

2). 

Creating container configurations – i.e. visible boundaries within which the individual units of each 

group may be in any configuration – is particularly intuitive. Research that includes container 

representations (or equivalent) has been mainly focused on young children and their intuitive concrete 

models, such as sharing items (e.g. Carruthers & Worthington, 2006; Kouba, 1989). Rectangular 

array configurations, in which the groups are structured and defined by a configuration of all units in 

regular rows and columns – are also widely used in educational contexts. Research including array 

representations generally focuses on older children, grid arrays, and involves content such as 

rectangular area measurement; however, dot arrays have been shown as a powerful tool for supporting 

work in multiplication (Barmby et al., 2009; Harries & Barmby, 2007; Izsák, 2005; Matney & 

Daugherty, 2013), and, less frequently, division (Jacob & Mulligan, 2014). No prior studies were 

found that included both container and array representations, focused on the secondary age group and 

allowed freedom of representational strategy across multiple interviews and tasks. 

Data 

The data discussed below, including all examples, derive from a larger research project using 

microgenetic methodology to elicit and study emerging and developing multiplicative structure in 

low-attaining students’ visuospatial representations within a flexible context (Finesilver, 2014).  

There were thirteen participants, aged 11-15, attending mainstream schools in London, and identified 

by their teachers, educational histories, and initial sifting assessments as particularly numerically 

weak compared to their peers. Although having complex individual etiologies and patterns of 

arithmetical issues, they had in common difficulties experienced at the particular stage of moving 

from additive to multiplicative thinking (as highlighted by Nunes and Bryant, above).  

The representations were produced during individual or paired problem-solving interviews carried 

out by the author (four per participant). Participants worked on tasks based within two multiplicative 

scenarios chosen for their ease and likelihood of visuospatial representation. These were ‘Biscuits’ 

(numbers of biscuits shared between numbers of children) and ‘Passengers’ (numbers of different-

sized vehicles required to transport numbers of passengers). There were also some calculations 

presented symbolically with no scenario. The representational media available were multilink cubes, 

coloured pens and paper. Some representations were co-created by student and researcher at 

‘cognitive snapshot’ points (Schoenfeld, Smith, & Arcavi, 1993), i.e. when a participant was unable 

to proceed further independently, and support was given in the form of a minimal ‘nudge’ prompt; 



(e.g. ringing or counting a group aloud). Due to project methodology, support cannot be easily 

quantified (especially gestural interaction) and is not attempted in this paper. Documentation was via 

audio recording, photographs, scans of students’ papers, and field notes. 

Four key types of representational configuration 

Over 200 visuospatial representations were collected (exact figures cannot be given as participants 

re-appropriated whole and parts of prior representations for subsequent tasks and expansions). The 

great majority were found to group into four types; inclusion criteria, as defined below, were allowed 

to emerge, then refined, as part of a grounded analytical process. The most common types, (unit) 

containers and arrays, will be familiar. A smaller substantial proportion combined both container and 

array elements, and a further type emerged which I call Number Containers. (There is only space to 

include a few examples here; more will be included in this paper’s accompanying presentation, or see 

Finesilver (2014) for a complete set.)  

Unit Containers (UC) 

Criteria: Groups of two or more units enclosed by visible boundaries. Includes representations where 

units are aligned in rows and/or columns, but these do not represent divisor/quotient or 

multiplier/multiplicand. 

 
 

 
  

Figures 1(a-d): Examples of Unit Containers 

Overall, this was the most common type (106 instances); eleven of the cohort chose to draw unit 

containers at some point while working on a task, although some much more frequently, and even the 

least able could sometimes use them independently. For the students with the severest arithmetical 

difficulties (e.g. dyscalculia), who could not make any start independently, visuospatial prompts were 

provided, e.g. drawing a set of circles (“plates”) for ‘Biscuits’. UCs were for the most part drawn, 

often with various scenario-based decorative elements, but some made use of mixed-mode, mixed-

media representations with cubes or other physical units placed in drawn containers (see Figure 1d). 

Unit Array (UA) 

Criteria: Groups of two or more units aligned in rows and columns, where number of units in the 

rows/columns represents divisor/quotient or multiplier/multiplicand. 

    

Figures 2(a-d): Examples of Unit Arrays 



Plain unit arrays (of dots, tally marks, etc.) were used frequently (47 instances), the majority being 

produced independently by nine of the cohort, and an almost exclusive choice for three participants. 

All were drawn, and none constructed with cubes. (This may be surprising, as it is easy and visually 

effective to produce cube arrays. However, in general it was the arithmetically weakest students who 

made greatest use of concrete media, and that group also tended to prefer container representations.)  

With a shift of perspective between vertical and horizontal structure, a learner may see that both rows 

and columns are formed of a set of equal groups, which underlies the commutative principle. This 

was independently noticed by some participants; e.g. on being asked to work out 28 biscuits shared 

between four people followed by 28 shared between seven, some re-used the same array, while others 

produced both 4×7 and 7×4, only realizing the equivalence after completion. 

Array-Container Blend (ACB) 

Criteria: Unit array representation with additional containing rings, where number of units in each 

row/column/container represents divisor/quotient or multiplier/multiplicand.  

    

Figures 3(a-d): Examples of Array-Container Blends 

While 47 instances of successful ACB use were collected, many of these were co-created and/or 

drawn during one particular task (see below); however, 27 were otherwise produced independently 

by participants. These were used mainly in ‘Passengers’ and the bare tasks, usually (although not 

always) with each row or column being counted out then ringed before proceeding to the next. Taking 

the additional time and effort to superimpose rings onto an array was thus clearly considered 

advantageous for certain participants on certain tasks. One student in particular began with a strong 

preference for plain dot arrays, but once she had seen an ACB, switched almost exclusively to that 

representation type for subsequent tasks.  

In one particular (and uncharacteristic) task on multiplicative relationships, students were directly 

encouraged to produce an ACB which had both rows and columns ringed. A certain behaviour was 

observed with this representation type alone: some students independently looked back at it during 

later tasks and interviews for reference, in some cases ‘bookmarking’ it. As the numbers involved 

were different to those in their current task, and they only took a brief look, I suggest the images were 

functioning as an instant visual reminder of the commutative property of multiplicative structures.  

Number Containers (NC) 

Criteria: Container representation with numerals (rather than unit marks) representing the number 

in each group written inside, or close by, each container. 



 

 

   

Figures 4(a-d): Examples of Number Containers 

Unlike the previous three configuration types, NCs were not found in the literature or theorized prior 

to fieldwork, and some students introduced them spontaneously. Having observed their successful 

use, I included them in some later interactive support occasions, but of the 30 instances collected 

(from 9 participants), 22 were entirely independent. This change from unitary (iconic) to non-unitary 

(partially symbolic) representation is very significant cognitive step. Note, however, that some 

participants still chose to incorporate decorative elements from the task scenario (i.e. the vehicles 

were still depicted, although individual passengers were not).  

Discussion 

Students’ use of the four types of representational configuration 

Unit container representations allowed those students with the greatest 

arithmetical difficulties to create manipulable simulacra of imaginable 

scenarios, with as much visual resemblance as they preferred, to carry out 

organized sharing and grouping distributions and record their thinking. Unit 

array representations (with or without rings) allowed those students with a 

grasp of equal-groups structures, but who were not yet confident working 

symbolically, to perceive and make use of replicatory patterns spatially 

structured along two dimensions. However, the split between participants 

choosing to include container and/or array structuring elements also indicated 

personal preferences as a separate factor to arithmetical ability. (This has 

potential for further investigation, involving testing participants’ visual pattern recognition). 

While some individuals displayed firm preferences for container- or array-based forms throughout, 

others’ representational strategy choices changed over the course of interviews, and sometimes intra-

task. For example, Figure 5 shows a student’s representation for calculating the number of 7-seater 

vehicles needed for 21 passengers, starting with a container resembling a car, then immediately 

discarding decorative elements and containers, in transition towards an array format.  

Increasing the quantities within tasks (for those students judged likely to cope with the challenge) 

sometimes resulted in strategic change, in particular the introduction of number symbols. However, 

the general persistence of container elements surrounding those symbols (i.e. Number Containers) is 

striking. As seen in Figures 4b and 4d, non-mathematically-functional decorative elements (bus 

wheels, aeroplane wings) were included inconsistently. From a purely calculation-based viewpoint, 

students using NCs might as well be using plain columns of numbers – therefore the container 

elements clearly fulfil some other, non-enumerative, yet important, function. I suggest containers 

forms are a powerful visuospatial/perceptual phenomenon relating to equal-groups number structures 

and relationships, which persists later than might be expected. It is reasonable to expect that as 

 

Figure 5: 

Transitional 

representation 



confidence is gained, the containers begin to disappear (but could be retrieved as a reassuring strategy 

at times of low confidence – for example, when tasks increase in difficulty). 

Obviously, all types of representational configuration were used to a great extent for the enumeration 

of quantities, and for the visuospatial organization of these quantities so that the correct set of objects 

(units or groups) could be enumerated. However, it is worth noting that the representations created 

were not immediately rendered useless once a task solution was found. Students completed 

visuospatial patterns when an incomplete pattern would have been sufficient to obtain an answer; 

they sometimes added further organizational (or decorative) detail after giving an answer. 

Occasionally they even created a whole new representation to record their working retrospectively, 

or to help them explain an exciting discovery they had just made about numerical relationships (e.g. 

the commutative principle). The fact that these representational activities were important to the 

students for their own sake (i.e. not just for obtaining the answer in a single task) suggests that they 

can be an important part of these students’ developing arithmetical reasoning, and their real and 

perceived agency in this development.  

Representational configurations and developing multiplicative thinking 

Representations of mathematical objects […] can be seen as concretizations of abstract 

mathematical concepts and at the same time as representations of real objects. (Wittmann, 2005, 

p.18)  

The four related types of representational configuration defined and discussed above integrate 

numerical and spatial concepts to form visuospatial mathematical objects that allow such a dual role: 

concretizing numerical relationships and representing real-life objects referred to in scenario tasks.  

Whilst all four types represent equal-groups arithmetical structures, they do not fall along a single 

line of progression (see Figure 6, below). In the same way that concrete representations (e.g. modelled 

with cubes) are not necessarily less mature than iconic ones (e.g. drawn images), different types of 

configuration have different affordances which may be relevant at certain points. Number Containers, 

being non-unitary, are a clear progression from Unit Containers in terms of calculation, by requiring 

step-counting or repeated addition rather than unitary counting. However, Unit Arrays better 

instantiate the two-dimensional, reversible, nature of multiplicative relationships, whilst the ringing 

of rows or columns in ACBs could link procedural and static conceptions of multiplication/division.  

The analysis of a set of relatively open-ended, student-generated, qualitative data based on their use 

of four key types of representational configuration highlighted a particular aspect of these students’ 

late- and slow-developing multiplicative thinking: the many small adjustments that together can 

indicate a gradual change of focus of attention from units to groups, all happening within what is 

often considered to be a single stage of ‘counting-based strategies’. Whether a task is multiplication- 

or division-based, there is a total quantity which is made up of, or can be separated into, equal groups. 

In terms of enumeration, the most basic strategies involve counting without any awareness of the 

repeating structure, while the more advanced ones make use of it. In terms of representational 

strategy, the most basic involve manipulating concrete or drawn units individually, to seeing and 

using visuospatial repeating patterns of units, to manipulating component groups as though they were 

units, to – eventually – focusing on these groups as new, composite units.  



An individual’s progress in this move from units to groups as main focus may be diagnosable via 

their representational strategic choices, along various possible trajectories (see Figure 6). (The 

bracketed items are likely or potential subsequent steps which, however, did not feature in the project 

from which this data derives.) 

 

Figure 6: Potential developmental trajectories through representation types 

Regarding this change of focus, there is a particular point of interest in ACBs: although they are still 

unitary representations (i.e. every unit is visibly present and countable), the visual and enactive 

emphasis on ringed subgroups serves to shift the student’s level of visual focus, drawing attention 

away from the units and towards the groups. Thus, it encourages the possibility of seeing containers 

(enclosing well-aligned sets) as the new ‘units’ for manipulation. Meanwhile, with NCs, the replacing 

of (iconic) units with (symbolic) numbers is not only important for its progression toward standard 

notation, but as another part of this change of focus from units to groups – the change from using one 

mark to stand for one thing, to using one mark to stand for a collection of many things.  

Even from a small sample of students it is clear that their patterns of capability, difficulty, and the 

representations which work best for them, are complex, interrelating, and individual. There is no 

single ideal path through from, for example, dealing out a pile of physical items to a set of actual 

present people, and carrying out a fully symbolic division calculation. However, from a 

teaching/learning perspective it appears important that at no stage is the leap too wide or too hasty, 

and that there are visual links when moving from more intuitive to more abstract representational 

strategies. From an analytical perspective, I suggest that tracking students’ use of these four key 

representational configuration types in their arithmetical problem-solving (both in their initial choice 

of type, and in the emerging and developing spatial organization of elements within representations) 

may be beneficial in further study of the progression from additive to multiplicative thinking.  
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