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Robust Fault Detection for Vehicle Lateral Dynamics: A
Zonotope-based Set-membership Approach
Sara Ifqir1, Vicenç Puig2, Naima Ait-Oufroukh1, Dalil Ichalal1 and Saı̈d Mammar1

Abstract— In this work, a model-based fault detection layout
for vehicle lateral dynamics system is presented. The major
focus in this study is on the handling of model uncertainties and
unknown inputs. In fact, the vehicle lateral model is affected
by several parameter variations such as longitudinal velocity,
cornering stiffnesses coefficients and unknown inputs like wind
gust disturbances. Cornering stiffness parameters variation is
considered to be unknown but bounded with known compact
set. Their effect is addressed by generating intervals for the
residuals based on the zonotope representation of all possible
values. The developed fault detection procedure has been tested
using real driving data acquired from a prototype vehicle.

Index Terms— Robust fault detection, interval models,
zonotopes, set-membership, switched uncertain systems, LMIs,
input-to-state stability, arbitrary switching.

I. INTRODUCTION

Detection of malfunctions and faults in vehicle lateral
dynamics is one of the most important tasks allowing to
improve the performance and reliability of active safety
systems. An early warning indicating the occurrence of faults
can help to take appropriate actions and avoid damage or
even fatal accidents. Therefore, it is necessary to develop a
Fault Detection (FD) procedure to be able to detect potential
faults as early as possible. Then, the system can maintain
stability and keep acceptable performances by means of this
early warning including some fault tolerant mechanism.
Among numerous FD techniques, model-based design has
attracted an increasing amount of attention over the last
decades, and some approaches have been proposed (see,
e.g. [3], [7], [10], [14], [15] and references therein). They
perform fault detection by generating a residual signal based
on the difference between the real and mathematical model
outputs, which in the fault-free case should be zero, other-
wise, a fault is detected and an alarm is generated. However,
since there exist some mismatches between mathematical
model and real plant due to parameter uncertainties, external
disturbances and unknown inputs, the residual signal be-
comes nonzero, which generates false alarms, corrupting the
results and making the FD system useless. Hence, robustness
against these uncertainties and disturbances is an important
and challenging problem in model-based FD design.
In the literature, two main distinct approaches have been
addressed. The first robust approach, known as active, is
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based on generating residuals that are sensitive to faults,
while being insensitive to uncertainties. This approach has
been extensively developed using Unknown Input Observer
(UIO) [14], parity-space and identification based methods
[2]. Whereas, the second approach, known as passive, is
based on enhancing residual robustness at the decision-
making stage using an adaptive threshold [10]. In other
words, the passive approach consists on propagating the
uncertainties to the residuals limits. When the residual is
outside these limits, the alarm is not due to uncertainties but
to a fault occurrence.
In the Passive Fault Detection (PFD) technique, uncertain
parameters are bounded and the resulting model known as
interval model is used for design. In this case, the measured
output is bounded by an interval, providing, therefore, an
interval for the residual vector. Then, fault detection test
consists in checking if the residual value is inside or not this
interval after uncertainty propagation. In this paper, zono-
topes are used to provide the interval enclosing the unknown
true residual vector. The advantage of using zonotopes is that
monotonicity property is no longer needed as in [8], [9], [11]
allowing to consider the whole set of possible trajectories.
The zonotope-based approaches in fault detection has already
been investigated in the literature, see for instance [5], [7].
The main contribution of this paper is that it provides a robust
PFD schema based on the set-membership approach using
zonotopes to bound the parameter uncertainty affecting the
vehicle lateral dynamics. For this purpose, it is important to
use a detailed and accurate vehicle model. In this study and in
order to fully make use of the range variations of all vehicle
uncertain parameters, such as, vehicle longitudinal velocity,
cornering stiffness coefficients, and to take into account
external disturbances such as lateral wind gusts, a switched
uncertain discrete-time system subject to unknown inputs is
proposed. In this model, the longitudinal velocity is consid-
ered piecewise constant, different local sub-model are then
derived and a switching strategy dependent on the measured
velocity is implemented. Furthermore, an adaptive dynamic
tire model that is physical and flexible enough to permit time-
varying tire performances is used. Indeed, a readjustment
variable assumed to be unknown but bounded is added to
correct the value of the cornering stiffness coefficients in
case that a change occur in road adhesion or vehicle loading
condition. Using Switched Unknown Input Observer (SUIO)
principle and Input-to-State Stability concept, the residual
vector is made robust against unknown lateral wind gusts
disturbances and aforementioned uncertainties. This work



shows the successful application of PFD method in order to
detect faults in vehicle lateral dynamics. It should be pointed
out that the use of adaptive threshold in vehicle lateral
diagnosis systems is an area that is still fairly undeveloped.
Moreover, for the best of the author knowledge, the PFD
method has not been intensively investigated for switched
systems. This paper, presents perhaps the first attempt to deal
with such systems.
The remainder of this paper is organized as follows: Section
II presents the vehicle lateral model under consideration. The
design of the PFD schema is proposed in Section III. Ap-
plication to vehicle lateral dynamics with validation through
real data is given in Section IV. The main conclusions and
future works are drawn in Section V.

II. VEHICLE LATERAL DYNAMICS MODELING

In the literature, there are several mathematical models
describing the vehicle lateral dynamics. In the present work,
the well known two degree of freedom bicycle model repre-
senting the lateral and yaw motions is used for implementing
FD procedure. The vehicle mass is equal to m. The moment
of inertia is noted Iz . The front and rear axles are located
respectively at distances lf and lr from the center of gravity.
The front and rear lateral tire forces Fyf and Fyr are
functions of wheel slip angles αf and αr, respectively. The
force Fw is due to the effect of the wind gusts that are
acting at a distance lw. vy and vx are lateral and longitudinal
velocity respectively, and δf stands for the front steering
angle. The vehicle lateral dynamics is described by the
following differential equations with lateral velocity vy and
yaw rate ψ̇ as states [12]:{

mv̇y = Fyf + Fyr −mvxr + Fw
Izψ̈ = lfFyf − lrFyr + lwFw

(1)

For normal driving situations, Fyf and Fyr are linear with
respect to wheel slip angles

Fyf = cfαf , Fyr = crαr (2)

where cf and cr represent the front and rear wheel cornering
stiffness parameters respectively. The front and rear wheel
slip angles are defined as

αf = δf − vy
vx
− lf

vx
ψ̇, αr = − vy

vx
+ lr

vx
ψ̇ (3)

Substituting (2) and (3) into (1), equations (1) are expressed
in the following state-space form

ẋ(t) = Ax(t) +Bu(t) + Ed(t)
y(t) = Cx(t)

(4)

where x(t) =
[
vy ψ̇

]T
, u(t) = δf , d(t) = Fw, y(t) = ψ̇

A =

[
− cf+cr

mvx

crlr−cf lf
mvx

− vx
crlr−cf lf
Izvx

− crl
2
r+cf l

2
f

Izvx

]
, B =

[ cf
m
cf lf
Iz

]
E =

[
1
m
lw
Iz

]
Note that, the tire model (2) is valid only in the case of
low lateral acceleration. However, when lateral acceleration
becomes high, the tire forces are no longer linear with
respect to the wheel slip angles due to the tire saturation
property. Accordingly, the cornering stiffness parameters cf

and cr used in the linear tire model (2) will vary when the
road friction changes or when the nonlinear tire domain is
reached. Taking these variations into account, the following
linear adaptive tire model is used to correct the cornering
stiffness values via the uncertain variables ∆cf and ∆cr as

Fyf = (cf0 + ∆cf )αf , Fyr = (cr0 + ∆cr)αr (5)

where ci0, i ∈ {r, f}, represents the known nominal value
and ∆ci, i ∈ {r, f}, is assumed to be unknown but bounded
with a priori known bounds. Furthermore, it is clear that
the uncertain bicycle model (4) is non-linear because of the
term 1

vx
. In this paper, the longitudinal velocity is considered

piecewise constant and a switching rule depending on the
measured velocity is deduced to select the active subsystem.
Then, the uncertain non-linear bicycle model (4) is trans-
formed into a switched uncertain discrete-time model1 : xk+1 = (A0,σ(k) + ∆Aσ(k)(θk))xk+

(B0,σ(k) + ∆Bσ(k)(θk))uk + Eσ(k)dk
yk = Cxk

(6)

where xk ∈ Rn, uk ∈ Rm, yk ∈ Rp, dk ∈ Rq are
the state, the control input, the output vector and the un-
known input respectively. σ : R+ → I = {1, 2, ..., N}
is the switching signal assumed to be available in real
time. The matrices A0,σ(k) ∈ {A0,1, A0,2, ..., A0,N} and
B0,σ(k) ∈ {B0,1, B0,2, ..., B0,N} are the state space ma-
trices assumed to be constant and known a priori. Eσ(k)

and C stand for the unknown input distribution matrix
and the output equation matrix, respectively. The matri-
ces ∆Aσ(k)(θk) ∈ {∆A1(θk),∆A2(θk), ...,∆AN (θk)} and
∆Bσ(k) ∈ {∆B1(θk),∆B2(θk), ...,∆BN (θk)} are assumed
to be unknown but bounded representing the uncertainty
of the system caused by the time-varying parameter θk =[
∆cf ∆cr

]T ∈ Θ, where Θ is an interval box given by:

Θ = {θk ∈ Rr|θ−k ≤ θk ≤ θ
+
k } (7)

For easiness of further developments, the state space repre-
sentation (6) is rewritten in the following equivalent form:{

xk+1 = A0,σ(k)xk +B0,σ(k)uk + Eσ(k)dk + δσ(k)

y(t) = Cx(t)
(8)

where δσ(k) = ∆Aσ(k)(θk)xk + ∆Bσ(k)(θk)uk.

III. VEHICLE FAULT DETECTION

A. UI decoupling

For the system (8), a switched observer that reconstructs
the state xk without any information on the UI dk can be
constructed using the input uk and the measured output yk
as{

x̂k+1 = Nσ(k)x̂k +Kσ(k)yk +Gσ(k)uk −Hσ(k)yk+1

ŷk = Cx̂k
(9)

with the initial state x̂0 ∈ Rn. Nσ(k), Kσ(k), Gσ(k) and
Hσ(k) are gain matrices with appropriate dimensions to be
determined.
Theorem 1. The switched observer (9) is a switched UIO

1The zero order hold method is used to obtain (6).



for system (8) if and only if the following conditions are
satisfied:

1) ek+1 = Nσ(k)ek + ∆σ(k) is ISS-stable under arbitrary
switching;

2) Nσ(k) = Pσ(k)A0,σ(k) −Kσ(k)C;
3) Pσ(k)B0,σ(k) −Gσ(k) = 0;
4) Pσ(k)Eσ(k) = 0.

where Pσ(k) = In +Hσ(k)C and ∆σ(k) = Pσ(k)δσ(k).
Proof. The dynamics of the state estimation error ek =
xk − x̂k is given by

ek+1 = xk+1 − x̂k+1

= (In +Hσ(k)C)xk+1 −Nσ(k)x̂k −Kσ(k)yk −Gσ(k)uk

By denoting Pσ(k) = In + Hσ(k)C and using (6), the
dynamics of the state estimation error is

ek+1 = (Pσ(k)A0,σ(k) −Kσ(k)C)xk −Nσ(k)x̂k+
(Pσ(k)B0,σ(k) −Gσ(k))uk + Pσ(k)Eσ(k)dk + Pσ(k)δσ(k)

(10)
If the following relationships hold

Nσ(k) = Pσ(k)A0,σ(k) −Kσ(k)C (11a)

Pσ(k)B0,σ(k) −Gσ(k) = 0 (11b)

Pσ(k)Eσ(k) = 0 (11c)

then, (10) is reduced to

ek+1 = Nσ(k)ek + ∆σ(k) (12)

which completes the proof. �
From (12), one can see that dk has been decoupled under the
conditions 2-4 of Theorem 1, but the effect of uncertainties
∆σ(k) still persists. Therefore, the switched observer design
consists on finding the observer gain Kσ(k) such that the
observer error dynamics (12) is asymptotically stable when
∆σ(k) = 0 and is ISS-stable with respect to uncertainties
when ∆σ(k) 6= 0.

B. LMI formulation

The Lemma 1 is useful for the proof of ISS-stability of
the SUIO (9).
Lemma 1. The necessary and sufficient conditions for the
existence of the SUIO (9) for the system (8) are:

1) rank(CEσ(k)) = rank(Eσ(k)) = q , ∀σ(k);
2) The pair (Pσ(k)A0,σ(k), C) is detectable ∀σ(k).

Remark 1. The first condition in Lemma 1 ensures that
equation (11c) is solvable, and a particular solution can be
given as follows:

Hσ(k) = −Eσ(k)

([
(CEσ(k))

T (CEσ(k))
]−1

(CEσ(k))
T

)
(13)

Moreover, the second condition, sometimes referred as
”strong detectability condition” is equivalent to that the
transmission zeros from the UI to the output must be stable,
i.e.

rank

([
sIn −A0,σ(t) Eσ(k)

C 0

])
= n+ q, (14)

holds ∀σ(k) and for all complex number s with Re(s) ≥ 0.
The next theorem provides sufficient conditions for the state

estimation error (12) to be ISS-stable under arbitrary switch-
ing. Before proceeding, we begin by stating the following
equivalence.
Lemma 2. The following conditions are equivalent:

(E1) There exists a symmetric matrix Q such that[
NTQN + (α− 1)Q NTQ

QN Q− γI

]
≺ 0 (15)

(E2) There exist a symmetric matrix Q and a matrix S such
that (α− 1)Q 0 NTST

(∗) −γIn ST

(∗) (∗) −ST − S +Q

 ≺ 0 (16)

Proof. If we apply the Schur complement with respect to
the block (3,3) of (16), we recover directly (15) by choosing
S = ST = Q, hence (E1) implies (E2). Moreover, from the
first block of (16), we have (α−1)Q ≺ 0. Then, multiplying

(16) by T =

[
In 0 NT

0 In In

]
on the left and TT on the right,

we get (15), which establishes that (E2) implies (E1) and the
proof is complete. �
Theorem 2. System (12) is uniformly2 ISS-stable with
respect to the switching signal σ(k) if there exist a symmetric
matrix Q, matrices S and Wi, ∀i ∈ I, a constant γ > 0
for given positive scalars α1 and 0 < α < 1 such that the
following condition holds

min
Q,S,Wi

γ

(α− 1)Q 0 A0,i
TPTST − CTWT

i

(∗) −γIn ST

(∗) (∗) −ST − S +Q

 ≺ 0 (17)

with Wi = SKi for any switching signal σ(k). Furthermore
the state estimation error (12) satisfies

lim
k→∞

‖ek‖2 ≤
√

γ

α1(1− α)
‖∆σ(k)‖∞ (18)

where ∆σ(k) = Pδσ(k) and the maximum norm is given by
‖∆σ(k)‖∞ = max{|∆1|, |∆2|, . . . , |∆N |}.
Proof. For the stability analysis, we use the following
common quadratic ISS-Lyapunov function

V (ek) = eTkQek, Q = QT � 0 (19)

Setting ∆V (ek) , V (ek+1)− V (ek), we have

∆V (ek) = eTk+1Qek+1 − eTkQek

using (12), we get

∆V (ek) =
(
Nσ(k)ek + ∆σ(k)

)T
Q
(
Nσ(k)ek + ∆σ(k)

)
− eTkQek

= eTkN
T
σ(k)QNσ(k)ek + ∆T

σ(k)QNσ(k)ek
+eTkN

T
σ(k)Q∆σ(k) + ∆T

σ(k)Q∆σ(k) − eTkQek

2The word ”uniformly” refers to uniformity with respect to switching
signals.



By adding and subtracting the terms αeTkQek and
−γ∆T

σ(k)∆σ(k), we obtain that

∆V (ek) =

[
eTk

∆T
σ(k)

] [
NT
σ(k)QNσ(k) + (α− 1)Q NT

σ(k)Q
(∗) Q− γIn

]
×
[
ek

∆σ(k)

]
− αeTkQek + γ∆T

σ(k)∆σ(k)

(20)

Then, the satisfaction[
NT
σ(k)QNσ(k) + (α− 1)Q NT

σ(k)Q
(∗) Q− γIn

]
≺ 0 (21)

is equivalent to satisfy (17) according to Lemma 2. Then,
from (20) we get

∆V (ek) < −αeTkQek + γ∆T
σ(k)∆σ(k) (22)

that implies

V (ek+1) < (1− α)V (ek) + γ‖∆σ(k)‖2 (23)

Integrating (23) over the interval [k0, k), we have

V (ek) ≤ (1−α)k−k0V (e0)+γ

k−1∑
m=0

(1−α)k−m−1‖∆σ(m)‖2 (24)

knowing that (19) satisfies for some α2 > α1 > 0 the
following inequality

α1‖ek‖2 ≤ V (ek) ≤ α2‖ek‖2 (25)

allows to deduce that

‖ek‖2 ≤
1
√
α1

(
α2(1− α)k−k0‖e0‖22+

γ

1− α

k−1∑
m=0

[1− α]
k−m ‖∆σ(m)‖22

) 1
2

(26)

Hence, when k → ∞ and using the maximum norm of
∆σ(k), (18) is obtained which ends the proof. �
Remark 2. The uniform ISS stability is usually used when
there is no restriction on the switching signal σ(k) and
requires that all the subsystems are ISS-stable. This condition
is ensured by the choice of the gain Kσ(k). Note that the
subsystems stability assumption is not sufficient to guarantee
the stability of the overall switched system. However, the
existence of the common quadratic ISS-Lyapunov function
(19) is necessary and sufficient for the ISS-Stability of a the
switched system (12) [13].
Remark 3. The existence of a common Lyapunov function
for the switched system (12) is very conservative. The vehicle
lateral dynamics system under consideration possesses a
common Lyapunov function as will be shown in simulation,
and remains stable under arbitrary switching signals. But
despite this fact and in order to derive less conservative
conditions our attention will be paid in future works on a
less conservative class of Lyapunov functions, called multiple
Lyapunov functions.

C. Fault detection using interval model

In the sequel, we are interested in actuator fault detection
in vehicle lateral dynamics. To do this, the proposed switched
UIO scheme is employed for actuator FD as described in
the following. The fault detection procedure is based on
testing whether the vehicle measured output yk is consistent
with its estimation ŷk provided by the UIO (9). When
an inconsistency is detected, the existence of a fault is
indicated. This consistency check is based on generating a
fault indicator, known as residual rk and given by

rk = yk − ŷk (27)

which can be also expressed using state estimation error ek
as follows

rk = Cek (28)

Note that the residual vector (28) is expected to be zero
in fault-free case and deviate from zero in the presence of
faults [1], [2]. However, due to the presence of parameter
uncertainties ∆σ(k), the residual vector rk will be different
from zero, even in a non-faulty situation. We propose in this
paper to use the so called passive fault detection method,
that enhances the robustness of the fault detection schema
at the decision making step. The initial state uncertainties
and system parameter uncertainties are propagated to the
residual vector, allowing to determine residual reachable
interval. When the residual is outside the given interval, the
occurrence of a fault is proved, i.e. while the residual

rk ∈ ?Rk = [r−k , r
+
k ] (29)

no fault occurred, and the residual value is simply due to
the parameter uncertainty. r− and r+ are lower and upper
bounds of the residual rk, respectively. The set ?Rk is
obtained in real time using zonotopes.

D. Implementation of the FD schema using zonotopes

In this paper, zonotopes are used to implement the fault
detection algorithm. The following definitions, assumptions
and Lemma are introduced in advance.
Definition 1. The Minkowski sum of two sets X1 and X2 is
given by X1 ⊕ X2 = {x1 + x2 : x1 ∈ X1, x2 ∈ X2}.
Definition 2. [10] Given a center vector xc ∈ Rn and a
matrix H ∈ Rn×m, the Minkowski sum of the segments
defined by the columns of matrix H is called zonotope of
order m. This set is defined by:

X = xc ⊕Hβm = {xc +Hz : z ∈ βm} (30)

where βm is an unitary box composed by m unitary intervals.
Definition 3. The interval hull ?X1 of a closed set X1 is the
smallest interval box that contains X1.
Assumption 1. The initial state x0 is inside an initial
zonotope X0, implying that the initial state estimation error
e0 is inside the zonotope E0 = CX0, i.e. e0 ∈ E0.
Assumption 2. It is assumed that the state and input vectors
xk and uk are bounded as follows x−k ≤ xk ≤ x+

k ,
u−k ≤ uk ≤ u+

k , where, x−k , x+
k , u−k and u+

k are a priori
known bounds reflecting the vehicle physical limits.



Ek−1 Ek

ek+1 = Nσ(k)ek + ∆σ(k)

rk = CekRk

Fig. 1. Main steps for residual interval computation

Lemma 3. [4] Let the vector xk ∈ Rn be a variable vector
with given bounds x+

k , x
−
k ∈ Rn such that x−k ≤ xk ≤ x

+
k

1) If M ∈ Rn×n is a constant matrix, then
Mx−k −Mx+

k ≤Mxk ≤Mx+
k −Mx−k (31)

2) If M ∈ Rn×n is a variable such that M− ≤M ≤M+

for some M−, M+ ∈ Rn×n, then

M
−
xk
− −M+

xk
− −M−xk+ +M+xk

+ ≤Mxk ≤
M

+
xk

+ −M−xk+ −M+xk
− +M−xk

−

(32)
where ? = max(0, ?) and ? = ?− ?.
Note that since θk ∈ Θ, the system matrices ∆Aσ(k)(θk)
and ∆Bσ(k)(θk) are bounded based on (7) as

∆A−σ(k) ≤ ∆Aσ(k)(θk) ≤ ∆A+
σ(k) (33a)

∆B−σ(k) ≤ ∆Bσ(k)(θk) ≤ ∆B+
σ(k) (33b)

Therefore, using Assumption 2 together with (33) and
applying Lemma 3, the additive term ∆σ(k) in (12) can be
bounded by means of an interval box D given by:

D = {∆σ(k) ∈ Rn |∆−σ(k) ≤ ∆σ(k) ≤ ∆+
σ(k),

∆−σ(k),∆
+
σ(k) ∈ Rn} (34)

Furthermore, D can be rewritten as a zonotope D = ∆c ⊕
H∆+

σ(k)
βn, where H∆+

σ(k)
∈ Rn×n is a diagonal matrix with

the main diagonal being ∆+
σ(k) and ∆c is a known and

constant vector.
Then, using Definitions 2 and 3, the state estimation error un-
certainty is bounded using zonotopes and (12) is transformed
to the following equivalent form

eck+1 = Nσ(k)e
c
k (35a)

Hk+1 =
[
Nσ(k)Hk H

∆+
σ(k)

]
(35b)

where eck+1 and Hk+1 are the center and segment matrix of
Ek+1, respectively.
The equivalent compact description of (35) is given as
follows

Ek+1 = Nσ(k)Ek ⊕D (36)

Thus, the residual zonotope at instant k can be written as

Rk = CEk (37)

by using the iterative algorithm presented in Figure 1. The
zonotope Rk is obtained for time instants k > 0. Subse-
quently, the interval for residual vector ?Rk is obtained by

computing the interval hull of the zonotope (37). By means
of testing the robust FD criterion (29), the occurrence or
absence of faults is detected in real time.

IV. SIMULATION RESULTS USING REAL DATA

In this section, the robust fault detection scheme proposed
in Section III is applied to the actuator fault detection
problem of vehicle lateral dynamic system described in
Section II.
The real data used in the validation process are acquired
using a prototype vehicle. The run was performed on a test
track located in the city of Versailles-Satory (France). The
track is 3.5km length with various curve profiles allowing ve-
hicle dynamics excitation. Several sensors are implemented
on the vehicle. The yaw rate r is measured using an inertial
unit. An odometer is used to provide the vehicle longitudinal
speed while the steering angle δf is measured by an absolute
optical encoder. A wind lateral force acting as unknown
input is added in simulation and presented in Figure 2. The
steering angle, the yaw rate and longitudinal velocity profiles
are plotted in Figure 3. Measured vehicle specifications for
the simulation and experimental validation can be found in
[6]. For the simulation scenario, three subsystems are defined
for v1

x = 8.5m/s, v2
x = 13.55m/s and v3

x = 18.05m/s. In
addition, the following switching law is considered:

σ(t) =

 1 if vx ∈ [V 0
x , V

1
x [

2 if vx ∈ [V 1
x , V

2
x [

3 if vx ∈ [V 2
x , V

3
x ]

(38)

with vkx =
V kx −V

k−1
x

2 for k = 1, 2, 3. Furthermore, it is
assumed that the cornering stiffness parameters are affected
by ±10% uncertainty in their nominal values.
The proposed algorithm is evaluated by introducing an
actuator bias into the data provided by the encoder. Two
fault zones are considered and represented with the switching
signal in Figure 4. The first fault zone is in a stationary space
where the second mode remains unchanged. The second zone
is in a space where the vehicle dynamics switches quickly
from the second to third mode and from the third to second
mode, alternatively. According to the procedure described
in Section III, the corresponding gain matrices of the UIO
(9) for the lateral dynamics system (8) are designed. Due to
space limitations, the gain matrices are omitted. The resulting
attenuation level is γ = 0.0145 for an actuator bias of
0.25rad, α = 0.5 and a sampling time Ts = 0.6s.
Simulation results of the actuator fault detection are depicted
in Figure 5. The gains which are obtained by solving the
optimization problem in Theorem 2 allow to attenuate the
effect of the uncertainties and the residual is almost zero. On
the other hand, regarding the fault zone, where the vehicle
dynamics switches alternatively between two modes, and the
zone where no switch occurs, it can be noticed that the
residual vector rk is outside the estimated set ?R. The fault is
well detected in both cases until it disappears. Furthermore,
there is no delay in the fault indication. The fault detection
accuracy is equal in both zones, and, the switching does not
influence the detection quality.



Fig. 2. Lateral wind gust input Fw .

Fig. 3. Steering angle δf , yaw rate ψ̇ and longitudinal velocity vx.

Fig. 4. Switching law and faults zone.

Fig. 5. Residue

V. CONCLUSION

In this paper, a new vehicle robust fault detection scheme,
which combines switched UIO and zonotopes has been
proposed. A multiple model switching structure is considered
to take into account the longitudinal velocity variation. Then,
Multiple SUIO-based FD are constructed to decouple the
effect of UI from the residual vector. The gain matrices have
been designed using a common ISS-Lyapunov function and
an LMI formulation is obtained. As presented on simulation,
the fault detection results are encouraging. The use of

input-to-state stability concept guarantees uncertainties effect
attenuation. Moreover, it has been shown that fast vehicle
longitudinal velocity switching does not influence the fault
detection quality.
Future work will be devoted to extend the fault detection
method to fault isolation. Furthermore, another trivial ex-
tension of the method is to consider the variation of the
longitudinal velocity and therefore adopt a Takagi-Sugeno
representation of the vehicle lateral model. Reduction of
the conservatism of the proposed LMIs using a multiple
quadratic ISS-Lyapunov function will also be considered.
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Sadeghzadeh. Robust fault detection for lpv systems using interval
observers and zonotopes. In Decision and Control, 2009 held jointly
with the 2009 28th Chinese Control Conference. CDC/CCC 2009.
Proceedings of the 48th IEEE Conference on, pages 1002–1007. IEEE,
2009.

[11] Tarek Raı̈ssi, Gaétan Videau, and Ali Zolghadri. Interval observer
design for consistency checks of nonlinear continuous-time systems.
Automatica, 46(3):518–527, 2010.

[12] Rajesh Rajamani. Vehicle dynamics and control. Springer Science &
Business Media, 2011.

[13] RN Shorten and KS Narendra. On the stability and existence of
common lyapunov functions for stable linear switching systems. In
Decision and Control, 1998. Proceedings of the 37th IEEE Conference
on, volume 4, pages 3723–3724. IEEE, 1998.
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