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Abstract. Seismic data-sets are extremely large and are broken into data files, ranging in size from 100s of
GiBs to 10s of TiBs and larger. The parallel I/O for these files is complex due to the amount of data along with
varied and multiple access patterns within individual files. Properties of legacy file formats, such as the de-facto
standard SEG-Y, also contribute to the decrease in developer productivity while working with these files.
SEG-Y files embed their own internal layout which could lead to conflict with traditional, file-system-level
layout optimization schemes. Additionally, as seismic files continue to increase in size, memory bottlenecks will
be exacerbated, resulting in the need for smart I/O optimization not only to increase the efficiency of read/
writes, but to manage memory usage as well. The ExSeisDat (Extreme-Scale Seismic Data) set of libraries
addresses these problems through the development and implementation of easy to use, object oriented libraries
that are portable and open source with bindings available in multiple languages. The lower level parallel I/O
library, ExSeisPIOL (Extreme-Scale Seismic Parallel I/O Library), targets SEG-Y and other proprietary
formats, simplifying I/O by internally interfacing MPI-I/O and other I/O interfaces. The I/O is explicitly
handled; end users only need to define the memory limits, decomposition of I/O across processes, and data
access patterns when reading and writing data. ExSeisPIOL bridges the layout gap between the SEG-Y file
structure and file system organization. The higher level parallel seismic workflow library, ExSeisFlow
(Extreme-Scale Seismic workFlow), leverages ExSeisPIOL, further simplifying I/O by implicitly handling all
I/O parameters, thus allowing geophysicists to focus on domain-specific development. Operations in ExSeis-
Flow focus on prestack processing and can be performed on single traces, individual gathers, and across entire
surveys, including out of core sorting, binning, filtering, and transforming. To optimize memory management,
the workflow only reads in data pertinent to the operations being performed instead of an entire file. A smart
caching system manages the read data, discarding it when no longer needed in the workflow. As the libraries are
optimized to handle spatial and temporal locality, they are a natural fit to burst buffer technologies, particu-
larly DDN’s Infinite Memory Engine (IME) system. With appropriate access semantics or through the direct
exploitation of the low-level interfaces, the ExSeisDat stack on IME delivers a significant improvement to
I/O performance over standalone parallel file systems like Lustre.

1 Motivation and introduction

Overall resolution and size (Stanghellini and Carrara, 2017)
of seismic studies have increased of the past several decades;
individual files range in size from 100s of GiBs to greater
than 10 TB. The high resolution of these studies have
allowed for better identification and delineation of shallow

anomalies and structures related to hydrocarbons and
migration paths, thus leading to more accurate estimations
and extractions of petroleum products (Hustoft et al., 2007;
Lin et al., 2013). With the increase in file size, geophysicists
have increased both the computational and personnel time
spent handling and optimizing I/O for these files.

While these large and dense datasets have improved
seismic interpretation, they have also lead to I/O and mem-
ory bottlenecks. Parallel I/O, essentially a requirement for

Numerical methods and HPC
A. Anciaux-Sedrakian and Q. H. Tran (Guest editors)

* Corresponding author: meghan.fisher@ichec.ie

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Oil & Gas Science and Technology - Rev. IFP Energies nouvelles 73, 74 (2018)
� M.A. Fisher et al., published by IFP Energies nouvelles, 2018

Available online at:
ogst.ifpenergiesnouvelles.fr

https://doi.org/10.2516/ogst/2018048

REGULAR ARTICLEREGULAR ARTICLE

http://creativecommons.org/licenses/by/4.0/
https://www.ifpenergiesnouvelles.fr/
https://ogst.ifpenergiesnouvelles.fr
https://doi.org/10.2516/ogst/2018048


files of this size, is complex due to the total volume of data,
and the varied access patterns within individual files.
Various access patterns for different processing stages can
lead to effectively random access patterns, causing con-
tention for disk access (in both serial and parallel file
systems), along with limiting the effectiveness of caching
and pre-fetching by the operating system. The size of these
files also mean that reading entire files into memory for
preprocessing is not a scalable solution, particularly for files
in the terabyte and, looking forward, petabyte range. While
files are growing larger, more processes are involved in the
computation. Shared access, specifically for concurrent
write, is the most difficult access pattern to deal with for
parallel file systems due to lock issue. Write congestion on
shared files is a challenging pattern for lock-based parallel
file systems (Virtual Institute for I/O, 2018). Addressing
write congestion is one of the motivations of check-point
oriented file systems such as PLFS (Bent et al., 2009), an
inspirational predecessor of IME.

Thus, while the computing part is scaling with the data
size the I/O pattern itself is becoming more and more
pathological for traditional file systems. Solutions for these
problems will be file format dependent since every file
format has different storage patterns. One of the most
common file formats for exploration seismology is
SEG-Y (https://doi.org/10.1190%2F1.1440530). Struc-
turally, SEG-Y stores a file header at the beginning that
contains attributes shared by all traces within the file fol-
lowed by a (typically large) number of individual trace data
with metadata for each trace placed at the start of each
trace block (Fig. 1). As a result, neither the trace attributes
nor sets of trace data are stored contiguously on disk, even
when written in a continuous block of storage. This layout
strategy leads to poor cache usage and pre-fetching by the
operating system, thus increasing I/O time.

In dealing with SEG-Y files, programmers are forced to
deal with legacy data formats, e.g. IBM floating point num-
bers and EBCDIC character encoding, along with keeping
track of metadata distributed throughout the file. For serial
code, alone, these incur a lot of developer overhead in con-
version and tracking. For this reason, most commercial seis-
mic data processing tools, e.g. OpenCPS and Geosoft, use
their own, more regular data formats for processing like
SEIS and Geosoft Database. A number of tools exist which
can convert SEG-Y files to other formats, e.g. Segpy and
ObsPy. However, almost all freely available programs that

either convert or process SEG-Y files are serial programs.
Since the SEG-Y file system cannot be modified due to
legacy code and industrial constraint, the way to address
the access pattern issue has to be dealt at the library level.
Thus shielding geologists from the complexity of the under-
lying file system but embedding the necessary logic to
provide efficient access.

The Extreme-Scale Seismic Data (ExSeisDat) project
addresses the I/O and memory bottlenecks associated with
seismic processing within the oil and gas sector though
the use of state-of-the-art parallel techniques paired with
I/O hardware and software technologies. Designed in part-
nership with Tullow Oil plc and DataDirect Networks
(DDN) to be both scalable and user friendly, ExSeisDat
includes two open source libraries: ExSeisPIOL, a low-level
seismic parallel I/O library, and ExSeisFlow, a high level
parallel seismic workflow library.

2 Background

Parallel I/O allows for multiple processors on a system to
perform input/output operations at the same time. While
I/O parallelism can offer a speedup, parallel reading and
writing from disks has particular challenges; for parallel
I/O to be done efficiently, it is vital to understand both
the hardware from which it is read or written and the data
file format.

2.1 Parallel File Systems

Parallel File Systems (PFSs) store data across multiple
storage nodes, connecting to a compute node over a net-
work. Unlike serial file systems that stores a file on a single
disk, a PFS decomposes the file in blocks that are written to
multiple nodes. Writing single files to multiple disks facili-
tates parallel I/O while still protecting data; each disk locks
its portion of the file during a parallel read or write process
while allowing other computational nodes to read or write
to other disks. While a file is written to multiple disks, its
parallel structure is hidden from end users.

Lustre is POSIX compliant PFS that is used on a major-
ity of the Top500 supercomputers. A system consists of a
number of ‘‘Object Storage Servers’’ (OSS) – a node con-
taining a number of hard disks, or other storage media,
referred to as ‘‘Object Storage Targets’’ (OST) – connected
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Fig. 1. Layout of SEG-Y file with the file header followed by sets of trace headers and trace data. This data arrangement means that
no traces are continuous in memory, nor are any individual trace parameters, which drastically decreases I/O efficiency.
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to a network, with one node, the MetaData Server (MDS),
keeping track of the distribution of files, or parts of files,
over the OSTs. Unlike other PFSs, like global parallel file
systems, allocating a specific server to handle metadata
allows for the dedication of OSTs for data I/O resulting
in better performance especially for large files.

Lustre uses a ‘‘striping’’ strategy, where a file is split
into fixed size chunks, and placed on a predetermined set
of OSTs in a round-robin fashion. Lustre-aware applica-
tions, particularly parallel applications, can leverage its
parallel nature and the striping of a file to achieve a very
high throughput. Lustre performance is strongly coupled
to file striping. Aligning file access with stripe boundaries
minimizes the number of OSTs with which a process must
communicate. When stripes are unaligned, an OST receives
data from multiple processes causing contention with the
read or write; I/O on these OSTs under these conditions
are essentially serial. Optimal striping depends not only
on the number of OSTs but also the data access pattern.
If the size of data accessed does not fit within a stripe,
the stripe can become unaligned.

The addition of a fast and intermediate storage layer
between compute nodes and the PFS can further improve
I/O performance. A burst buffer (Liu et al., 2012) acceler-
ates I/O through the use of Solid State Drives (SSD) that
deliver faster read and writes than a traditional Hard Disk
Drives (HDD). The underlying operating system later
flushes the data to the HDDs when it is convenient. How-
ever, these SSDs do not deal any better with random write
patterns than HDDs other than their inherent greater speed.

DDN’s Infinite Memory Engine (IME) addresses the
issues of varying read and write patterns not handled by
traditional burst buffers with deployment of a software
solution in tandem with its caching system. IME intercepts
I/O commands to the underlying PFS from the compute
nodes like other burst buffers. However, since IME is com-
posed of SSDs, which are flash devices, incoming data must
be written to clean memory blocks rather than rewriting
over existing data. Therefore, IME utilizes a logging-based
file system where data is written in the order which it is
received rather than how that data is stored. IME’s soft-
ware then aligns and orders data for optimal I/O for the
underlying PFS. In the case of input data, the IME’s SSD
cache allows for efficient data access from the PFS and han-
dles all read requests from the compute nodes. The overall
I/O time of an application only reflects the amount of time
it takes for the compute nodes to read and write to IME not
the underlying PFS, like Lustre.

2.2 MPI-I/O

The MPI library is a widely-used approach to building
parallel, high performance applications. MPI implements
the Single Program Multiple Data (SPMD) approach to
parallelism, where a programmer writes a single program,
a copy of which is run on a number of processes in parallel,
and which communicate together via a message-passing
protocol.

The MPI library contains a number of routines for per-
forming parallel I/O, collectively referred to as MPI-I/O.

When accessing data in parallel with MPI-I/O, processes
can perform the access using ‘‘collective I/O’’ and ‘‘non-
collective I/O.’’ Non collective I/O accesses the data
directly from the file system without communicating or
coordinating with the other processes, and is most efficient
when reading or writing independent, contiguous blocks of
data. Collective I/O leverages the typically very fast net-
work interconnect in HPC systems to move data around
between processes before writing to disk. This is done to
aggregate a number fragmented accesses to the file system
into larger, more contiguous ones that result in much better
disk access times. Collective I/O can be implemented
directly using a POSIX I/O interface, however MPI-I/O
can automatically distribute the data for optimal disk
access. Both methods require the precise location (in bytes)
where data must be written.

MPI-I/O can greatly increase the overall performance on
parallel systems, at the cost of an in-depth understanding of
the data layout. However, it can instead slow performance
when the implementation is not completely tuned. Indeed,
one of the recommended best practices for parallel I/O is
to use higher level libraries that are based on MPI-I/O
(Ching et al., 2007). HDF5 and other high level I/O
libraries (Folk et al., 2011; Vishwanath et al., 2011) are
examples of efforts made to alleviate the difficulties for
end-users in dealing with the low-level details required for
efficient MPI-IO utilization.

2.3 SEG-Y

The SEG-Y format is a seismic data storage format, origi-
nally devised in 1973 (Barry et al., 1975) used for storing
seismic reflection data. The format consists of a global,
3600 byte file header containing data common to all the
traces and a number of blocks of reflection data, consisting
of an individual, 240 byte trace header containing the meta-
data as well as the trace data itself (Fig. 1). The file header
contains information such as trace size, and number of
traces; the trace header contains information common to
that block of trace data, e.g. x and y coordinates, elevation,
scaling, etc.

Many existing SEG-Y enabled programs run in serial,
because implementing parallel processing for such an unor-
dered file is a complex problem, and implementing efficient
parallel processing even more so. Indeed, for poorly ordered
disk reads, parallelisation can actually be a pessimization,
rather than an optimization. For older, more established
programs in particular, efficient parallel I/O of SEG-Y files
would require a significant change in software architecture
would incur significant development time. Thus far, many
applications have relied on vertical scaling – simply using
a larger, faster machine with more memory – to handle
larger SEG-Y files.

Open source formats, like HDF5 (Folk et al., 2011) and
Adaptable Seismic Data Format (ASDF; Krischer et al.,
2016), and proprietary formats, like SEIS and Geosoft
Database, store metadata and trace data in a more contigu-
ous manner. Typically, a seismic data processing program
will instead work with its own proprietary format that’s
more easily parallelized, and expect a geophysicist to
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convert their trace data to a format supported by the
program. For very large surveys, this conversion can take
considerable time. However, SEG-Y is the defacto standard
for exploration seismology and most broadly used file
format, with data typically distributed among geophysi-
cists in this format (Stanghellini and Carrara, 2017). It is
therefore vital to develop an easy-to-use SEG-Y parallel
I/O library to minimize conversion times and run times of
SEG-Y enabled applications.

A typical parallel I/O pattern for SEG-Y files involves
collective I/O for trace headers and trace data, and non-col-
lective I/O can be used to access the file header. This is
because every process will need access to the file header,
while trace headers and data will be split among the differ-
ent processes. However, for good load balancing, a parallel
application might want to distribute the data among the
processes in a manner that does not reflect the order the
data is stored to disk.

3 ExSeisDat

ExSeisDat is a open source, portable set of object oriented
I/O and workflow libraries designed to simplify parallel
I/O and parallel file system optimization for seismic files
in order to increase application performance and developer
productivity. Source code is available at https://github.
com/ICHEC/ExSeisDat under the LGPLv3 license. The
project aims to alleviate the bottlenecks in I/O both in run-
time and in development time. The libraries completely
encapsulate the details of the SEG-Y file format while still
providing the flexibility for file and trace header customiza-
tion that is prevalent when working with SEG-Y, abstract-
ing the specific details away from the developer. To increase
usability, the libraries include a language binding interface
in C, allowing for future development of e.g. python and
matlab bindings.

While traditional I/O optimizations libraries such as
MPI I/O tend to be blind to the semantic of the applica-
tion, the ExSeisDat library seeks to bridge the gap between
the file format and the purpose of the application and simul-
taneously address the I/O performance constraints. This
domain specific approach has been applied successfully to
other application area in HPC, such as FTI (Bautista-
Gomez et al., 2011) a high level checkpoint restart library
taking care of the storage architecture, or PDI (Roussel
et al., 2017). Tailoring the libraries specifically for seismic
file formats and applications allows for greater in-depth
I/O optimization than would be found in general parallel
I/O or parallel file system libraries. It also allows users to
focus on domain specific development and optimizations
using geophysically intuitive operations. I/O optimizations
are paired with smart caching, targeted at typical geophys-
ical workflows, reducing redundant I/O calls while minimiz-
ing memory usage.

ExSeisDat also leverages software and hardware solu-
tions to maximize one process reading and writing to one
disk. It will communicate and coordinate across processes
to coordinate data access as much as possible. As this is
not always possible, it also takes advantage of DDN’s

IME hardware to transform random read and write access
to an IME middleware layer into contiguous access to
the Lustre layer. This maximizes throughput from the
ExSeisDat to IME, and then IME can reorder these accesses
to maximize throughput to the filesystem.

ExSeisDat contains two core libraries, ExSeisPIOL and
ExSeisFlow, that handle explicit file I/O and seismic
workflows respectively. It also contains auxiliary APIs to
handle communications between computational processes
and to handle error logging. While more complex MPI calls
are hidden within the two core libraries, the communication
auxiliary API provide calls to retrieve the number of pro-
cesses called by MPI and the rank of the current process.
These calls are simplifications of the MPI calls. The barrier
command wraps the MPI_Barrier call to force all processes
to wait until all processes call the command before contin-
uing, thus preventing premature data access by allowing
data synchronization. Additionally, the auxiliary layer
contains the error log that stores verbose MPI errors. Both
libraries are designed to work without any further tuning
to specific hardware by the end user, although this type
of tuning could further improve performance.

3.1 ExSeisPIOL

ExSeisPIOL is a low-level parallel I/O library that effi-
ciently handles file access, targeting SEG-Y and other
proprietary formats. The API is simple in abstraction,
where the end-user employs the API to directly extract
traces and parameters. Using ExSeisPIOL, the three
aspects of I/O left to the end-user are memory limits, data
selection, and decomposition of the data across the pro-
cesses. Internally, the API uses this information to leverage
MPI-I/O middleware to allow for efficient, multi-processor
access to the parallel file system.

The internal architecture of ExSeisPIOL, which under-
lies the API, consists of an I/O stack that allows for effec-
tive communication between storage and compute
processes. Each component layer of the library has a down-
ward dependency on lower layers that can be removed indi-
vidually from the topmost layer down to the bottom layer
while maintaining a library which can both be compiled
and used. These are split into the data layer, the object
layer, and the API layer.

The data layer is the lowest level API within the ExSeis-
PIOL and utilizes MPI-IO. Using the data layer, data on
the file system can be accessed by each process reading a
contiguous data block, even if a block overlaps. Alterna-
tively, it can be read and written as a collection of data
blocks of a fixed width which are separated by a fixed offset.
Each process may write a different number of data blocks.

The object layer directs which data is to be read, and
prepares data to be written by the data layer. It works on
the level of the file header, trace header, and trace data
which are then converted into a block description. The
object layer is separated from higher level layers so that
access pattern optimisations can be performed indepen-
dently from the packing operation used to fill the contents
of the objects. The object layer maps file and header fields
to their byte locations, allowing end users to call parameters
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by their names instead of their file location. The specific
details of SEG-Y file access are addressed in this layer.

The outward facing Parallel I/O Library (PIOL) API is
designed to simplify reading and writing of file headers,
trace headers, and traces. Each of these values is read or
written individually, allowing for only the necessary values
to aid in memory management. Parameters are read and
written through calling the name of the parameter (e.g.
xSrc, ySrc) from the object layer. Since deviations from
the standard SEG-Y file and trace header fields are com-
mon, ExSeisPIOL provides a framework for introducing
custom header data. End-users can be define new parame-
ters that overload the SEG-Y standard; they do not need
to refer to standard SEG-Y fields while referring to their
custom fields.

3.2 ExSeisFlow

ExSeisFlow leverages ExSeisPIOL to create parallel seismic
workflows. It implicitly handles all parallel I/O, internally
optimizing the memory limits, data, and data decomposi-
tion across MPI processes. Individual header values are
implicitly read and written, whereas in ExSeisPIOL, each
field must be explicitly written. End users are then able
to focus on operation driven development rather than any
I/O requirements.

Operations in ExSeisFlow target pre-stack preprocess-
ing and are categorized as trace, gather, or survey wide
operations. These designations indicate the level of commu-
nication required; trace wide operations require communi-
cation within individual traces or trace headers, gather
wide between all traces or trace headers in a gather, and
survey wide between all traces or trace headers in a survey.
Examples of trace wide operations include trace filtering
and trace muting, gather wide include performing gathers
and radon to angle transformations, and survey wide
include 4D binning and sorting. Multiple operations can
be called during a single workflow.

Within an ExSeisFlow workflow, all MPI processes are
initialized implicitly and I/O performed at the end of the
workflow. When an operation is called within an applica-
tion, it is entered into a queue. Only at the end of an appli-
cation, when an implicit destructor is called, any data
required for operations is read in and the operations are
performed.

Since ExSeisFlow is designed to work on large scale data
sets, the library takes special care to implicitly optimize
internal memory usage. A benefit of the operation queuing
system is that all data needed for the operations is known
before any I/O is performed. Therefore, only data that is
needed is read in during the operation.

Each operation specifies its the data type dependencies,
modification level, the modification dependencies, and the
communication is tagged when it is submitted to the oper-
ation queue. These tags describe the type of data accessed
(header data or trace values), how that data is modified
(traces added, traces deleted, trace values modified, trace
lengths modified, header values modified, or traces reor-
dered), modification dependencies (number of traces, order
of traces, value of traces, or value of trace header), and

the operation communication level (trace, single gather,
or survey). Using these tags, ExSeisFlow determines when
a metadata or trace value will change.

Operations are performed hierarchically based on the
modification dependencies and then communication tags.
Any operations with modification dependencies are per-
formed after any operations that modify that dependency.
In the communication hierarchy, trace wide operations are
performed first, followed by gather wide, then survey wide.

Throughout a workflow, trace and header data that will
be used by multiple operations is cached to prevent redun-
dant reads. When a trace or header value will not be mod-
ified by any subsequent operations, it is written to disk,
which minimizes the amount of data in memory. After all
modified data from all operations is written to disk, any
remaining header or trace data that was unmodified is read
in and written to the output file.

4 Benchmarking

The benchmarking of a parallel I/O library is strongly
dependant on the specific parallel storage system on which
the application is tested. The type of parallel file system,
number of OSTs, number and size of file stripes, and inter-
connect speed, which vary between individual systems, all
strongly affect the overall I/O time for an application
(Carns et al., 2011). Even though benchmarking numbers
vary from system to system, it does demonstrate the effects
of tuning the library to specific hardwares and the effects of
increasing the number of processes reading and writing on
overall I/O time.

ExSeisDat was benchmarked on DDN’s benchmarking
cluster with their Lustre PFS with IME both mounted
and unmounted. The file system consists of 40 OSTs with
14 TB of storage each. All files had a stripe size of 1 MB
and the MPI-I/O was optimized for Lustre access. Profiled
runs on the Lustre and Lustre+IME stacks were done using
4 nodes with 16 cores per node (and one process per core)
for 100 GiB, 500 GiB, 1 TB, 2 TB, 10 TB, and 20 TB
SEG-Y files. While the file size was varied, the number of
trace blocks was kept the same to ensure the benchmarks
focused on the I/O, rather than the compute time of the
sort algorithm itself.

The I/O was characterized using the profiler Darshan
(Carns et al., 2009), which tracks the various MPI and
POSIX based calls to provide an accurate picture of the
I/O-access patterns and I/O operations. The library wraps
MPI function calls with a set of user space libraries using
LD_PRELOAD that substitute I/O calls with its own
implementation; no modifications are made to the source
code. The overall overhead introduced is very low for small
files (less than a GB) and continues to decrease as file sizes
increase.

The library was benchmarked using the ExSeisFlow’s
sort utility, which sorts traces from an existing SEG-Y file
based on trace header data. The minimum amount of data
from each trace header is read in a distributed manner by
each process. This means the memory needed per process
for the entire sort is O (number of traces / number of
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processes). The actual sort algorithm is a variation of a par-
allel quicksort (Miller and Boxer, 2012). Each process sorts
its own header data, keeping track of each value’s original
position in the SEG-Y file. The processes then send the
lower half of it’s sorted values to the next lowest ranked
process, also receiving data from the next highest ranked
process. The data is sorted, and then the upper half of these
sorted values are sent to the next highest process. This is
repeated until the values are unchanged on all processes
for an iteration of the algorithm. In the worst case scenario
for this sort algorithm, for N trace data blocks and P
processes, each process performs O(N + (N/P) log(N/P))
operations with O(P) communications.

The sort utility is ideal for benchmarking the ExSeisDat
libraries due to its multiple I/O patterns. With the given
stripe size, individual traces are essentially contiguous reads
while all file and trace headers are read and written non-
contiguously. These varied read and write patterns best
showcase the power of ExSeisDat.

A sort program using ExSeisFlow API can be written
as:

int main() {

auto piol = ExSeis::New();

Setset(piol,‘‘input.segy’’,‘‘output.segy’’);

set.sort(type);

return 0;

}

It is worth noting the sort function is built into ExSeis-
Flow, so it is, perhaps, unsurprising the snippet is so short.
However, this is indicative of the simplicity of the ExSeis-
Flow interface, and the expressivity of programs using the
library over bespoke implementations.

5 Results

In order to show how ExSeisPIOL is ideal for use in existing
seismic codes with complex I/O the Kirchhoff migration
with a time-shift extended imaging condition used in
(O’Brien et al., 2017) was ported to use ExSeisPIOL for
its I/O back end. The statistics presented here are not
directly representative of the development effort, but they
represent a rough indication. The code consisted of 6.3
KLOC and 44% of all lines were related to I/O. The port
reduced the lines related to I/O by 25% and the overall code
base by 16%. I/O blocks replaced by ExSeisPIOL calls
included all MPI-I/O calls and the type conversions and
scaling of trace header data. It is worth noting that around
36% of all code commits made to the project during its
initial development were related to I/O handling and I/O
optimization, with the developers reporting they were
particularly tough to write. In absolute terms, the I/O
development and optimization took around 450 commits
while the porting to ExSeisPIOL took around 30. The run
times for the Kirchhoff/ExSeisPIOL application were
within 10% of the original, an expertly hand-optimized pro-
gram explicitly for the Kirchhoff migration algorithm.

Leveraging IME with Lustre demonstrates significant
improvement over the pure Lustre system (Fig. 2). There
is a 2.8· increase in read performance and an 86· increase

in write performance. As a result of the I/O speedup,
leveraging the IME hardware reduced the overall runtime
of the sort utility by around 27%. This reduction in runtime
is solely the result of using Lustre + IME versus a pure
Lustre filesystem; there is no speedup from the compute
portion of the sort utility. Notice that the decoupling of
I/O part from the compute fraction could be considered
as artificial in the case where computation and I/O can
be partially overlapped. The throughput rate, or the rate

Fig. 2. Hardware speedup (Lustre time/Lustre + IME time) of
read, write, and total runtime. The write speedup is steady
across all file sizes, whereas the read and overall runtime speedup
does decrease with larger files.

Fig. 3. Comparison of reading and writing throughput on the
Lustre filesystem and on a Lustre-backed IME filesystem for a
range of file sizes for the ExSeisFlow sort benchmark run on 32
cores. The throughput represents how quickly data can be
passed between the filesystem and the parallel program. The
Lustre + IME, as expected is faster than the pure Lustre system.
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in which a processes reads from or writes to disk, remains
stable for all file sizes (Fig. 3). On a Lustre system, reads
are faster than writes while the reverse is true on a
Lustre + IME system.

OnaLustrePFS, the application is I/Obound, averaging
73% of runtime being spent on reads and writes (Fig. 4). In
particular, 70% of the total runtime is spent on writes. How-
ever, for the Lustre + IME system, the I/O consumes less an
average of 8% of the runtime, making it compute bound.

6 Conclusion

The ExSeisDat project has produced a set highly performant
libraries, immediately useful for seismic data processing in
industry, and immediately usable by industry geophysicists.
The libraries can be used to port existing seismic analysis
code, like the Kirchhoff migration code, with significant
improvements to maintainability as well as portability on
new architectures and with execution times close to expertly
hand-optimized codes. This porting work is expected to
uncover a number of functionalities that will be useful to
include in ExSeisDat. Most importantly, ExSeisDat removes
obstacles for geoscience programmers, while delivering high
performance. ExSeisDat approach is comforted by other
effort toward shielding numericians from low level storage
architectural details (Roussel et al., 2017).

The benchmarking results presented here show that
ExSeisDat is well suited to parallel processing of large files,
up to 20 TB in this benchmark. In particular, the perfor-
mance achieved by a relatively small snippet of code is

remarkable. One goal of the ExSeisDat project is that most
common operations on seismic data files should require as
short a snippet as this, and achieve highly performant code.
As other seismic data files tend to be more coherent than
SEG-Y files, we expect the simplicity of code and perfor-
mance to remain at least at this level with the introduction
of new file formats to ExSeisDat. Unfortunately, since there
are no other existing parallel implementations of SEG-Y
I/O library, a direct and meaningful comparison of bench-
marks between ExSeisDat and other libraries could not be
included in this study.

While the ExSeisDat libraries do not necessarily require
any additional hardware tuning, it would likely further
increase I/O performance, and is worth further study. For
example, ExSeisDat could be used for managing I/O on a
cloud-based cluster, but would require further study to
identify optimal strategies for parallel I/O on systems with
their networking characteristics. However, jobs running on
a single node with many processors, reading from a local
disk should see the performance described in this paper.

Leveraging novel storage systems, like DDN’s IME,
further increases the I/O performance of ExSeisDat. In par-
ticular, IME greatly increases the throughput for non-
contiguous writes, which describes the write pattern for
many SEG-Y based processing algorithms. IME’s log-based
file system plays a significant role in that improvement,
essentially turning non-contiguous writes to contiguous
writes on its own disks, and further combines them into
even more contiguous writes to the Lustre filesystem, which
happens independent of the running application. The
speedup of less than 3· is expected; the increase is due solely
to the SSD hardware, which can read 2.7x to 3x faster than
an HDD. The transition of the sort application from I/O
bound to compute bound on Lustre versus Lustre+IME
presents the opportunity for any compute optimizations
(e.g. modifying the sort algorithm) to have a significant
impact; improving compute performance would have little
impact on the overall performance of I/O bound applica-
tions, common with very large data files. The 86· speedup
for Lustre + IME writes is very promising for future appli-
cations burst buffer technology to seismic data files.

In summary, ExSeisDat reduces development overhead
by shielding end-users from the details of the data layout,
without compromising on performance. This is illustrated
by our results on a modern storage architecture. We believe
that the combination of high-level libraries and smarter I/O
middlewares, as illustrated by ExSeisDat and IME, is a
more performance portable approach to HPC development
than heavily hand-tuned applications.
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