J. C. Sankey, Y. Cui, J. Z. Sun, J. C. Slonczewski, R. A. Buhrman et al., Measurement of the spin-transfertorque vector in magnetic tunnel junctions, Nat. Phys, vol.4, p.67, 2007.

J. S. Meena, M. S. Simon, C. Umesh, and T. Tseng, Overview of emerging nonvolatile memory technologies, Nanoscale Res. Lett, vol.9, p.526, 2014.
DOI : 10.1186/1556-276x-9-526

URL : https://nanoscalereslett.springeropen.com/track/pdf/10.1186/1556-276X-9-526

T. Silva and W. Rippard, Developments in nano-oscillators based upon spin-transfer point-contact devices, J. Magn. Magn. Mater, vol.320, p.1260, 2010.
DOI : 10.1016/j.jmmm.2007.12.022

K. Dumesnil and S. Andrieu, Molecular Beam Epitaxy: From Quantum Wells to Quantum Dots. From Research to Mass Production Chap 20: Epitaxial Magnetic Layers Grown by MBE: Model Systems to Study the Physics in Nanomagnetism and Spintronic, 2012.

M. T. Johnson, P. J. Bloemen, F. J. Broeder, and J. J. De-vries, Magnetic anisotropy in metallic multilayers, Rep. Prog. Phys, vol.59, p.1409, 1996.
DOI : 10.1088/0034-4885/59/11/002

G. Andersson, T. Burkert, P. Warnicke, M. Björck, B. Sanyal et al., Perpendicular Magnetocrystalline Anisotropy in Tetrago-nally Distorted Fe-Co Alloys, Phys. Rev. Lett, vol.96, p.37205, 2006.
DOI : 10.1103/physrevlett.96.037205

URL : http://uu.diva-portal.org/smash/get/diva2:103158/FULLTEXT01

S. Ouazi, S. Vlaic, S. Rusponi, G. Moulas, P. Buluschek et al., Atomic-scale engineering of magnetic anisotropy of nanostructures through interfaces and interlines, Nat. Commun, vol.3, p.1313, 2012.

A. Rajanikanth, S. Kasai, N. Ohshima, and K. Ohno, Spin polarization of currents in Co/Pt multilayer and Co-Pt alloy thin films, Appl. Phys. Lett, vol.97, p.22505, 2010.
DOI : 10.1063/1.3460910

Y. Sakuraba, M. Hattori, M. Oogane, Y. Ando, H. Kato et al., Giant tunneling magnetoresistance in Co 2 Mn Si/Al-O/Co 2 MnSi magnetic tunnel junctions, Appl. Phys. Lett, vol.88, p.192508, 2006.
DOI : 10.1063/1.2202724

T. Marukame, T. Ishikawa, K. Matsuda, T. Uemura, and M. Yamamoto, High tunnel magnetoresistance in fully epitaxial magnetic tunnel junctions with a full-Heusler alloy Co 2 Cr 0.6 Fe 0.4 Al thin film, Appl. Phys. Lett, vol.88, p.262503, 2006.
DOI : 10.1063/1.2217166

URL : https://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/50607/3/APL88_262503.pdf

N. Tezuka, N. Ikeda, S. Sugimoto, and K. Inomata, 175% tunnel magnetoresistance at room temperature & high thermal stability using Co 2 FeAl 0.5 Si 0.5 full-Heusler alloy electrodes, Appl. Phys. Lett, vol.89, p.252508, 2006.
DOI : 10.1063/1.2420793

S. Andrieu, A. Neggache, T. Hauet, T. Devolder, A. Hallal et al., Direct evidence for minority spin gap in the Co 2 MnSi Heusler compound, Phys. Rev. B, vol.93, p.94417, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01345405

B. Pradines, R. Arras, I. Abdallah, N. Biziere, and L. Calmels, First-principles calculation of the effects of partial alloy disorder on the static and dynamic magnetic properties of Co 2 MnSi, Phys. Rev. B, vol.95, p.94425, 2017.

L. You, R. C. Sousa, S. Bandiera, B. Rodmacq, and B. Dieny, Co/Ni multilayers with perpendicular anisotropy for spintronic device applications, Appl. Phys. Lett, vol.100, p.172411, 2012.
DOI : 10.1063/1.4704184

M. Gottwald, S. Andrieu, F. Gimbert, E. Shipton, L. Calmels et al., Co/Ni(111) superlattices studied by microscopy, X-ray absorption and ab-initio calculations, Phys. Rev. B, vol.86, p.14425, 2012.
DOI : 10.1103/physrevb.86.014425

URL : https://hal.archives-ouvertes.fr/hal-01345394

M. T. Johnson, J. J. De-vries, N. W. Mcgee, J. De-stegge, and F. J. Broeder, Orientational Dependence of the Interface Magnetic Anisotropy in Epitaxial Ni/Co/Ni, Phys. Rev. Lett, vol.69, p.3575, 1992.

Y. B. Zhang, J. A. Woollam, Z. S. Shan, J. X. Shen, and D. J. Sellmyer, Anisotropy and magneto-optical properties of sputtered Co/Ni multilayer thin films, IEEE Trans. Magn, vol.30, p.4440, 1994.
DOI : 10.1109/20.334113

URL : http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1102&context=physicssellmyer

S. Girod, M. Gottwald, S. Andrieu, S. Mangin, J. Mccord et al., Strong perpendicular magnetic anisotropy in Ni/Co(111) single crystal superlattices, Appl. Phys. Lett, vol.94, p.262504, 2009.
DOI : 10.1063/1.3160541

J. M. Shaw, H. T. Nembach, and T. J. Silva, Measurement of orbital asymmetry and strain in Co 90 Fe 10 /Ni multilayers and alloys: Origins of perpendicular anisotropy, Phys. Rev. B, vol.87, p.54416, 2013.

G. H. Daalderop, P. J. Kelly, and F. J. Broeder, Prediction and Confirmation of Perpendicular Magnetic Anisotropy in Co/Ni Multilayers, Phys. Rev. Lett, vol.68, p.682, 1992.

K. Kyuno, J. G. Ha, R. Yamamoto, and S. Asano, Perpendicular magnetic anisotropy of metallic multilayers composed of magnetic layers only/ Ni/Co and Ni/Fe multilayers, Jpn. J. Appl. Phys, vol.35, p.2774, 1996.

F. Gimbert and L. Calmels, First-principles investigation of the magnetic anisotropy and magnetic properties of Co/Ni(111) superlattices, Phys. Rev. B, vol.86, p.184407, 2012.

J. Beaujour, W. Chen, K. Krycka, C. Kao, J. Z. Sun et al., Ferromagnetic resonance study of sputtered Co|Ni multilayers, Eur. Phys. J. B, vol.59, p.475, 2007.

W. Chen, J. L. Beaujour, G. , and A. D. Kent, Spin-torque driven ferromagnetic resonance of Co/Ni synthetic layers in spin valves, Appl. Phys. Lett, vol.92, p.12507, 2008.

T. Seki, J. Shimada, S. Iihama, M. Tsujikawa, T. Koganezawa et al., Magnetic anisotropy and damping for monolayercontrolled Co|Ni epitaxial multilayer, J. Phys. Soc. Jpn, vol.86, p.74710, 2017.

S. Mangin, D. Ravelosona, J. A. Katine, M. J. Carey, B. D. Terris et al., Current-induced magnetization reversal in nanopillars with perpendicular anisotropy, Nat. Mater, vol.5, p.210, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02104697

S. Mangin, Y. Henry, D. Raveloson, J. A. Katine, and E. E. Fullerton, Reducing the critical current for spin-transfer switching of perpendicularly magnetized nanomagnets, Appl. Phys. Lett, vol.94, p.12502, 2009.

D. P. Bernstein, B. Bräuer, R. Kukreja, J. Stöhr, T. Hauet et al., Nonuniform switching of the perpendicular magnetization in a spin-torque-driven magnetic nanopillar, Phys. Rev. B, vol.83, p.180410, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01345380

H. Tanigawa, T. Koyama, G. Yamada, D. Chiba, S. Kasai et al., Domain wall motion induced by electric current in a perpendicularly magnetized Co/Ni nano-wire, Appl. Phys. Express, vol.2, p.53002, 2009.

K. Ueda, T. Koyoma, R. Hiramatsu, D. Chiba, S. Fukami et al., Temperature dependence of carrier spin polarization determined from current-induced domain wall motion in a Co/Ni nanowire, Appl. Phys. Lett, vol.100, p.202407, 2012.

S. Legal, N. Vernier, F. Montaigne, M. Gottwald, D. Lacour et al.,

. Hauet, Thermally activated domain wall motion in [Co/Ni](111) superlattices with perpendicular magnetic anisotropy, Appl. Phys. Lett, vol.106, p.62406, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01260458

S. L. Gall, N. Vernier, F. Montaigne, A. Thiaville, J. Sampaio et al., Effect of spin transfer torque on domain wall motion regimes in [Co/Ni] superlattice wires, Phys. Rev. B, vol.95, p.184419, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01525873

F. Gimbert, L. Calmels, and S. Andrieu, Localized electron states & spin polarization in Co/Ni(111) overlayers, Phys. Rev. B, vol.84, p.94432, 2011.

. Ia, C. Lytvynenko, S. Deranlot, T. Andrieu, and . Hauet, Magnetic tunnel junctions using Co/Ni multilayer electrodes with perpendicular magnetic anisotropy, J. Appl. Phys, vol.117, p.53906, 2015.

M. Arora, R. Hübner, D. Suess, B. Heinrich, and E. Girt, Origin or perpendicular magnetic anisotropy in Co/Ni multilayers, Phys. Rev. B, vol.96, p.24401, 2017.

P. Bruno, Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers, Phys. Rev. B, vol.39, p.865, 1989.

S. Andrieu, L. Calmels, T. Hauet, F. Bonell, P. L. Fevre et al., Spectroscopic & transport studies of Co x Fe 1?x /MgO based MTJs, Phys. Rev. B, vol.90, p.214406, 2014.

Y. Kamada, H. Kasai, T. Kingetsu, and M. Yamamoto, Structure & magnetic properties of Au/Ni/Ag & Ag/Ni/Au superlattices, vol.23, p.581, 1999.

J. Stöhr and H. König, Determination of Spin-and OrbitalMoment Anisotropies in Transition Metals by Angle-Dependent X-Ray Magnetic Circular Dichroism, Phys. Rev. Lett, vol.75, p.3748, 1995.

P. Ohresser, E. Otero, F. Choueikani, K. Chen, S. Stanescu et al., DEIMOS: A beamline dedicated to dichroism measurements in the 350-2500 eV energy range, Rev. Sci. Instrum, vol.85, p.13106, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01088125

L. Joly, E. Otero, F. Choueikani, F. Marteau, L. Chapuis et al., Fast continuous energy scan with dynamic coupling of the monochromator and undulator at the DEIMOS beamline, J. Synchrotron Radiat, vol.21, p.502, 2014.

F. Wilhelm, P. Poulopoulos, P. Srivastava, H. Wende, M. Farle et al.,

J. Grange, G. Kappler, N. B. Ghiringhelli, and . Brookes, Magnetic anisotropy energy and the anisotropy of the orbital moment of Ni in Ni/Pt multilayers, Phys. Rev. B, vol.61, p.8647, 2000.

R. Nakajima, J. Stohr, and Y. U. Idzerda, Electron-yield saturation effects in L-edge x-ray magnetic circular dichroism spectra of Fe, Co, and Ni, Phys. Rev. B, vol.59, p.6421, 1999.

M. Sicot, S. Andrieu, F. Bertran, and F. Fortuna, Electronic properties of Fe, Co, and Mn ultrathin films at the interface with MgO(001), Phys. Rev. B, vol.72, p.144414, 2005.

G. Van-der-laan, Microscopic origin of magneto-crystalline anisotropy in transition metal thin films, J. Phys.: Condens. Matter, vol.10, p.3239, 1998.

H. A. Dürr and G. Van-der-laan, Magnetic circular x-ray dichroism in transverse geometry: Importance of noncollinear ground state moments, Phys. Rev. B, vol.54, p.760, 1996.

D. Weller, J. Stohr, R. Nakajima, A. Carl, M. G. Samant et al., Microscopic Origin of Magnetic Anisotropy in Au/Co/Au Probed with X-Ray Magnetic Circular Dichroism, Phys. Rev. Lett, vol.75, p.3752, 1995.

R. Feidenhans, Surface structure determination by X-ray diffraction, Surf. Sci. Rep, vol.10, p.105, 1989.

I. K. Robinson, Surface Crystallography, Handbook on Synchrotron Radiation Chap, vol.7, 1991.

G. Renaud, Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering, Surf. Sci. Rep, vol.32, p.1, 1998.

E. Vlieg, ROD, a program for surface X-ray crystallography, J. Appl. Crystallogr, vol.33, p.401, 2000.

J. Wan, Y. L. Fan, D. W. Gong, S. G. Shen, and X. Q. Fan, Surface relaxation and stress of fcc metals, Modell. Simul. Mater. Sci. Eng, vol.7, p.189, 1999.

P. Blaha, K. Schwarz, P. Sorentin, and S. B. Trickey, Fullpotential, linearized augmented plane wave programs for crystalline systems, Comput. Phys. Commun, vol.59, p.399, 1990.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, vol.77, p.3865, 1996.