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Abstract
We are interested in obtaining error bounds for the classical Cooley-

Tukey FFT algorithm in floating-point arithmetic, for the 2-norm as well
as for the infinity norm. For that purpose we also give some results on the
relative error of the complex multiplication by a root of unity, and on the
largest value that can take the real or imaginary part of one term of the
FFT of a vector 𝑥, assuming that all terms of 𝑥 have real and imaginary
parts less than some value 𝑏.

1 Introduction and notation
The Fast Fourier Transform was introduced in 1965 by Cooley and Tukey in its
modern form [4, 5, 22], but can be traced back to Gauss [7]. It is widely used in
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digital signal processing [14]. It also plays a central role in fast multiple-precision
arithmetic, since it lies at the heart of some of the most efficient big polynomial
and big integer multiplication algorithms [20, 13]. Several studies have been
devoted to the accuracy of Fast Fourier Transforms and fast algorithms for
related transforms such as the DCT [17, 8, 19, 21, 9, 15, 16].

The Discrete Fourier Transform (DFT) 𝑍 = (𝑍0, 𝑍1, . . . , 𝑍𝑁−1) of 𝑧 =
(𝑧0, 𝑧1, . . . , 𝑧𝑁−1) ∈ C𝑁 is (𝐹𝜔𝑧

𝑡)𝑡, where

𝐹𝜔 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 𝜔 𝜔2 · · · 𝜔𝑁−1

1 𝜔2 𝜔4 · · · 𝜔2(𝑁−1)

...
...

...
...

...
1 𝜔𝑗 𝜔2𝑗 · · · 𝜔𝑗(𝑁−1)

...
...

...
...

...
1 𝜔𝑁−1 𝜔2(𝑁−1) · · · 𝜔(𝑁−1)(𝑁−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and 𝜔 = 𝑒−2𝑖𝜋/𝑁 . Note that some authors use the matrix (1/

√
𝑁) ·𝐹𝜔 (in order

to make the DFT a unitary transformation). In this paper, we will consider
the radix-2 FFT algorithm, and we will assume that 𝑁 = 2𝑛 is a power of
2. More precisely we will assume that the algorithm being implemented is
the one described in pseudocode in Fig. 1, and illustrated, in the case 𝑁 = 8
by Fig. 2. The presentation of the Algorithm in Fig. 1 aims at clarity and
simplicity: in practice one will seldom implement FFT as presented in that
figure, if only to have in-place calculation and consequently save memory, or to
parallelize/vectorize the computation. However, if the dependency graph of the
operations remains unchanged, our analyses remain valid.
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/* Radix-2 FFT Algorithm */
/* We assume the values omega[k,j] = exp(-i*j*pi/2ˆ(k-1))

are precomputed and stored, and reverse(n,j) is the n-bit
number whose binary representation is the mirror image of
the n-bit representation of j */

Function reverse(n,j)
return

∑︀n−1
k=0

(︀
(j&(2n − 1) ≫ k) mod 2

)︀
≪ (n− 1 − k)

end
Function OneStep(x,k,n)

N = 2n;
block_size = 2k;
N_blocks = N/block_size ; /* Number of independent
order-2ˆk FFTs */

for block_number from 0 to N_blocks− 1 do
first_index = block_number · block_size;
for j from 0 to block_size/2 − 1 do

j1 = j + first_index;
j2 = j1 + block_size/2;
y[j1] = x[j1] + omega[k,j] · x[j2];
y[j2] = x[j1]− omega[k,j] · x[j2];

end
return y

end
end
Function FFT(x, n)

N = 2n;
for j from 0 to N− 1 do

y[j] = x[reverse(n,j)];
end
for k from 1 to n do

y = OneStep(y,k,n);
end
return y

end

Figure 1: Pseudocode for the radix-2 FFT algorithm.
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Figure 2: The various computations performed during an 8-point FFT. The
first step can be viewed as 4 independent 2-point FFTs, and the first two steps
constitute two independent 4-point FFTs.

We assume that we use a radix-2, precision-𝑝, floating-point arithmetic with
unbounded exponent range (which implies that the results presented in the
paper hold in “real life” floating-point arithmetic provided that overflows and
underflows do not occur). If 𝑥 ∈ R, define RN(𝑥) as 𝑥 rounded to nearest.
This is the default rounding mode in IEEE 754 arithmetic [10], so that when
the instruction c = a*b appears in a program, what is effectively computed is
𝑐 = RN(𝑎𝑏). We have, for 𝑥 ̸= 0

|𝑥− RN(𝑥)|
|𝑥|

6
𝑢

1 + 𝑢
< 𝑢, (1)

where 𝑢 = 2−𝑝 is called the rounding unit. We also have

|𝑥− RN(𝑥)| 6 1

2
ulp(𝑥), (2)

where the ulp function (ulp is an acronym for unit in the last place) is defined
as

ulp(𝑥) =

{︂
0 if 𝑥 = 0,
2⌊log2 |𝑥|⌋−𝑝+1 otherwise.
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One easily notices that if ulp(𝑥) · 2𝑝−1 6 |𝑥| 6 ulp(𝑥) ·
(︀
2𝑝−1 + 1/4

)︀
, then

RN(𝑥) = ulp(𝑥) · 2𝑝−1, and |𝑥 − RN(𝑥)| 6 1
4ulp(𝑥). This leads us to the

definition of another “ulp” function:

ulp*(𝑥) =

{︂
ulp(𝑥) if |𝑥| >

(︀
2𝑝−1 + 1

4

)︀
· ulp(𝑥),

1
2ulp(𝑥) otherwise,

for which we also have |𝑥−RN(𝑥)| 6 1
2ulp*(𝑥). Of course, ulp* is almost always

equal to ulp, but in the iterative algorithm of Section 5, where we manipulate
values that are frequently just above a power of 2, using ulp* instead of ulp
makes a non-negligible difference.

In Section 5 we will also use the notation RZ(𝑥) for 𝑥 rounded towards
zero. Functions RN (for all inputs) and RZ (for positive inputs) are increasing
functions: if 0 6 𝑡1 6 𝑡2 then RZ(𝑡1) 6 RZ(𝑡2) and RN(𝑡1) 6 RN(𝑡2). Note that
ulp(𝑥) and ulp*(𝑥) are increasing functions of |𝑥|. Hence, if we know a bound
𝐵 on |𝑥|, we can deduce a bound (1/2)ulp*(𝐵) 6 (1/2)ulp(𝐵) on |RN(𝑥) − 𝑥|.

If 𝑧 = (𝑧0, 𝑧1, . . . , 𝑧𝑁−1) ∈ C𝑁 , we will use the standard notations

‖𝑧‖2 =
√︀

|𝑧0|2 + |𝑧1|2 + · · · + |𝑧𝑁−1|2 (2-norm)

and
‖𝑧‖∞ = max

𝑖=0,...,𝑁−1
|𝑧𝑖| (infinity norm).

We will also use the following notation:

‖𝑧‖⊥∞ = max
𝑖=0,...,𝑁−1

{max (|ℜ(𝑧𝑖)|, |ℑ(𝑧𝑖)|)} .

We remind the classical inequalities

‖𝑧‖∞ 6 ‖𝑧‖2 6
√
𝑁 · ‖𝑧‖∞, (3)

‖𝑧‖⊥∞ 6 ‖𝑧‖∞ 6
√

2 · ‖𝑧‖⊥∞. (4)

Choosing which norm should be used for expressing bounds on numerical
errors depends much on the problem being dealt with. For expressing the error
of the FFT, and assuming 𝑧 is the input, 𝑍 is the exact result and 𝑍 is the
computed result, most authors give a bound on

‖𝑍 − 𝑍‖2
‖𝑍‖2

,

also called root mean square (RMS) relative error. The reason is twofold: first,
the 2-norm appears naturally in many signal processing applications, and sec-
ond, the well-known relation ‖𝑍‖2 =

√
𝑁 · ‖𝑧‖2 makes error bounds in terms of

2-norm easier to obtain than error bounds in terms of infinity norms. However,
for applications such as the multiplication of big integers (or large polynomials
with integer coefficients), we know that the components of the final “exact”,
theoretical, result of a calculation must be integers. We wish to retrieve these
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integers by rounding to the nearest integer the coefficients of the actually com-
puted result. For this strategy to work properly, we must be certain that these
coefficients are within distance less than 1/2 from the exact value: in such a
case, we need a bound on ‖𝑍 − 𝑍‖⊥∞, given a bound on ‖𝑧‖⊥∞.

The set of the floating-point numbers is invariant through a multiplication
by a power of 2, and if 𝑡 = 2𝑘𝑥 then RN(𝑡) = 2𝑘RN(𝑥). A consequence of this
is that if 𝑍 is the exact DFT of 𝑧, and if 𝑍 is the computed value of that DFT
using the FFT algorithm in floating-point arithmetic, then if we compute with
the same algorithm the DFT of 2𝑘𝑧, we will obtain 2𝑘𝑍, so that the relative
error will be the same. Therefore, if we wish to bound the relative error of the
FFT algorithm, it suffices to focus (for instance) on input values 𝑧 such that
1/2 6 ‖𝑧‖⊥∞ < 1.

Let us now consider error bounds proposed in the literature. We start with
the results based on the 2-norm.

Just one year after the publication of the seminal paper [4], Gentleman and
Sande [6] gave the following result (adapted here to radix-2 FFT and correctly
rounded floating-point arithmetic)

Theorem 1 ([6]). Assume radix-2, precision-𝑝 arithmetic, with rounding unit
𝑢 = 2−𝑝. Let 𝑍 be the computed 2𝑛-point FFT of 𝑧 ∈ C2𝑛 , and let 𝑍 be the
exact value. Then

‖𝑍 − 𝑍‖2
‖𝑍‖2

6 8.48 · 𝑛 · 2𝑛/2 · 𝑢 + 𝒪(𝑢2).

Again adapted to the modern context of correctly rounded arithmetic, and
assuming that the real and imaginary parts of the roots of unity are rounded to
nearest (i.e. setting the parameter 𝛾 of [17] to 1/2) , Theorem 1 of [17] gives

Theorem 2 ([17]). Assume radix-2, precision-𝑝 arithmetic, with rounding unit
𝑢 = 2−𝑝. Let 𝑍 be the computed 2𝑛-point FFT of 𝑧 ∈ C2𝑛 , and let 𝑍 be the
exact value. Then

‖𝑍 − 𝑍‖2
‖𝑍‖2

6
[︁
𝑛 · (4 +

√
2) − 4

]︁
· 𝑢 + 𝒪(𝑢2).

In his book [9], Higham proves the following result.

Theorem 3 ([9]). Assume radix-2, precision-𝑝 arithmetic, with rounding unit
𝑢 = 2−𝑝. Assume the roots of unity used in the algorithm are known with error
less than or equal to 𝜇. Let 𝑍 be the computed 2𝑛-point FFT of 𝑧 ∈ C2𝑛 , and
let 𝑍 be the exact value. Then

‖𝑍 − 𝑍‖2
‖𝑍‖2

6
𝑛𝜂

1 − 𝑛𝜂
,

where
𝜂 = 𝜇 +

4𝑢

1 − 4𝑢
·
(︁√

2 + 𝜇
)︁
.
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After having proved that the relative error of the naive complex multiplica-
tion algorithm is bounded by

√
5 ·𝑢, Percival [15] deduces the following theorem.

The proof of the bound
√

5 · 𝑢 in [15] turned out to be slightly incorrect: see [2]
for a complete proof.

Theorem 4 ([15]). Assume radix-2, precision-𝑝 arithmetic, with rounding unit
𝑢 = 2−𝑝. Assume the roots of unity used in the algorithm are known with error
less than or equal to 𝜇. Let 𝑍 be the computed 2𝑛-point FFT of 𝑧 ∈ C2𝑛 , and
let 𝑍 be the exact value. Then

‖𝑍 − 𝑍‖2
‖𝑍‖2

6 (1 + 𝑢)𝑛 · (1 + 𝑢
√

5)𝑛 · (1 + 𝜇)𝑛 − 1.

Calvetti [3] and Schatzman [19] take a different approach to the roundoff
error analysis of the FFT. They try to estimate the statistical distribution of
the error on the result. They end up with an error that grows like

√
𝑛. We will

not consider that approach here, because we want to obtain sure error bounds.
Tasche and Zeuner [21] perform a worst and average case error analysis of

the FFT. From Theorem 4.1 of their paper, one can deduce

Theorem 5 ([21]). Assume radix-2, precision-𝑝 arithmetic, with rounding unit
𝑢 = 2−𝑝. Assume that the roots of unity are precomputed (with rounded to
nearest real and imaginary parts) and that the relative error of complex multi-
plication is bounded by 𝜌× . Let 𝑍 be the computed 2𝑛-point FFT of 𝑧 ∈ C2𝑛 ,
and let 𝑍 be the exact value. Then

‖𝑍 − 𝑍‖2
‖𝑍‖2

6

(︃
(𝑛− 2) ·

√
2

2
+ 𝑛

)︃
· 𝑢 + 𝑛 · 𝜌× + 𝒪(𝑢2).

Assuming 𝑛 ≪ 1/𝑢 (which always holds in practice), and assuming that the
real and imaginary parts of the roots of unity are rounded to nearest, the bound
given by Theorem 2 is around (6.41 · 𝑛− 5) · 𝑢, the bound given by Theorem 3
is around 6.36 · 𝑛 · 𝑢, the bound given by Theorem 4 is around 3.94 · 𝑛 · 𝑢, and
(assuming complex multiplication is performed using (11), see Section 2.2), the
bound given by Theorem 5 is around 3.71 · 𝑛 · 𝑢.

Of course, from bounds involving the 2-norm, one can deduce bounds in-
volving the other norms, using (3) and (4). For instance, from

‖𝑍 − 𝑍‖2
‖𝑍‖2

6 𝐵, (5)

one can deduce
‖𝑍 − 𝑍‖∞
‖𝑍‖∞

6 𝐵
√
𝑁, (6)

or
‖𝑍 − 𝑍‖⊥∞ 6 𝐵 ·𝑁 ·

√
2 · ‖𝑧‖⊥∞. (7)
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The bounds (6) and (7) are the best that one can deduce from (5). However,
they are not necessarily the best that one can deduce from a direct analysis of
the algorithm in terms of infinity norms.

Henrici [8, Page 14] gives an analysis based on the infinity norm. He shows
the following result.

Theorem 6. (Theorem 13.1c of [8]) Assume radix-2, precision-𝑝 arithmetic,
with rounding unit 𝑢 = 2−𝑝. Assume that the roots of unity used in the algorithm
are known with error less than or equal to 𝜇, and that the complex arithmetic
operations are performed with relative error bounded by the same constant 𝜇.
Let 𝑍 be the computed 2𝑛-point FFT of 𝑧 ∈ C2𝑛 , and let 𝑍 be the exact value.
Then

‖𝑍 − 𝑍‖∞ 6 2𝑛 · (2𝑛 + 1) · 𝜇 · ‖𝑧‖∞ + 𝒪(𝑢2).

From Eq. (7) of [23] one can show that if the relative error of complex
multiplication is bounded by 𝜌× then

‖𝑍 − 𝑍‖∞ 6 2𝑛 · (𝜌× + 2𝑢) · 𝑛 · ‖𝑧‖∞ + 𝒪(𝑢2).

If 𝜌× = 2𝑢 (which is the case if complex multiplication is performed using (11),
see Section 2.2), this gives essentially the same bound as Theorem 6.

For several recent reasons, it is worth reexamining the problem of finding
tight error bounds on the computation of Fast Fourier Transforms in floating-
point arithmetic:

∙ first, before Percival’s paper [15], the relative error bound
√

5 · 𝑢 on the
naive complex multiplication algorithm was not known;

∙ the FMA (Fused Multiply-Add) instruction, which evaluates expressions of
the form 𝑎𝑏+𝑐 with one rounding only, is now widespread: it is specified by
the IEEE-754 Standard on Floating-Point Arithmetic [10], and available
in all recent general purpose processors of commercial significance. It was
recently shown [11] that with an FMA, the relative error bound on the
complex multiplication becomes 2𝑢;

∙ when implementing the multiplications by roots of unity that occur in the
FFT, we approximate “exact” multiplications 𝜔 · 𝑧 by “rounded” multi-
plications of 𝜔̂ by 𝑧, where 𝜔̂ approximates 𝜔, and 𝑧 is a number whose
real and imaginary parts are floating-point numbers. Most analyses use a
global error bound on these approximations: this simplifies the study and
makes it possible to express the error bound on the FFT as a simple ex-
pression. However, the approximation error of the multiplication depends
much on 𝜔 (it is even rather frequently null: values 𝜔 = ±1,±𝑖 are not
so rare), and since the values of 𝜔 are known in advance, one can try to
obtain better, if less simple and elegant, error bounds.

The sequel of the paper is organized as follows. We first bound the relative
error that can occur when multiplying a complex number by a root of unity in
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floating-point arithmetic. These results are used to analyze Step 𝑘 of the FFT
algorithm in Section 3.1 (similarly to what Percival did in [15], but slightly more
accurately and with more details). Then, we derive a relative error bound (for
the 2-norm) of the FFT algorithm in Section 3.2. To be able to use (1) or (2) to
bound the error of the floating-point operations, we need to bound, as tightly
as possible, the largest value that a variable can take at Step 𝑘 of the FFT
algorithm. This is done in Section 4.

Finally, Section 5 gives an iterative algorithm that provides an error bound
in terms of the ‖·‖⊥∞ norm, which is sometimes tighter than what one could
deduce from the known bounds in terms of the 2-norm and (7).

2 Relative error of the multiplication of a com-
plex number by a root of unity

In this section, we try to bound as tightly as possible the error resulting from
approximating 𝜔𝑧 by an adequately chosen multiplication algorithm 𝐴𝑙𝑔 applied
to 𝜔̂ and 𝑧. Here, 𝜔 is a root of unity, 𝑧 is a complex number whose real and
imaginary parts are floating-point numbers, and 𝜔̂ = RN(ℜ(𝜔)) + 𝑖 ·RN(ℑ(𝜔)).
Let us first consider the error resulting from the approximation of 𝜔 by 𝜔̂.

2.1 Relative error of the approximation of a complex num-
ber in floating-point arithmetic

2.1.1 Case of an arbitrary complex number

Let 𝑧 ∈ C, 𝑧 = 𝑥 + 𝑖𝑦, with 𝑥, 𝑦 ∈ R. The complex number 𝑧 is approximated
by 𝑧 = 𝑥̂ + 𝑖𝑦, with 𝑥̂ = RN(𝑥) and 𝑦 = RN(𝑦). We will denote 𝑧 = RN(𝑧).
The componentwise relative error committed when approximating 𝑧 by 𝑧 is

max

{︂⃒⃒⃒⃒
𝑥− 𝑥̂

𝑥

⃒⃒⃒⃒
,

⃒⃒⃒⃒
𝑦 − 𝑦

𝑦

⃒⃒⃒⃒}︂
6

𝑢

1 + 𝑢
< 𝑢.

The normwise error committed when approximating 𝑧 by 𝑧 is⃒⃒⃒⃒
𝑧 − 𝑧

𝑧

⃒⃒⃒⃒
6

𝑢

1 + 𝑢
< 𝑢. (8)

2.1.2 Case of a root of unity

The bound (8) can be significantly improved when the absolute value of 𝑧 is 1
(which is the case when 𝑧 is a root of unity). In such a case, since |𝑥| and |𝑦|
are less than or equal to 1, we have |𝑥− 𝑥̂| 6 𝑢/2 and |𝑦 − 𝑦| 6 𝑢/2, so that⃒⃒⃒⃒

𝑧 − 𝑧

𝑧

⃒⃒⃒⃒2
=

(𝑥− 𝑥̂)2 + (𝑦 − 𝑦)2

1
6

𝑢2

2
,
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so that ⃒⃒⃒⃒
𝑧 − 𝑧

𝑧

⃒⃒⃒⃒
6

𝑢√
2
. (9)

Of course, one should not forget that the 2𝑛𝑑 and 4𝑡ℎ roots of 1 are exactly
represented in floating-point arithmetic.

For a given floating-point format (i.e., a given precision 𝑝) and a given 𝑁 ,
one can also compute in advance the largest relative error attained when ap-
proximating an 𝑁 𝑡ℎ root of unity. In several cases (especially when 𝑁 is not
too large), this leads to bounds significantly smaller than (9). For instance, if
𝑁 = 128, in single-precision/binary32 arithmetic (i.e., 𝑝 = 24), the largest rela-
tive error is 0.500 · 𝑢, which is significantly smaller than (

√
2/2) · 𝑢 ≈ 0.707 · 𝑢.

Examples are given in Table 1. Table 1 was calculated using very large precision,
with careful control of the error, in Maple.

Table 1: Largest relative error attained when approximating an 𝑁 𝑡ℎ root of
unity in precision-𝑝, binary, floating-point arithmetic. All errors in this table
have been rounded up.

𝑁 2 or 4 8 16 32 128 2048 32768

𝑝 = 24 0 0.288 · 𝑢 0.487 · 𝑢 0.500 · 𝑢 0.500 · 𝑢 0.633 · 𝑢 0.707 · 𝑢
𝑝 = 53 0 0.616 · 𝑢 0.616 · 𝑢 0.616 · 𝑢 0.616 · 𝑢 0.641 · 𝑢 0.697 · 𝑢
𝑝 = 113 0 0.692 · 𝑢 0.692 · 𝑢 0.692 · 𝑢 0.692 · 𝑢 0.692 · 𝑢 0.692 · 𝑢

In the following, ∆𝑧 is a bound on the relative error committed when ap-
proximating 𝑧 by 𝑧 = RN(ℜ(𝑧)) + 𝑖RN(ℑ(𝑧)).

2.2 Multiplication of a complex number by a root of unity
Normwise relative error bounds on complex multiplication have been derived by
Brent et al. [2] for the “naive” algorithm (10), and by Jeannerod et al. [11] as-
suming an FMA instruction is available, i.e., using (11) or one of the algorithms
derived from (11) using symmetries. Let 𝑎 + 𝑖𝑏 be a complex number, with 𝑎,
𝑏 floating-point numbers. We wish to evaluate 𝑧 = 𝑥 + 𝑖𝑦 = (𝑎 + 𝑖𝑏) · 𝜔, where
𝜔 = 𝑐 + 𝑖𝑠 is a root of unity. Since, in general, 𝑐 and 𝑠 are not floating-point
numbers, they are approximated by 𝑐 = RN(𝑐) and 𝑠 = RN(𝑠). The normwise
relative error due to that approximation has been studied in Section 2.1.

Let 𝑧 = 𝑥̂ + 𝑖𝑦 be the computed product. We consider two cases.

∙ Naive multiplication{︂
𝑥̂ = RN(RN(𝑎𝑐) − RN(𝑏𝑠)),
𝑦 = RN(RN(𝑎𝑠) + RN(𝑏𝑐)).

(10)
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∙ Multiplication with an FMA{︂
𝑥̂ = RN(𝑎𝑐− RN(𝑏𝑠)),
𝑦 = RN(𝑎𝑠 + RN(𝑏𝑐)).

(11)

Define 𝑧* = (𝑎 + 𝑖𝑏)𝜔̂, with 𝜔̂ = 𝑐 + 𝑖𝑠. If the naive multiplication is used
then |𝑧 − 𝑧*| 6 𝑢

√
5 · |𝑧*| (see [2]), and if multiplication with FMA is used

then |𝑧 − 𝑧*| 6 2𝑢 · |𝑧*| (see [11]). Note that (11) is interesting only when
we want to minimize normwise errors (which is the case here). If one wishes to
minimize componentwise relative errors (the componentwise relative error is the
maximum of the relative error on the real part of the product and the relative
error on the imaginary part), there are better solutions (especially if an FMA
instruction is available), based on Kahan’s algorithm for evaluating expressions
of the form 𝑎𝑐− 𝑏𝑑 [11, 12]. In the following, let us define

𝜌× =

{︂
𝑢
√

5 if (10) is used,
2𝑢 if (11) is used.

We have
|𝑧 − 𝑧| 6 |𝑧 − 𝑧*| + |𝑧* − 𝑧|.

Let us first bound |𝑧 − 𝑧*|. We have,

|𝑧 − 𝑧*| = |(𝑎 + 𝑖𝑏) · [(𝑐 + 𝑖𝑠) − (𝑐 + 𝑖𝑠)]|
= |𝑎 + 𝑖𝑏| ·

⃒⃒⃒
(𝑐+𝑖𝑠)−(𝑐+𝑖𝑠)

𝑐+𝑖𝑠

⃒⃒⃒
6 |𝑧| · ∆𝜔.

(We remind the reader that ∆𝜔 = |𝜔−𝜔̂|/|𝜔| = |𝜔−𝜔̂|.) We also have |𝑧*−𝑧| 6
𝜌× · |𝑧*|, so that⃒⃒⃒⃒

𝑧* − 𝑧

𝑧

⃒⃒⃒⃒
=

⃒⃒⃒⃒
𝑧* − 𝑧

𝑧*

⃒⃒⃒⃒
·
⃒⃒⃒⃒
𝑧*

𝑧

⃒⃒⃒⃒
=

⃒⃒⃒⃒
𝑧* − 𝑧

𝑧*

⃒⃒⃒⃒
·
⃒⃒⃒⃒
𝜔̂

𝜔

⃒⃒⃒⃒
6 𝜌× ·

⃒⃒⃒⃒
𝜔̂

𝜔

⃒⃒⃒⃒
.

Hence 𝑧 approximates 𝑧 with a relative error bounded by

∆𝜔 + 𝜌× ·
⃒⃒⃒⃒
𝜔̂

𝜔

⃒⃒⃒⃒
6 ∆𝜔 + 𝜌× · (1 + ∆𝜔). (12)

The bound (12) is rather tight. For instance, in double precision arithmetic
(i.e., 𝑝 = 53), if we use multiplication with an FMA (i.e., (11)), with 𝜔 =
exp(−7133𝑖𝜋/220) and 𝑧 = 5495961505303309/252 + 𝑖 · 4506137113525543/242,
the relative error is 2.455𝑢, whereas the bound given by (12) is 2.460𝑢.

3 Bound on the relative error of the FFT for the
2-norm

Let us now use the error bounds on the multiplication by a root of unity, given
in Section 2, to bound the relative error of the FFT for the 2-norm. For that
purpose, we will first consider Step 𝑘 of the FFT algorithm.
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3.1 Step 𝑘 of the FFT
This section uses a reasoning presented by Percival [15]. We present it with
more detail, and extract more information from it by not uniformly bounding
the relative errors of the complex multiplications by roots of unity. At Step
𝑘 (𝑘 = 1, . . . , 𝑛) of the 𝑁 = 2𝑛-point FFT, the 2𝑘-th roots of unity are used.
Define ∆max

𝑘 as the largest value of ∆𝜔 = |𝜔 − 𝜔̂|, where 𝜔 is a 2𝑘-th root
of unity. Notice that when 𝑘 = 1 or 2, the 2𝑘-th root of unity are exactly
represented, and multiplication by them is errorless. From this and (12), the
complex products performed at Step 𝑘 have a relative error bounded by

𝑔𝑘 :=

{︂
0 if 𝑘 = 1, 2,
∆max

𝑘 + 𝜌× · (1 + ∆max
𝑘 ) otherwise.

For instance, for 𝑘 > 3,

𝑔𝑘 6

√
2

2
𝑢 + 𝜌× ·

(︃
1 +

√
2

2
𝑢

)︃
. (13)

Equation (13) can be interesting for obtaining a bound on the final error of
the FFT as a closed form, however, one will get tighter bounds by individually
computing the terms 𝑔𝑘. Now, Step 𝑘 of the FFT of order 𝑁 can be viewed as
𝑁/2 parallel combinations of the form(︂

𝑧0
𝑧1

)︂
→
(︂

𝑧0 + 𝜔𝑧1
𝑧0 − 𝜔𝑧1

)︂
,

Let us denote ̂︂𝜔𝑧1 = computed value of 𝜔𝑧1 (with relative error bounded by 𝑔𝑘).
We have

|̂︂𝜔𝑧1 − 𝜔𝑧1| 6 |𝑧1| · 𝑔𝑘,
|RN(𝑧0 −̂︂𝜔𝑧1) − (𝑧0 −̂︂𝜔𝑧1)| 6 𝑢 · |𝑧0 −̂︂𝜔𝑧1|,
|RN(𝑧0 + ̂︂𝜔𝑧1) − (𝑧0 + ̂︂𝜔𝑧1)| 6 𝑢 · |𝑧0 + ̂︂𝜔𝑧1|.

From which we deduce

|RN(𝑧0 + ̂︂𝜔𝑧1) − (𝑧0 + 𝜔𝑧1)| 6 |RN(𝑧0 + ̂︂𝜔𝑧1) − (𝑧0 + ̂︂𝜔𝑧1)| + |̂︂𝜔𝑧1 − 𝜔𝑧1|
6 𝑢 · |𝑧0 + ̂︂𝜔𝑧1| + |𝑧1| · 𝑔𝑘
6 𝑢 · (|𝑧0 + 𝜔𝑧1| + |̂︂𝜔𝑧1 − 𝜔𝑧1|) + |𝑧1| · 𝑔𝑘,

which implies

|RN(𝑧0 + ̂︂𝜔𝑧1) − (𝑧0 + 𝜔𝑧1)| 6 |𝑧0 + 𝜔𝑧1| · 𝑢 + |𝑧1| · (𝑔𝑘 + 𝑢𝑔𝑘). (14)

Similarly, we have

|RN(𝑧0 −̂︂𝜔𝑧1) − (𝑧0 − 𝜔𝑧1)| 6 |𝑧0 − 𝜔𝑧1| · 𝑢 + |𝑧1| · (𝑔𝑘 + 𝑢𝑔𝑘). (15)
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Now, let us notice that

|𝑧0 − 𝜔𝑧1|2 + |𝑧0 + 𝜔𝑧1|2 = 2𝑧0𝑧0 + 2(𝜔𝑧1)(𝜔𝑧1) = 2(|𝑧0|2 + |𝑧1|2), (16)

a consequence of which is

|𝑧0|2, |𝑧1|2 6
1

2

(︀
|𝑧0 − 𝜔𝑧1|2 + |𝑧0 + 𝜔𝑧1|2

)︀
. (17)

By combining (14), (15), and (17), we obtain

|RN(𝑧0 + ̂︂𝜔𝑧1) − (𝑧0 + 𝜔𝑧1)|2 + |RN(𝑧0 −̂︂𝜔𝑧1) − (𝑧0 − 𝜔𝑧1)|2

6 |𝑧0 + 𝜔𝑧1|2 · 𝑢2 +
1

2

(︀
|𝑧0 − 𝜔𝑧1|2 + |𝑧0 + 𝜔𝑧1|2

)︀
· (𝑔𝑘 + 𝑢𝑔𝑘)2

+ |𝑧0 − 𝜔𝑧1|2 · 𝑢2 +
1

2

(︀
|𝑧0 − 𝜔𝑧1|2 + |𝑧0 + 𝜔𝑧1|2

)︀
· (𝑔𝑘 + 𝑢𝑔𝑘)2

+ 2𝑢|𝑧1|(𝑔𝑘 + 𝑢𝑔𝑘) (|𝑧0 + 𝜔𝑧1| + |𝑧0 − 𝜔𝑧1|) .

We will now use the following lemma.

Lemma 1. For all 𝑡, 𝑣 ∈ C, we have

(|𝑡 + 𝑣| + |𝑡− 𝑣|) max(|𝑡|, |𝑣|) 6 (|𝑡 + 𝑣|2 + |𝑡− 𝑣|2).

Proof. Just choose 𝑎 = 𝑡 + 𝑣, 𝑏 = 𝑡− 𝑣, and notice that

|𝑎|2 + |𝑏|2 − (|𝑎| + |𝑏|) · max
(︁

|𝑎+𝑏|
2 , |𝑎−𝑏|

2

)︁
> |𝑎|2 + |𝑏|2 − (|𝑎| + |𝑏|) ·

(︁
|𝑎|+|𝑏|

2

)︁
= 1

2 (|𝑎| − |𝑏|)2 > 0.

All this gives

Lemma 2 (Adapted from [15]).

|RN(𝑧0 + ̂︂𝜔𝑧1) − (𝑧0 + 𝜔𝑧1)|2+|RN(𝑧0 −̂︂𝜔𝑧1) − (𝑧0 − 𝜔𝑧1)|2 6
(︀
|𝑧0 + 𝜔𝑧1|2 + |𝑧0 − 𝜔𝑧1|2

)︀
Ω2

𝑘,

where
Ω𝑘 := 𝑢 + 𝑔𝑘(1 + 𝑢).

3.2 Application to the error of the FFT
In the following, 𝑍 is the 𝑁 = 2𝑛-point (exact) Fourier transform of 𝑧, and 𝑡𝑘
is the transformation performed at Step 𝑘 of the FFT algorithm. We denote
𝑧(0) = 𝑧, 𝑧(1) = 𝑡1(𝑧(0)), 𝑧(2) = 𝑡2(𝑧(1)), . . . , 𝑧(𝑛) = 𝑡𝑛(𝑧(𝑛−1)) = 𝑍 the inter-
mediate exact values of the FFT algorithm, and ̂︂𝑧(1), ̂︂𝑧(2), . . . , ̂︂𝑧(𝑛) = ̂︀𝑍 the
corresponding computed values. We have ̂︂𝑧(0) = 𝑧(0).
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From (16) we easily find that for any 𝑦 and 𝑘, ‖𝑡𝑘(𝑦)‖2 =
√

2 · ‖𝑦‖2.
From Lemma 2, we have

‖̂︂𝑧(𝑘) − 𝑡𝑘(𝑧(𝑘−1))‖2 6 Ω𝑘 · ‖𝑡𝑘(𝑧(𝑘−1))‖2. (18)

Let us show by induction on 𝑘 the following property

‖̂︂𝑧(𝑘) − 𝑧(𝑘)‖2 6 ‖𝑧(𝑘)‖2 ·

[︃
𝑘∏︁

𝑖=1

(1 + Ω𝑖) − 1

]︃
. (19)

For 𝑘 = 1, it is an almost immediate consequence of (18) and the fact that
𝑡1(̂︂𝑧(0)) = 𝑡1(𝑧(0)) = 𝑧(1). Now, let us assume (19) is true for some 𝑘. We have

‖𝑧(𝑘+1) − 𝑧(𝑘+1)‖2 6 ‖𝑧(𝑘+1) − 𝑡𝑘+1(̂︂𝑧(𝑘))‖2 + ‖𝑡𝑘+1(̂︂𝑧(𝑘)) − 𝑧(𝑘+1)‖2
6 ‖𝑡𝑘+1(̂︂𝑧(𝑘))‖2 · Ω𝑘+1 + ‖𝑡𝑘+1(̂︂𝑧(𝑘) − 𝑧(𝑘))‖2
6

√
2 · ‖̂︂𝑧(𝑘)‖2 · Ω𝑘+1 +

√
2 · ‖̂︂𝑧(𝑘) − 𝑧(𝑘)‖2

6
√

2 · Ω𝑘+1 · ‖𝑧(𝑘)‖2 ·
∏︀𝑘

𝑖=1(1 + Ω𝑖) +
√

2 · ‖𝑧(𝑘)‖2 ·
[︁∏︀𝑘

𝑖=1(1 + Ω𝑖) − 1
]︁

6 ‖𝑧(𝑘+1)‖2 ·
[︁∏︀𝑘+1

𝑖=1 (1 + Ω𝑖) − 1
]︁
.

Q.E.D.
This gives

Theorem 7. Assume radix-2, precision-𝑝 arithmetic, with rounding unit 𝑢 =
2−𝑝. Let 𝑍 be the computed 2𝑛-point FFT of 𝑧 ∈ C2𝑛 , and let 𝑍 be the exact
value. Then

‖𝑍 − 𝑍‖2 6 ‖𝑍‖2 ·

(︃
𝑛∏︁

𝑖=1

(1 + Ω𝑖) − 1

)︃
,

with

Ω𝑘 = 𝑢 + 𝑔𝑘(1 + 𝑢),

𝑔𝑘 =

{︂
0 if 𝑘 = 1, 2,
∆max

𝑘 + 𝜌× · (1 + ∆max
𝑘 ) otherwise,

∆max
𝑘 = max{𝜔 2𝑘-th root of 1} ∆𝜔,

∆𝜔 = |𝜔̂ − 𝜔|,

𝜌× =

{︂
𝑢
√

5 if (10) is used (naive multiplication),
2𝑢 if (11) is used (multiplication with FMA).

Theorem 7 can be directly used to obtain error bounds, with a preliminary
calculation of the terms 𝑔𝑘. As said above, one can get a simpler yet looser
bound by noticing that 𝑔1 = 𝑔2 = 0 and bounding all other terms 𝑔𝑘 by

𝑔 =

√
2

2
𝑢 + 𝜌× ·

(︃
1 +

√
2

2
𝑢

)︃
.

This gives the following result, which is essentially the same as Percival’s re-
sult [15] (our bound is slightly better because we use 𝑔1 = 𝑔2 = 0, and when an
FMA instruction is available, we know that 𝜌× = 2𝑢).

14



Theorem 8 (Close to Percival’s bound [15]).

‖𝑍 − 𝑍‖2 6 ‖𝑍‖2 ·
[︀
(1 + 𝑢)𝑛(1 + 𝑔)𝑛−2 − 1

]︀
.

Of course, this also gives a bound on ‖𝑍 − 𝑍‖∞. Tables 2 and 3 compare
the various obtained bounds in the case of a 256-point and a 65536-point FFT,
respectively.

Table 2: Comparison of the bounds on ‖𝑍 − 𝑍‖2/‖𝑍‖2 given by Theorems 1,
2, 3 (with 𝜇 = 𝑢

√
2/2, the smallest value that always holds), 4 (with the same

value of 𝜇), 5, 7 and 8 for a 28-point FFT.
𝑝 = 24 𝑝 = 53 𝑝 = 113

Theorem 1 1085.44 · 𝑢 + 𝒪(𝑢2) 1085.44 · 𝑢 + 𝒪(𝑢2) 1085.44 · 𝑢 + 𝒪(𝑢2)
Theorem 2 39.31 · 𝑢 + 𝒪(𝑢2) 39.31 · 𝑢 + 𝒪(𝑢2) 39.31 · 𝑢 + 𝒪(𝑢2)
Theorem 3
with 𝜇 = 𝑢

√
2/2

(does not assume FMA)
50.92 · 𝑢 50.92 · 𝑢 50.92 · 𝑢

Theorem 4
with 𝜇 = 𝑢

√
2/2

(does not assume FMA)
31.55 · 𝑢 31.55 · 𝑢 31.55 · 𝑢

Theorem 5
with 𝜌× = 2𝑢
(FMA)

28.24 · 𝑢 + 𝒪(𝑢2) 28.24 · 𝑢 + 𝒪(𝑢2) 28.24 · 𝑢 + 𝒪(𝑢2)

Theorem 8
with 𝜌× = 2𝑢
(FMA)

24.25 · 𝑢 24.25 · 𝑢 24.25 · 𝑢

Theorem 8
with 𝜌× =

√
5𝑢

(no FMA)
25.66 · 𝑢 25.66 · 𝑢 25.66 · 𝑢

Theorem 7
with calculation of the 𝑔𝑘s
with 𝜌× = 2𝑢
(FMA)

22.78 · 𝑢 23.71 · 𝑢 24.16 · 𝑢

Theorem 7
with calculation of the 𝑔𝑘s
with 𝜌× =

√
5𝑢

(no FMA)

24.19 · 𝑢 25.11 · 𝑢 25.57 · 𝑢
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Table 3: Comparison of the bounds on ‖𝑍 − 𝑍‖2/‖𝑍‖2 given by Theorems 1,
2, 3 (with 𝜇 = 𝑢

√
2/2, the smallest value that always holds), 4 (with the same

value of 𝜇), 5, 7 and 8 for a 216-point FFT.
𝑝 = 24 𝑝 = 53 𝑝 = 113

Theorem 1 34734 · 𝑢 + 𝒪(𝑢2) 34734 · 𝑢 + 𝒪(𝑢2) 34734 · 𝑢 + 𝒪(𝑢2)
Theorem 2 82.62 · 𝑢 + 𝒪(𝑢2) 82.62 · 𝑢 + 𝒪(𝑢2) 82.62 · 𝑢 + 𝒪(𝑢2)
Theorem 3
with 𝜇 = 𝑢

√
2/2

(does not assume FMA)
101.83 · 𝑢 101.83 · 𝑢 101.83 · 𝑢

Theorem 4
with 𝜇 = 𝑢

√
2/2

(does not assume FMA)
63.10 · 𝑢 63.10 · 𝑢 63.10 · 𝑢

Theorem 5
with 𝜌× = 2𝑢
(FMA)

57.89 · 𝑢 + 𝒪(𝑢2) 57.89 · 𝑢 + 𝒪(𝑢2) 57.89 · 𝑢 + 𝒪(𝑢2)

Theorem 8
with 𝜌× = 2𝑢
(FMA)

53.90 · 𝑢 53.90 · 𝑢 53.90 · 𝑢

Theorem 8
with 𝜌× =

√
5𝑢

(no FMA)
57.21 · 𝑢 57.21 · 𝑢 57.21 · 𝑢

Theorem 7
with calculation of the 𝑔𝑘s
with 𝜌× = 2𝑢
(FMA)

52.14 · 𝑢 53.03 · 𝑢 53.69 · 𝑢

Theorem 7
with calculation of the 𝑔𝑘s
with 𝜌× =

√
5𝑢

(no FMA)

55.45 · 𝑢 56.33 · 𝑢 57.00 · 𝑢

4 Largest values that can occur when computing
the FFT of a vector

Assuming that the chosen rounding mode is round-to-nearest, when we perform
an arithmetic operation 𝑎⊤𝑏, where 𝑎 and 𝑏 are floating-point numbers, what is
actually computed is RN(𝑎⊤𝑏). Using (1) and the fact that RN is an increasing
function, from a bound 𝑀 on |𝑎⊤𝑏|, we can deduce a bound on the rounding
error committed when performing that operation:

|RN(𝑎⊤𝑏) − (𝑎⊤𝑏)| 6 1

2
ulp(𝑀) 6 𝑢 ·𝑀.

We aim at using that property to bound the rounding errors occurring when
performing FFTs. This requires bounding all intermediate values that appear
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in the calculation. This is what we deal with in this section.

4.1 A simple bound
Assume that 𝑍 = (𝑍0, 𝑍1, . . . , 𝑍𝑁−1) is the order-𝑁 = 2𝑛 DFT of 𝑧 = (𝑧0, 𝑧1, . . . , 𝑧𝑁−1).
We have ‖𝑍‖2 =

√
𝑁 · ‖𝑧‖2, therefore

‖𝑍‖∞ 6
√
𝑁 · ‖𝑧‖2 6 𝑁 · ‖𝑧‖∞.

Note that ‖𝑍‖∞ can be equal to 𝑁 · ‖𝑧‖∞: just consider 𝑧 = (1, 1, 1, . . . , 1), for
which we have 𝑍 = (𝑁, 0, 0, 0, . . . , 0). Hence,

‖𝑍‖⊥∞ 6
√

2 ·𝑁 · ‖𝑧‖⊥∞. (20)

In other words, if the real and imaginary parts of the terms 𝑧𝑖 are of absolute
value less than 𝑏, then the real and imaginary parts of the terms 𝑍𝑖 will be of
absolute value less than 𝐵 = 𝑁𝑏

√
2.

Since the first 𝑘 steps of an order-𝑁 FFT can be viewed as 𝑁/2𝑘 independent
FFTs of order 2𝑘, we deduce that the intermediate values computed at Step 𝑘
have absolute values of the real and imaginary parts less than 2𝑘𝑏

√
2.

As we are going to see, with significantly more involved reasoning, one can
replace in (20) the constant

√
2 ≈ 1.414 by 4/𝜋 ≈ 1.273.

4.2 Some improvement
Let us now try to obtain a tighter bound.

Let 𝑍 = (𝑍0, 𝑍1, . . . , 𝑍𝑁−1) be the DFT of 𝑧 = (𝑧0, 𝑧1, . . . , 𝑧𝑁−1). We have

𝑍𝑗 = 𝑧0 + 𝜔𝑗𝑧1 + 𝜔2𝑗𝑧2 + · · · + 𝜔(𝑁−1)𝑗𝑧𝑁−1,

with 𝜔 = exp(−2𝑖𝜋/𝑁).
Consider a vector 𝑧 that maximizes the absolute value of the real part of

𝑍𝑗 under the constraints ‖𝑧‖⊥∞ 6 𝑏 (the reasoning is straightforwardly similar
if we want to maximize the imaginary part). Without loss of generality we
assume that the real part of 𝑍𝑗 is nonnegative. Since all the 𝑧𝑘 can be chosen
independently, we maximize the real part of 𝑍𝑗 by maximizing separately all
the terms ℜ(𝜔𝑗𝑘𝑧𝑘) = cos(2𝑗𝑘𝜋/𝑁)ℜ(𝑧𝑘) + sin(2𝑗𝑘𝜋/𝑁)ℑ(𝑧𝑘), i.e., by choosing
ℜ(𝑧𝑘) = 𝑏 · sign(cos(2𝑗𝑘𝜋/𝑁)), and ℑ(𝑧𝑘) = 𝑏 · sign(sin(2𝑗𝑘𝜋/𝑁)), so that the
maximum value of |ℜ(𝑍𝑗)| is 𝑏 · 𝑆𝑗 , where

𝑆𝑗 =

𝑁−1∑︁
𝑘=0

(| cos(2𝑗𝑘𝜋/𝑁)| + | sin(2𝑗𝑘𝜋/𝑁)|) .

Hence the bound we are looking for is 𝐾𝑁 = max𝑗=0...𝑁−1 𝑆𝑗 . Table 4 gives
the values of 𝐾𝑁 and 𝐾𝑁/𝑁 for the first powers of 2.

Let us show that we always have 𝐾𝑁 6 4
𝜋 ·𝑁 and 4/𝜋 is optimal.
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Table 4: First values of 𝐾𝑁 and 𝐾𝑁/𝑁 . If the terms 𝑧𝑘 have the absolute values
of their real and imaginary parts less than or equal to 𝑏, then the terms 𝑍𝑘 have
the absolute values of their real and imaginary parts less than or equal to 𝑏𝐾𝑁 ,
and that bound is attained.

𝑁 𝐾𝑁 𝐾𝑁/𝑁

8 4 + 4
√

2 = 9.6568 · · · 1.20710678 · · ·
16 20.10935 · · · 1.2568348730 · · ·
32 40.6126815 · · · 1.269146298451 · · ·
64 81.421870499 · · · 1.272216726561699 · · ·
128 162.9419354883 · · · 1.2729838710026031 · · ·
256 325.932960826184 · · · 1.27317562822728390 · · ·
512 651.890465652999852 · · · 1.273223565728515337 · · ·
1024 1303.7932031908053959 · · · 1.2732355499910208944 · · ·
2048 2607.592542309575146472 · · · 1.273238546049597239488 · · ·
4096 5215.1881525813276653152 · · · 1.2732392950638006995398 · · ·
8192 10430.37783914351841639453 · · · 1.27323948231732402543878 · · ·
∞ 4/𝜋 = 1.2732395447351626861 · · ·

Let 𝑚 ∈ N ∖ {0}, we have

𝐾𝑚

𝑚
=

1

𝑚
max

𝑗=0,...,𝑚−1

{︃
𝑚−1∑︁
𝑘=0

(| cos(2𝑗𝑘𝜋/𝑚)| + | sin(2𝑗𝑘𝜋/𝑚)|)

}︃
.

We now define, for all 𝑚, 𝑗 ∈ N, 𝑚 ̸= 0,

𝛾𝑗
𝑚 =

1

𝑚

𝑚−1∑︁
𝑘=0

(| cos(2𝑗𝑘𝜋/𝑚)| + | sin(2𝑗𝑘𝜋/𝑚)|) .

For all 𝑥 ∈ R, let 𝑓(𝑥) := | cos(𝑥)| + | sin(𝑥)|. The function 𝑓 is (𝜋/2)-periodic.
Since 1 6 𝑓(𝑥) 6

√
2 for all 𝑥, we have, for all 𝑚, 𝑗 ∈ N, 𝑚 ̸= 0,

1 6 𝛾𝑗
𝑚 6

√
2, hence 1 6

𝐾𝑚

𝑚
6

√
2. (21)

Lemma 3. For all 𝑚, 𝑗 ∈ N ∖ {0} such that (𝑗,𝑚) = 1, we have 𝛾𝑗
𝑚 = 𝛾1

𝑚.

Proof. Since 𝑗 and 𝑚 are relatively prime, we have

{𝑘 mod 𝑚, 𝑘 = 0, . . . ,𝑚− 1} = {𝑗𝑘 mod 𝑚, 𝑘 = 0, . . . ,𝑚− 1}.

Hence,

𝛾𝑗
𝑚 =

1

𝑚

∑︁
𝑥∈{ 𝑗𝑘

𝑚 ,06𝑘6𝑚−1}
𝑓(2𝜋𝑥) =

1

𝑚

∑︁
𝑥∈{ 𝑘

𝑚 ,06𝑘6𝑚−1}
𝑓(2𝜋𝑥) = 𝛾1

𝑚.
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Lemma 4. For all 𝑚, 𝑗 ∈ N ∖ {0}, we have 𝛾𝑗
𝑚 = 𝛾

𝑗/(𝑗,𝑚)
𝑚/(𝑗,𝑚) = 𝛾1

𝑚/(𝑗,𝑚).

Proof. Let 𝑑 = (𝑗,𝑚), 𝑗 = 𝑑𝑗′, 𝑚 = 𝑑𝑚′ with (𝑗′,𝑚′) = 1, we have for all
𝑘, ℓ ∈ N,

𝑓

(︂
2𝑗𝜋

𝑚
(𝑘 + ℓ𝑚′)

)︂
= 𝑓

(︂
2𝑗′𝑘𝜋

𝑚′ + 2𝑗′ℓ𝜋

)︂
= 𝑓

(︂
2𝑗′𝑘𝜋

𝑚′

)︂
,

since 𝑓 is (𝜋/2)-periodic. It follows that

𝛾𝑗
𝑚 =

1

𝑚

𝑚−1∑︁
𝑘=0

𝑓

(︂
2𝑗𝑘𝜋

𝑚

)︂
=

1

𝑚

𝑑−1∑︁
ℓ=0

𝑚′−1∑︁
𝑘=0

𝑓

(︂
2𝑗(𝑘 + ℓ𝑚′)𝜋

𝑚

)︂
=

𝑑

𝑚

𝑚′−1∑︁
𝑘=0

𝑓

(︂
2𝑗′𝑘𝜋

𝑚′

)︂
= 𝛾𝑗′

𝑚′ .

The second equality is a consequence of Lemma 3.

Lemma 5. The sequence
(︀
𝛾1
4𝑚

)︀
𝑚∈N is increasing and tends to 4/𝜋 as 𝑚 tends

to +∞.

Proof. We have for all 𝑘, ℓ ∈ N,

𝑓

(︂
2𝜋

4𝑚
(𝑘 + ℓ𝑚)

)︂
= 𝑓

(︂
𝑘𝜋

2𝑚
+

ℓ𝜋

2

)︂
= 𝑓

(︂
𝑘𝜋

2𝑚

)︂
,

since 𝑓 is (𝜋/2)-periodic. Therefore, for all 𝑚 ∈ N ∖ {0}, we have

𝛾1
4𝑚 =

1

4𝑚

4𝑚−1∑︁
𝑘=0

𝑓

(︂
2𝑘𝜋

4𝑚

)︂
=

1

4𝑚

3∑︁
ℓ=0

𝑚−1∑︁
𝑘=0

𝑓

(︂
(𝑘 + ℓ𝑚)𝜋

2𝑚

)︂
=

1

𝑚

𝑚−1∑︁
𝑘=0

𝑓

(︂
𝑘𝜋

2𝑚

)︂
.

Hence,
(︀
𝜋
2 𝛾

1
4𝑚

)︀
𝑚∈N is a sequence of Riemann sums which tends to

∫︀ 𝜋/2

0
𝑓(𝑥) d𝑥 =

2 as 𝑚 tends to ∞. Moreover, since 𝑓 is concave over [0, 𝜋/2], this sequence of
Riemann sums is increasing [1, Thm 3A].

Corollary 1. For all 𝑛 ∈ N, we have

1

2𝑛
𝐾2𝑛 6

4

𝜋
and lim

𝑛→∞

1

2𝑛
𝐾2𝑛 =

4

𝜋
.

Proof. We can assume 𝑛 > 1 since we know that 𝐾1 = 1. It follows from
Lemma 4 that there exists 𝑛0 > 1 such that max𝑗=1,...,2𝑛 𝛾𝑗

2𝑛 = 𝛾1
2𝑛0 . Thus,

𝐾2𝑛/2𝑛 = max(𝛾0
2𝑛 , 𝛾

1
2𝑛0 ) = max(1, 𝛾1

2𝑛0 ) = 𝛾1
2𝑛0 thanks to Equation (21). From

Lemma 5 and 𝛾1
2 = 1, we get 𝐾2𝑛/2𝑛 = 𝛾1

2𝑛0 6 4/𝜋. Moreover, by definition
of 𝐾2𝑛 , we have 𝛾1

2𝑛 6 𝐾2𝑛/2𝑛. The last two inequalities and Lemma 5 imply
lim𝑛 ↦→∞ 𝐾2𝑛/2𝑛 = 4/𝜋.

All this gives the following result.
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Theorem 9. Let 𝑍 = (𝑍0, 𝑍1, . . . , 𝑍𝑁−1) be the order-𝑁 = 2𝑛 Discrete Fourier
Transform of 𝑧 = (𝑧0, 𝑧1, . . . , 𝑧𝑁−1). We have,

‖𝑍‖⊥∞ 6
4

𝜋
·𝑁 · ‖𝑧‖⊥∞. (22)

and the constant 4/𝜋 in (22) is optimal.

Theorem 9 implies that if the real and imaginary parts of the terms 𝑧𝑖 are
of absolute value less than or equal to 𝑏, then the real and imaginary parts of
the terms 𝑍𝑖 are of absolute value less than or equal to

4

𝜋
·𝑁 · 𝑏, (23)

An important consequence, that will be useful in the sequel of this paper
is that since the first 𝑘 steps of an order-𝑁 FFT can be viewed as 𝑁/2𝑘 in-
dependent FFTs of order 2𝑘, the intermediate values computed at Step 𝑘 have
absolute values of the real and imaginary parts less than 2𝑘+2𝑏/𝜋.

5 Calculation of an error bound for the infinity
norm

In the following, we wish to find a bound for ‖𝑍 − 𝑍‖⊥∞, given that ‖𝑧‖⊥∞ 6
1. Note that if the constraint on 𝑧 becomes ‖𝑧‖⊥∞ 6 2𝑚, it will suffice to
multiply the bound on ‖𝑍−𝑍‖⊥∞ by 2𝑚. Obtaining such bounds is important for
implementing Schönhage and Strassen’s algorithm for multiplying big integers of
large polynomials [20, 13]. One can get such bounds by using Theorem 7 and (7).
One might also want to use Henrici’s Theorem (Theorem 6): assuming an FMA
is used (so that complex multiplication has relative error 2𝑢), Theorem 6 gives
a bound

‖𝑍 − 𝑍‖⊥∞ 6 2𝑛+1(2𝑛 + 1) ·
√

2 · 𝑢 · ‖𝑧‖⊥∞ + 𝒪(𝑢2).

Note, however, the “𝒪(𝑢2)” that does not allow to get sure bounds.
Table 5 compares bounds on ‖𝑍 −𝑍‖2/‖𝑍‖2 and ‖𝑍 −𝑍‖⊥∞/‖𝑧‖⊥∞ deduced

from Theorem 7 (assuming an FMA instruction is available, and 𝑝 = 53–i.e.,
double-precision arithmetic) and (7) with bounds deduced from Henrici’s theo-
rem.

Before going further, let us give a “bad” case for that norm, i.e., a case for
which we obtain a large error.

5.1 A bad case for the infinity norm
It is interesting to build “bad” cases: they help us to know if it is worth trying
to improve the error bounds.

We build a bad case as follows. We are interested in having an error as large
as possible on the first term of the Fourier transform. Let us quickly explain how
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this can be done. We assume that 𝑧0 ≈ 𝑧1 ≈ 𝑧2 ≈ · · · ≈ 𝑧𝑁−1 ≈ 1. Denoting
𝑣𝑖 = 𝑧reverse(𝑖), where reverse(𝑖) is the integer whose binary representation is
the mirror image of the binary representation of 𝑖, we are interested in the
calculation of the 1st component of the Fourier Transform. The exact result is
𝑧0 + 𝑧1 + · · · + 𝑧𝑁−1, and the computed result is

RN

{︃
· · ·RN

{︂
RN
[︁
RN(𝑣0+𝑣1)+RN(𝑣2+𝑣3)

]︁
+RN

[︁
RN(𝑣4+𝑣5)+RN(𝑣6+𝑣7)

]︁}︂
+· · ·

}︃
(24)

(see the first line in Figure 2). After Step 𝑘 of the FFT algorithm, the in-
termediate terms in the sum (24) will be floating-point numbers around 2𝑘,
which means that they will be of the form 2𝑘 + 𝑗𝑢2𝑘+1 (where 𝑗 ∈ N) for
the terms above 2𝑘, and 2𝑘 − 𝑗𝑢2𝑘 for the terms below 2𝑘. We will assume
0 6 𝑗 6 2𝑛+1 ≪ 1/𝑢. Let us explain how we can build a term of the form
2𝑘 + 𝑗𝑢2𝑘+1 from the floating-point addition of two terms around 2𝑘−1, trying
to maximize the rounding error. Since we want all rounding errors to be in
the same direction (in order to maximize the global error, which will be the
sum of all individual rounding errors), we will make sure that all roundings are
downwards. We assume that RN is round to nearest ties to even: if 𝑡 is halfway
between two consecutive FP numbers, then RN(𝑡) is the one of these two num-
bers whose significand is even, i.e., its rightmost significand bit is a zero (this is
the default in the IEEE 754 standard).

Notice that since the distance between two floating-point numbers in the
neighborhood of 2𝑘 + 𝑗𝑢2𝑘+1 is 𝑢 · 2𝑘+1, the maximum rounding error that can
result from that floating-point addition is 𝑢 · 2𝑘. Therefore

∙ if 𝑗 is even, one easily checks that error 𝑢 · 2𝑘 is attained when adding
the two FP numbers 2𝑘−1 + 𝑗𝑢2𝑘+1 and 2𝑘−1 + 𝑢2𝑘. The exact sum is
2𝑘 +

(︀
𝑗 + 1

2

)︀
𝑢2𝑘+1, the rounded result (thanks to the round ties-to-even

rule) is the expected 2𝑘 + 𝑗𝑢2𝑘+1, so that the rounding error is 𝑢 ·2𝑘. This
is illustrated in Fig. 3;

2𝑘

computed sum

exact sum
2𝑘+1𝑢

Figure 3: Floating-point addition of 2𝑘−1 + 𝑗𝑢2𝑘+1 and 2𝑘−1 + 𝑢2𝑘, where 𝑗 is
even.

∙ if 𝑗 is odd, error 𝑢 · 2𝑘 cannot be attained: if the exact sum was 2𝑘 +
𝑗𝑢2𝑘+1 ± 𝑢 · 2𝑘, then (due to the ties-to-even rule) that exact sum would
not be rounded to 2𝑘 + 𝑗𝑢2𝑘+1, whose significand is odd. To make sure
that the exact sum is not halfway between two FP numbers, it must not be
a multiple of 𝑢2𝑘, which implies that one of the operands must be below
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2𝑘−1. Hence the choice to add 2𝑘−1 +𝑢 ·
(︀
𝑗 + 1

2

)︀
·2𝑘+1 and 2𝑘−1−𝑢 ·2𝑘−1.

The exact sum is 2𝑘 +𝑗𝑢2𝑘+1+𝑢2𝑘−1, resulting in a rounded sum equal to
the expected 2𝑘 + 𝑗𝑢2𝑘+1 and a rounding error 𝑢 ·2𝑘−1. This is illustrated
in Fig. 4.

2𝑘

computed sum

exact sum
2𝑘+1𝑢

this would
round upwards

Figure 4: Floating-point addition of 2𝑘−1 +𝑢 ·
(︀
𝑗 + 1

2

)︀
·2𝑘+1 and 2𝑘−1−𝑢 ·2𝑘−1,

where 𝑗 is odd.

The reasoning would be similar for building a term of the form 2𝑘 − 𝑗𝑢2𝑘. We
can formalize these ideas as follows. Let us call 𝑇2𝑘,𝜎 an array of 2𝑘 input
values (in “mirror order”, i.e., one must choose 𝑧0 = 𝑇2𝑘,𝜎[reverse(0)], 𝑧1 =
𝑇2𝑘,𝜎[reverse(1)], 𝑧2 = 𝑇2𝑘,𝜎[reverse(2)], . . . as first elements) for which the
computed sum that appears in the 1st component of the 2𝑘-term FFT is equal
to 2𝑘 + 𝜎. The number 𝜎 will be of the form 𝑗 · 2𝑘+1𝑢 for 𝜎 > 0, and −𝑗 · 2𝑘𝑢
for 𝜎 < 0, where 𝑗 is a small positive integer. We are going to build 𝑇2𝑛,0 so
that the error when computing the FFT of that array is as large as possible.
We denote 𝑇//𝑇 ′ as the concatenation of the arrays 𝑇 and 𝑇 ′, we will choose
(for 𝑗 > 0):

𝑇2𝑘,𝑗·2𝑘+1𝑢 =

{︂
𝑇2𝑘−1,(𝑗+ 1

2 )·2𝑘+1𝑢//𝑇2𝑘−1,−2𝑘−1𝑢 if 𝑗 is odd,

𝑇2𝑘−1,𝑗·2𝑘+1𝑢//𝑇2𝑘−1,2𝑘𝑢 if 𝑗 is even,
(25)

𝑇2𝑘,−𝑗·2𝑘𝑢 =

{︂
𝑇2𝑘−1,0//𝑇2𝑘−1,−𝑗·2𝑘𝑢 if 𝑗 is odd,
𝑇2𝑘−1,0//𝑇2𝑘−1,(−2𝑗+1)·2𝑘−1𝑢 if 𝑗 is even,

(26)

with, of course {︂
𝑇1,2𝑗𝑢 = 1 + 2𝑗𝑢,
𝑇1,−𝑗𝑢 = 1 − 𝑗𝑢.

The error on the 1st term of the Fourier Transform will be 𝐶𝑛,0 · 𝑢, where
the terms 𝐶𝑘,𝑚 (equal to the error that occurs when performing a 2𝑘-point FFT
with the input values defined by 𝑇2𝑘,𝑚·𝑢) are defined by the following recurrence

𝐶𝑘,𝑚 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if 𝑘 = 0,
𝐶𝑘−1,𝑚+2𝑘 + 𝐶𝑘−1,−2𝑘−1 + 2𝑘−1 if 𝑚/2𝑘+1 is odd and 𝑚 > 0,
𝐶𝑘−1,𝑚 + 𝐶𝑘−1,2𝑘 + 2𝑘 if 𝑚/2𝑘+1 is even and 𝑚 > 0,
𝐶𝑘−1,0 + 𝐶𝑘−1,𝑚 if 𝑚/2𝑘 is odd and 𝑚 < 0,
𝐶𝑘−1,0 + 𝐶𝑘−1,𝑚+2𝑘−1 + 2𝑘−1 if 𝑚/2𝑘 is even and 𝑚 < 0.

(27)
Figure 5 illustrates the use of the rules (25) and (26) for building a bad

case for 𝑁 = 8. Interestingly enough, from the recurrence (27), the GFUN
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package [18] makes it possible to find an exact closed formula for 𝐶𝑛,0. This is
based on first computing several terms 𝐶𝑛,0, say 𝑛 6 24, and then using GFUN
to guess a linear differential equation with polynomial coefficients, satisfied by
the generating function

∑︀
𝑛>0 𝐶𝑛,0𝑥

𝑛. This is obviously not always possible,
but such an equation exists when (𝐶𝑛,0)𝑛>0 is a 𝑃 -recursive sequence i.e., it
satisfies a linear recurrence with polynomial coefficients in 𝑛. It turns out that
in our case the guessed generating function is a rational fraction,

2𝑥4 − 2𝑥3 − 𝑥2 + 2𝑥

4𝑥5 − 4𝑥4 + 𝑥3 + 4𝑥2 − 4𝑥 + 1
.

This corresponds to the following guessed linear recurrence

𝑢𝑛+5 − 4𝑢𝑛+4 + 4𝑢𝑛+3 + 𝑢𝑛+2 − 4𝑢𝑛+1 + 4𝑢𝑛 = 0,
𝑢0 = 0, 𝑢1 = 2, 𝑢2 = 7, 𝑢3 = 18, 𝑢4 = 44,

(28)

which has a unique solution, easily obtained by noting that the polynomial

𝑥5 − 4𝑥4 + 4𝑥3 + 𝑥2 − 4𝑥 + 4

is equal to (𝑥 + 1)
(︀
𝑥− 𝑒𝑖𝜋/3

)︀ (︀
𝑥− 𝑒−𝑖𝜋/3

)︀
(𝑥− 2)

2
. We now prove

Theorem 10. The terms 𝐶𝑛,0 defined by (27) satisfy

𝐶𝑛,0 =
1

27
· 2𝑛 · (15𝑛 + 14) − 5

9
· cos

(︁𝑛𝜋
3

)︁
+

1

9
·
√

3 · sin
(︁𝑛𝜋

3

)︁
+

(−1)𝑛

27
.

Proof. We have to show that (𝐶𝑛,0)𝑛>0 actually satisfies the guessed recur-
rence (28). This is done by first showing

𝐶𝑘,2𝑘+1+𝑗·2𝑘+2 = 𝐶𝑘,2𝑘+1 for all 𝑘, 𝑗 > 0, (29)
𝐶𝑘,−2𝑘+𝑗·2𝑘+1 = 𝐶𝑘,−2𝑘 for all 𝑘 > 0, 𝑗 6 0. (30)

We prove (29) by induction on 𝑘. For all 𝑗 > 0, we have 𝐶0,21+𝑗·22 = 0 = 𝐶0,21 .
Now, from (27), we get

𝐶𝑘,2𝑘+1 = 𝐶𝑘−1,2𝑘+1+2𝑘 + 𝐶𝑘−1,−2𝑘−1 + 2𝑘−1

and
𝐶𝑘,2𝑘+1+𝑗·2𝑘+2 = 𝐶𝑘−1,2𝑘+1+2𝑘+𝑗·2𝑘+2 + 𝐶𝑘−1,−2𝑘−1 + 2𝑘−1

and we apply the induction hypothesis to conclude. The proof of (30) is similar
to the proof of (29).

Now, to show that (𝐶𝑛,0)𝑛>0 satisfies (28), it suffices to show that for any
𝑘 > 3, we have

𝐶𝑘+2,0 − 4𝐶𝑘+1,0 + 4𝐶𝑘,0 = −𝐶𝑘−1,0 + 4𝐶𝑘−2,0 − 4𝐶𝑘−3,0.
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This will be done using (27), (29) and (30). We have

𝐶𝑘+2,0 − 4𝐶𝑘+1,0 + 4𝐶𝑘,0

= − 3𝐶𝑘+1,0 + 𝐶𝑘+1,2𝑘+2 + 2𝑘+2 + 4𝐶𝑘,0 by applying (27) to the term 𝐶𝑘+2,0

= − 3
(︀
𝐶𝑘,0 + 𝐶𝑘,2𝑘+1 + 2𝑘+1

)︀
+
(︀
𝐶𝑘,2𝑘+2+2𝑘+1 + 𝐶𝑘,−2𝑘 + 2𝑘

)︀
+ 2𝑘+2 + 4𝐶𝑘,0

= − 3
(︀
𝐶𝑘,0 + 𝐶𝑘,2𝑘+1 + 2𝑘+1

)︀
+
(︀
𝐶𝑘,2𝑘+1 + 𝐶𝑘,−2𝑘 + 2𝑘

)︀
+ 2𝑘+2 + 4𝐶𝑘,0 by applying (29)

=𝐶𝑘,0 − 2𝐶𝑘,2𝑘+1 + 𝐶𝑘,−2𝑘 − 2𝑘

=
(︀
𝐶𝑘−1,0 + 𝐶𝑘−1,2𝑘 + 2𝑘

)︀
− 2

(︀
𝐶𝑘−1,2𝑘+1+2𝑘 + 𝐶𝑘−1,−2𝑘−1 + 2𝑘−1

)︀
+
(︀
𝐶𝑘−1,0 + 𝐶𝑘−1,−2𝑘 − 2𝑘

)︀
= − 𝐶𝑘−1,0 + 3𝐶𝑘−1,0 − 𝐶𝑘−1,2𝑘 − 2𝐶𝑘−1,−2𝑘−1 + 𝐶𝑘−1,−2𝑘 − 2𝑘 by applying (29)

= − 𝐶𝑘−1,0 + 3
(︀
𝐶𝑘−2,0 + 𝐶𝑘−2,2𝑘−1 + 2𝑘−1

)︀
−
(︀
𝐶𝑘−2,2𝑘−1 + 𝐶𝑘−2,−2𝑘−2 + 2𝑘−2

)︀
− 2

(︀
𝐶𝑘−2,0 + 𝐶𝑘−2,−2𝑘−1

)︀
+
(︀
𝐶𝑘−2,0 + 𝐶𝑘−2,−2𝑘+2𝑘−2 + 2𝑘−2

)︀
− 2𝑘

= − 𝐶𝑘−1,0 + 4𝐶𝑘−2,0 − 2𝐶𝑘−2,0 + 2𝐶𝑘−2,2𝑘−1 − 2𝐶𝑘−2,−2𝑘−1 + 2𝑘−1 by applying (30)

= − 𝐶𝑘−1,0 + 4𝐶𝑘−2,0 − 2
(︀
𝐶𝑘−3,0 + 𝐶𝑘−3,2𝑘−2 + 2𝑘−2

)︀
+ 2

(︀
𝐶𝑘−3,2𝑘−2 + 𝐶𝑘−3,−2𝑘−3 + 2𝑘−3

)︀
− 2

(︀
𝐶𝑘−3,0 + 𝐶𝑘−3,−2𝑘−1+2𝑘−3 + 2𝑘−3

)︀
+ 2𝑘−1

= − 𝐶𝑘−1,0 + 4𝐶𝑘−2,0 − 4𝐶𝑘−3,0 by applying (30).

Hence, on the “bad cases” built using the recurrences (25) and (26), the FFT
algorithm has an error asymptotically equivalent to (5/9) · 𝑛 · 2𝑛. The value of
‖𝑧‖⊥∞ for these bad cases (which is the largest absolute value of an element of
the array 𝑇𝑁,0) is deduced from (25) and (26). It is 1 + 𝑀𝑛,0 · 𝑢, where the
sequence 𝑀𝑘,𝑚 satisfies

𝑀𝑘,𝑚 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑚 if 𝑘 = 0,
max

(︀
𝑀𝑘−1,𝑚+2𝑘 ;𝑀𝑘−1,−2𝑘−1

)︀
if 𝑚/2𝑘+1 is odd and 𝑚 > 0,

max
(︀
𝑀𝑘−1,𝑚;𝑀𝑘−1,2𝑘

)︀
if 𝑚/2𝑘+1 is even and 𝑚 > 0,

max (𝑀𝑘−1,0;𝑀𝑘−1,𝑚) if 𝑚/2𝑘 is odd and 𝑚 < 0,
max

(︀
𝑀𝑘−1,0;𝑀𝑘−1,𝑚+2𝑘−1

)︀
if 𝑚/2𝑘 is even and 𝑚 < 0.

(31)
To obtain 𝑀𝑘,𝑚 from (31), we use numbers of the form 𝑀𝑘−1,𝑚′ , where 𝑚′

is at most 𝑚 + 2𝑘, and we continue recursively. Hence the “final” value of 𝑚′

(when 𝑘 = 0) is at most 2𝑛 + 2𝑛−1 + · · · + 2 = 2𝑁 − 2. Hence, 𝑀𝑛,0 6 2𝑁 − 2.
Conversely, that value is effectively attained if we consider the following path
of recursive calls:

𝑀𝑛,0 → 𝑀𝑛−1,2𝑛 → 𝑀𝑛−2,2𝑛+2𝑛−1 → · · · → 𝑀0,2𝑛+2𝑛−1+2𝑛−2+···+2.

Therefore, ‖𝑧‖⊥∞ = 1 + (2𝑁 − 2) · 𝑢, so that

‖𝑍 − 𝑍‖⊥∞
‖𝑧‖⊥∞

∼ 5

9
· 𝑛 · 2𝑛 · 𝑢

1 + (2𝑛+1 − 2) · 𝑢
.
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4

4+8u

2

2+4u

2+12u

2-2u

1

1+2u

1+6u

1-u
1+14u

1-u

1

1-2u(j < 0, j odd)

(j ≥ 0, j even)

(j ≥ 0, j even)

(j ≥ 0, j even)

(j ≥ 0, j odd)

(j ≥ 0, j odd)

(j ≥ 0, j odd)

Figure 5: Building a bad case for 𝑁 = 8, according to (25) and (26). The
obtained input values are in mirror order: this corresponds to 𝑧0 = 1, 𝑧1 =
1+14𝑢, 𝑧2 = 1+6𝑢, 𝑧3 = 1, 𝑧4 = 1+2𝑢, 𝑧5 = 1−𝑢, 𝑧6 = 1−𝑢, and 𝑧7 = 1−2𝑢.
The absolute error on 𝑍0, when applying the FFT algorithm on these input
values, is 18𝑢.

Table 5 compares bounds on ‖𝑍 −𝑍‖2/‖𝑍‖2 and ‖𝑍 −𝑍‖⊥∞/‖𝑧‖⊥∞ deduced
from Theorem 7 (assuming an FMA instruction is available, and 𝑝 = 53–i.e.,
double-precision arithmetic) and (7) with bounds deduced from Henrici’s theo-
rem and the “bad case” we have just built.

5.2 Iterative calculation of an error bound
We assume that the input vector to the FFT algorithm satisfies ‖𝑧‖⊥∞ 6 1. Let
us again consider an elementary calculation of the FFT, performed at Step 𝑘:{︂

𝑦1 = 𝑥1 + 𝜔𝑥2,
𝑦2 = 𝑥1 − 𝜔𝑥2,

where 𝑥1, 𝑥2, 𝑦1 and 𝑦2 are “exact” values (i.e., they are obtained from exact
calculations, without roundings). We will now iteratively compute error bounds
for all the intermediate calculations of the FFT. Denoting 𝑥𝑅

1 , 𝑥𝑅
2 , 𝑦𝑅1 , 𝑦𝑅2 and

𝜔𝑅 the real parts of 𝑥1, 𝑥2, 𝑦1, 𝑦2 and 𝜔, and 𝑥𝐼
1, 𝑥𝐼

2, 𝑦𝐼1 , 𝑦𝐼2 and 𝜔𝐼 their
imaginary parts, we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑦𝑅1 = 𝑥𝑅
1 + 𝜔𝑅𝑥𝑅

2 − 𝜔𝐼𝑥𝐼
2,

𝑦𝐼1 = 𝑥𝐼
1 + 𝜔𝐼𝑥𝑅

2 + 𝜔𝑅𝑥𝐼
2,

𝑦𝑅2 = 𝑥𝑅
1 − 𝜔𝑅𝑥𝑅

2 + 𝜔𝐼𝑥𝐼
2,

𝑦𝐼2 = 𝑥𝐼
1 − 𝜔𝐼𝑥𝑅

2 − 𝜔𝑅𝑥𝐼
2.

Now, denote ̂︁𝑥𝑅
1 , ̂︁𝑥𝑅

2 , ̂︁𝑦𝑅1 , ̂︁𝑦𝑅2 , ̂︁𝑥𝐼
1,
̂︁𝑥𝐼
2,
̂︀𝑦𝐼1 , and ̂︀𝑦𝐼2 as the calculated values of 𝑥𝑅

1 ,
𝑥𝑅
2 , 𝑦𝑅1 , 𝑦𝑅2 , 𝑥𝐼

1, 𝑥𝐼
2, 𝑦𝐼1 , and 𝑦𝐼2 ; and denote ̂︁𝜔𝑅 = RN(𝜔𝑅) and ̂︁𝜔𝐼 = RN(𝜔𝐼).

We assume that an FMA instruction is available, and that ̂︁𝑦𝑅1 , ̂︁𝑦𝑅2 , ̂︀𝑦𝐼1 , and ̂︀𝑦𝐼2
are computed as follows
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Table 5: Bounds on ‖𝑍 − 𝑍‖2/‖𝑍‖2 and ‖𝑍 − 𝑍‖⊥∞/‖𝑧‖⊥∞ deduced from The-
orem 7 (assuming an FMA instruction is available, and 𝑝 = 53–i.e., double-
precision arithmetic) and (7), compared with the bound on ‖𝑍 − 𝑍‖⊥∞/‖𝑧‖⊥∞
given by Theorem 6 and the “bad case” presented in this section.

𝑁

Bound on
‖𝑍 − 𝑍‖2/‖𝑍‖2
deduced from
Theorem 7
(with FMA)

Bound on
‖𝑍 − 𝑍‖⊥∞/‖𝑧‖⊥∞

deduced from
Theorem 7

and (7)

Bound on
‖𝑍 − 𝑍‖⊥∞/‖𝑧‖⊥∞

deduced from
Theorem 6

Known bad case for
‖𝑍 − 𝑍‖⊥∞/‖𝑧‖⊥∞
(see Section 5.1)

25 12.85 · 𝑢 582 · 𝑢 996 · 𝑢 + 𝒪(𝑢2) 105 · 𝑢
28 23.71 · 𝑢 8584 · 𝑢 12310 · 𝑢 + 𝒪(𝑢2) 1271 · 𝑢
210 30.99 · 𝑢 44879 · 𝑢 60823 · 𝑢 + 𝒪(𝑢2) 6220 · 𝑢
212 38.28 · 𝑢 221720 · 𝑢 289631 · 𝑢 + 𝒪(𝑢2) 29430 · 𝑢
214 45.63 · 𝑢 1.058 × 106 · 𝑢 1.344 × 106 · 𝑢 + 𝒪(𝑢2) 135927 · 𝑢
216 53.03 · 𝑢 4.915 × 106 · 𝑢 6.118 × 106 · 𝑢 + 𝒪(𝑢2) 616524 · 𝑢
218 60.43 · 𝑢 2.240 × 107 · 𝑢 2.744 × 107 · 𝑢 + 𝒪(𝑢2) 2.757 × 106 · 𝑢
220 67.83 · 𝑢 1.006 × 108 · 𝑢 1.216 × 108 · 𝑢 + 𝒪(𝑢2) 1.219 × 107 · 𝑢

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

̂︁𝑦𝑅1 = RN
[︁̂︁𝑥𝑅

1 + RN
(︁̂︁𝜔𝑅̂︁𝑥𝑅

2 − RN
(︁̂︁𝜔𝐼̂︁𝑥𝐼

2

)︁)︁]︁
,̂︀𝑦𝐼1 = RN

[︁̂︁𝑥𝐼
1 + RN

(︁̂︁𝜔𝐼̂︁𝑥𝑅
2 + RN

(︁̂︁𝜔𝑅̂︁𝑥𝐼
2

)︁)︁]︁
,̂︁𝑦𝑅2 = RN

[︁̂︁𝑥𝑅
1 − RN

(︁̂︁𝜔𝑅̂︁𝑥𝑅
2 − RN

(︁̂︁𝜔𝐼̂︁𝑥𝐼
2

)︁)︁]︁
,̂︀𝑦𝐼2 = RN

[︁̂︁𝑥𝐼
1 − RN

(︁̂︁𝜔𝐼̂︁𝑥𝑅
2 + RN

(︁̂︁𝜔𝑅̂︁𝑥𝐼
2

)︁)︁]︁
.

(32)

The terms 𝜔𝑅, 𝜔𝐼 , ̂︁𝜔𝑅 and ̂︁𝜔𝐼 are input-independent, so we assume that the
errors

∆𝑅
𝜔 =

⃒⃒⃒̂︁𝜔𝑅 − 𝜔𝑅
⃒⃒⃒

and ∆𝐼
𝜔 =

⃒⃒⃒̂︁𝜔𝐼 − 𝜔𝐼
⃒⃒⃒

are computed in advance. The terms |𝑥𝑅
1 |, |𝑥𝐼

1|, |𝑥𝑅
2 |, and |𝑥𝐼

2| are results of
a 2𝑘−1-point FFT, hence they are bounded by 2𝑘+1

𝜋 as shown in Section 4.2.
However, to take advantage of a significantly smaller bound for small values of
𝑘, we will bound |𝑥𝑅

1 |, |𝑥𝐼
1|, |𝑥𝑅

2 |, and |𝑥𝐼
2| by 𝛽𝑘, defined as

𝛽𝑘 =

⎧⎨⎩
2𝑘−1 if 𝑘 6 3,

4 + 4
√

2 if 𝑘 = 4,
2𝑘+1/𝜋 otherwise.

Since 𝑥2 is the result of a 2𝑘−1-point FFT, it satisfies (see Section 4.1)√︁(︀
𝑥𝑅
2

)︀2
+
(︀
𝑥𝐼
2

)︀2
6 2𝑘−1/2,
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from which we easily deduce⃒⃒
𝑥𝑅
2 𝜔

𝑅 − 𝑥𝐼
2𝜔

𝐼
⃒⃒

6 2𝑘−1/2,⃒⃒
𝑥𝑅
2 𝜔

𝐼 + 𝑥𝐼
2𝜔

𝑅
⃒⃒

6 2𝑘−1/2.
(33)

Also, to take into account the fact that multiplications by ±1 and ±𝑖 are
errorless (these multiplications are frequent in the first steps of the FFT algo-
rithm), define, for a (real) floating-point number 𝑡:

1𝑡 =

{︂
1 if 𝑡 = ±1,
0 otherwise,

so that when multiplying some floating-point number 𝑣 by 𝑡, the incurred error
is bounded by

1

2
· (1 − 1𝑡) · ulp*(𝑣𝑡).

Define also
0𝑡 =

{︂
1 if 𝑡 = 0,
0 otherwise.

Let 𝛿𝑅1 (resp. 𝛿𝐼1 , 𝛿𝑅2 , 𝛿𝐼2) be a bound on |𝑥𝑅
1 − ̂︁𝑥𝑅

1 | (resp., |𝑥𝐼
1 −̂︁𝑥𝐼

1|, |𝑥𝑅
2 − ̂︁𝑥𝑅

2 |,
|𝑥𝐼

2−̂︁𝑥𝐼
2|). From these values we wish to compute 𝜂𝑅1 (resp., 𝜂𝐼1 , 𝜂𝑅2 , 𝜂𝐼2), bounds

on |𝑦𝑅1 −̂︁𝑦𝑅1 | (resp., |𝑦𝐼1 − ̂︀𝑦𝐼1 |, |𝑦𝑅2 −̂︁𝑦𝑅2 |, |𝑦𝐼2 − ̂︀𝑦𝐼2 |). Let us detail the calculation
of 𝜂𝑅1 . Expressions for 𝜂𝐼1 , 𝜂𝑅2 and 𝜂𝐼2 will be deduced using a straightforward
symmetry.

Lemma 6. The number
∆𝑅

𝜔 |𝑥𝑅
2 | + ∆𝐼

𝜔|𝑥𝐼
2|

is less than or equal to

1.

∆𝐼
𝜔 · 2𝑘+1

𝜋
+ ∆𝑅

𝜔 · 2𝑘 ·
√︂

1

2
− 4

𝜋2

if (∆𝑅
𝜔 /∆𝐼

𝜔)2 6 𝜋2/8 − 1;

2.
2𝑘−1/2 ·

√︁
(∆𝑅

𝜔 )2 + (∆𝐼
𝜔)2

if 𝜋2/8 − 1 < (∆𝑅
𝜔 /∆𝐼

𝜔)2 < 1/(𝜋2/8 − 1), and

3.

∆𝑅
𝜔 · 2𝑘+1

𝜋
+ ∆𝐼

𝜔 · 2𝑘 ·
√︂

1

2
− 4

𝜋2

otherwise.
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Proof. The point (|𝑥𝑅
2 |, |𝑥𝐼

2|) lies in the set

𝒜 =

{︂
0 6 𝑥 6

2𝑘+1

𝜋
, 0 6 𝑦 6

2𝑘+1

𝜋
, 𝑥2 + 𝑦2 6 22𝑘−1

}︂
.

Let 𝒞 = {(𝑥, 𝑦) ∈ R2 : 𝑥2 + 𝑦2 = 22𝑘−1} and (𝑎, 𝑏) ∈ 𝒞, one equation of the
tangent line to 𝒞 at (𝑎, 𝑏) is

𝜕(𝑥2 + 𝑦2)

𝜕𝑥
(𝑎, 𝑏)(𝑥− 𝑎) +

𝜕(𝑥2 + 𝑦2)

𝜕𝑦
(𝑎, 𝑏)(𝑦 − 𝑏) = 0, i.e., 𝑎𝑥 + 𝑏𝑦 = 𝑎2 + 𝑏2.

If we denote 𝒟 = {(𝑥, 𝑦) ∈ R2 : 𝑥2 + 𝑦2 6 22𝑘−1}, for any (𝑎, 𝑏) ∈ 𝒞, we have

𝒜 ⊂ 𝒟 ⊂ {(𝑥, 𝑦) ∈ R2 : 𝑎𝑥 + 𝑏𝑦 6 𝑎2 + 𝑏2}. (34)

First, we assume (∆𝑅
𝜔 /∆𝐼

𝜔)2 6 𝜋2/8 − 1. Let (𝑎0, 𝑏0) =
(︁

2𝑘
√︁

1
2 − 4

𝜋2 ,
2𝑘+1

𝜋

)︁
=(︂

2𝑘+1

𝜋

√︁
𝜋2

8 − 1, 2𝑘+1

𝜋

)︂
.

For any (𝑥, 𝑦) ∈ 𝒜, we have

∙ either 0 6 𝑥 6 𝑎0, then

∆𝑅
𝜔𝑥 + ∆𝐼

𝜔𝑦 6 ∆𝑅
𝜔𝑎0 + ∆𝐼

𝜔𝑏0,

∙ or, we have, from (34), 0 > 𝑎0(𝑥 − 𝑎0) + 𝑏0(𝑦 − 𝑏0). Now, recall that
𝑎0/𝑏0 =

√︀
𝜋2/8 − 1 > ∆𝑅

𝜔 /∆𝐼
𝜔 and 𝑥 > 𝑎0. Therefore, it follows that

0 >
𝑎0
𝑏0

(𝑥− 𝑎0) + (𝑦 − 𝑏0) >
∆𝑅

𝜔

∆𝐼
𝜔

(𝑥− 𝑎0) + (𝑦 − 𝑏0),

i.e.,
∆𝑅

𝜔𝑥 + ∆𝐼
𝜔𝑦 6 ∆𝑅

𝜔𝑎0 + ∆𝐼
𝜔𝑏0.

The case (∆𝑅
𝜔 /∆𝐼

𝜔)2 > 1/(𝜋2/8 − 1) follows from symmetry.
Finally, the Cauchy-Schwarz inequality yields, for any (𝑥, 𝑦) ∈ 𝒜,

∆𝑅
𝜔𝑥+∆𝐼

𝜔𝑦 6
√︀
𝑥2 + 𝑦2

√︁
(∆𝑅

𝜔 )2 + (∆𝐼
𝜔)2 6 2𝑘−1/2

√︁
(∆𝑅

𝜔 )2 + (∆𝐼
𝜔)2 since (𝑥, 𝑦) ∈ 𝒟.

In the following, we denote 𝑃 (∆𝑅
𝜔 ,∆

𝐼
𝜔) the bound on ∆𝐼

𝜔|𝑥𝐼
2|+∆𝑅

𝜔 |𝑥𝑅
2 | given

by Lemma 6. Define
𝐴𝑅

1 :=
⃒⃒⃒
RN

(︁̂︁𝜔𝐼̂︁𝑥𝐼
2

)︁
− 𝜔𝐼𝑥𝐼

2

⃒⃒⃒
.

Notice that since ̂︁𝑥𝐼
2 is a floating-point number within 𝛿𝐼2 from 𝑥𝐼

2, and since
|𝑥𝐼

2| 6 𝛽𝑘, we have |̂︁𝑥𝐼
2| 6 RZ(𝛽𝑘 + 𝛿𝐼2). We obtain,

𝐴𝑅
1 6

⃒⃒⃒
RN

(︁̂︁𝜔𝐼̂︁𝑥𝐼
2

)︁
−̂︁𝜔𝐼̂︁𝑥𝐼

2

⃒⃒⃒
+
⃒⃒⃒̂︁𝜔𝐼̂︁𝑥𝐼

2 − 𝜔𝐼𝑥𝐼
2

⃒⃒⃒
6 1

2 (1 − 1̂︁𝜔𝐼 )ulp*
(︁̂︁𝜔𝐼̂︁𝑥𝐼

2

)︁
+
⃒⃒⃒̂︁𝜔𝐼̂︁𝑥𝐼

2 −̂︁𝜔𝐼𝑥𝐼
2

⃒⃒⃒
+
⃒⃒⃒̂︁𝜔𝐼𝑥𝐼

2 − 𝜔𝐼𝑥𝐼
2

⃒⃒⃒
6 1

2 (1 − 1̂︁𝜔𝐼 )ulp*
(︁̂︁𝜔𝐼RZ(𝛽𝑘 + 𝛿𝐼2)

)︁
+ |̂︁𝜔𝐼 | · 𝛿𝐼2 + ∆𝐼

𝜔 · |𝑥𝐼
2|.

(35)
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Define

𝐵𝑅
1 := ̂︁𝜔𝑅̂︁𝑥𝑅

2 − RN
(︁̂︁𝜔𝐼̂︁𝑥𝐼

2

)︁
,

and

𝐶𝑅
1 :=

⃒⃒
RN

(︀
𝐵𝑅

1

)︀
−
(︀
𝜔𝑅𝑥𝑅

2 − 𝜔𝐼𝑥𝐼
2

)︀⃒⃒
.

Note that when ̂︁𝜔𝑅 = 0, 𝐵𝑅
1 is a floating-point number, hence no error is

committed when rounding it. This implies that in all cases the error due to
rounding 𝐵𝑅

1 is bounded by

1

2

(︁
1 − 0̂︁𝜔𝑅

)︁
ulp*(𝐵𝑅

1 ).

We have,

𝐶𝑅
1 6

⃒⃒⃒
RN

(︁̂︁𝜔𝑅̂︁𝑥𝑅
2 − RN

(︁̂︁𝜔𝐼̂︁𝑥𝐼
2

)︁)︁
−
(︁̂︁𝜔𝑅̂︁𝑥𝑅

2 − RN
(︁̂︁𝜔𝐼̂︁𝑥𝐼

2

)︁)︁⃒⃒⃒
+
⃒⃒⃒(︁̂︁𝜔𝑅̂︁𝑥𝑅

2 − RN
(︁̂︁𝜔𝐼̂︁𝑥𝐼

2

)︁)︁
−
(︀
𝜔𝑅𝑥𝑅

2 − 𝜔𝐼𝑥𝐼
2

)︀⃒⃒⃒
6 1

2

(︁
1 − 0̂︁𝜔𝑅

)︁
ulp*(𝐵𝑅

1 ) +
⃒⃒⃒̂︁𝜔𝑅̂︁𝑥𝑅

2 − 𝜔𝑅𝑥𝑅
2

⃒⃒⃒
+
⃒⃒⃒
RN

(︁̂︁𝜔𝐼̂︁𝑥𝐼
2

)︁
− 𝜔𝐼𝑥𝐼

2

⃒⃒⃒
.

(36)

Let us first consider the term
⃒⃒⃒̂︁𝜔𝑅̂︁𝑥𝑅

2 − 𝜔𝑅𝑥𝑅
2

⃒⃒⃒
in (36). We havê⃒⃒⃒︁𝜔𝑅̂︁𝑥𝑅

2 − 𝜔𝑅𝑥𝑅
2

⃒⃒⃒
6

⃒⃒⃒̂︁𝜔𝑅̂︁𝑥𝑅
2 − ̂︁𝜔𝑅𝑥𝑅

2

⃒⃒⃒
+
⃒⃒⃒̂︁𝜔𝑅𝑥𝑅

2 − 𝜔𝑅𝑥𝑅
2

⃒⃒⃒
6 |̂︁𝜔𝑅| · 𝛿𝑅2 + ∆𝑅

𝜔 · |𝑥𝑅
2 |.

Therefore, the sum

𝐷𝑅
1 :=

⃒⃒⃒̂︁𝜔𝑅̂︁𝑥𝑅
2 − 𝜔𝑅𝑥𝑅

2

⃒⃒⃒
+
⃒⃒⃒
RN

(︁̂︁𝜔𝐼̂︁𝑥𝐼
2

)︁
− 𝜔𝐼𝑥𝐼

2

⃒⃒⃒
,

that appears in (36) is bounded by 𝐴𝑅
1 + |̂︁𝜔𝑅| · 𝛿𝑅2 + ∆𝑅

𝜔 · |𝑥𝑅
2 |, which implies

from (35) and Lemma 6

𝐷𝑅
1 6

1

2
(1 − 1̂︁𝜔𝐼 )ulp*

(︁̂︁𝜔𝐼RZ(𝛽𝑘 + 𝛿𝐼2)
)︁

+ |̂︁𝜔𝐼 | · 𝛿𝐼2 + |̂︁𝜔𝑅| · 𝛿𝑅2 + 𝑃 (∆𝑅
𝜔 ,∆

𝐼
𝜔).

Finally, in (36), we need to bound the term |𝐵𝑅
1 |, in order to obtain a bound

on 1
2ulp* of that value. We havê⃒⃒⃒︁𝜔𝑅̂︁𝑥𝑅

2 − RN
(︁̂︁𝜔𝐼̂︁𝑥𝐼

2

)︁⃒⃒⃒
6
⃒⃒⃒̂︁𝜔𝑅

⃒⃒⃒
· RZ(𝛽𝑘 + 𝛿𝑅2 ) + RN

(︁⃒⃒⃒̂︁𝜔𝐼
⃒⃒⃒
· RZ(𝛽𝑘 + 𝛿𝐼2)

)︁
,

and we also have, using (33),⃒⃒⃒̂︁𝜔𝑅̂︁𝑥𝑅
2 − RN

(︁̂︁𝜔𝐼̂︁𝑥𝐼
2

)︁⃒⃒⃒
6
⃒⃒
𝜔𝑅𝑥𝑅

2 − 𝜔𝐼𝑥𝐼
2

⃒⃒
+ 𝐷𝑅

1 6 2𝑘−1/2 + 𝐷𝑅
1 .
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All this gives

|𝐵𝑅
1 | 6 min

{︂
2𝑘−1/2 + 𝐷𝑅

1 ;
⃒⃒⃒̂︁𝜔𝑅

⃒⃒⃒
· RZ(𝛽𝑘 + 𝛿𝑅2 ) + RN

(︁⃒⃒⃒̂︁𝜔𝐼
⃒⃒⃒
· RZ(𝛽𝑘 + 𝛿𝐼2)

)︁}︂
.

Now, we have all the elements for obtaining a bound on 𝐶𝑅
1 .

𝐶𝑅
1 6

1

2

(︁
1 − 0̂︁𝜔𝑅

)︁
ulp* (︀𝐵𝑅

1

)︀
+ 𝐷𝑅

1 .

Finally, define

𝑍𝑅
1 := ̂︁𝑥𝑅

1 + RN
(︁̂︁𝜔𝑅̂︁𝑥𝑅

2 − RN
(︁̂︁𝜔𝐼̂︁𝑥𝐼

2

)︁)︁
,

so that ̂︁𝑦𝑅1 = RN(𝑍𝑅
1 ). Since ̂︁𝑥𝑅

1 is a floating-point number less than or equal
to 𝛽𝑘 + 𝛿𝑅1 , it is less than or equal to RZ(𝛽𝑘 + 𝛿𝑅1 ). We therefore have

𝑍𝑅
1 6 RZ(𝛽𝑘 + 𝛿𝑅1 ) + |RN(𝐵𝑅

1 )|.

We can now bound the error on 𝑦𝑅1 :

⃒⃒⃒̂︁𝑦𝑅1 − 𝑦𝑅1

⃒⃒⃒
=

⃒⃒
RN(𝑍𝑅

1 ) −
(︀
𝑥𝑅
1 + 𝜔𝑅𝑥𝑅

2 − 𝜔𝐼𝑥𝐼
2

)︀⃒⃒
6

⃒⃒
RN(𝑍𝑅

1 ) − 𝑍𝑅
1

⃒⃒
+
⃒⃒
𝑍𝑅
1 −

(︀
𝑥𝑅
1 + 𝜔𝑅𝑥𝑅

2 − 𝜔𝐼𝑥𝐼
2

)︀⃒⃒
6 1

2ulp*(𝑍𝑅
1 ) +

⃒⃒⃒̂︁𝑥𝑅
1 − 𝑥𝑅

1

⃒⃒⃒
+
⃒⃒⃒
RN

(︁̂︁𝜔𝑅̂︁𝑥𝑅
2 − RN

(︁̂︁𝜔𝐼̂︁𝑥𝐼
2

)︁)︁
−
(︀
𝜔𝑅𝑥𝑅

2 − 𝜔𝐼𝑥𝐼
2

)︀⃒⃒⃒
6 1

2ulp* (︀RZ(𝛽𝑘 + 𝛿𝑅1 ) + |RN(𝐵𝑅
1 )|
)︀

+ 𝛿𝑅1 + 𝐶𝑅
1 .

Hence, if we call 𝐵𝑅
1 , 𝐶𝑅

1 , 𝐷𝑅
1 the bounds we have obtained on |𝐵𝑅

1 |, 𝐶𝑅
1

and 𝐷𝑅
1 , we will choose

𝜂𝑅1 = 𝜂𝑅2 =
1

2
ulp*

(︁
RZ(𝛽𝑘 + 𝛿𝑅1 ) + |RN(𝐵𝑅

1 )|
)︁

+ 𝛿𝑅1 + 𝐶𝑅
1 .

The same bound straightforwardly applies to
⃒⃒⃒̂︁𝑦𝑅2 − 𝑦𝑅2

⃒⃒⃒
. To deduce a bound on⃒⃒⃒ ̂︀𝑦𝐼1 − 𝑦𝐼1

⃒⃒⃒
and

⃒⃒⃒ ̂︀𝑦𝐼2 − 𝑦𝐼2

⃒⃒⃒
it suffices to notice that in (32), one gets line 2 from line

1 and line 4 from line 3 by replacing ̂︁𝑥𝑅
1 by ̂︁𝑥𝐼

1, exchanging ̂︁𝜔𝑅 and ̂︁𝜔𝐼 , doing
the appropriate sign changes, and leaving ̂︁𝑥𝑅

2 and ̂︁𝑥𝐼
2 unchanged. Hence, in the

final error formulas, one will have to replace 𝛿𝑅1 by 𝛿𝐼1 , exchange ̂︁𝜔𝑅 and ̂︁𝜔𝐼 ,
exchange ∆𝑅

𝜔 and ∆𝐼
𝜔, and leave 𝛿𝑅2 and 𝛿𝐼2 unchanged. We obtain,

Lemma 7. We havê⃒⃒⃒︁𝑦𝑅1 − 𝑦𝑅1

⃒⃒⃒
6 𝜂𝑅1 ,

⃒⃒⃒̂︁𝑦𝑅2 − 𝑦𝑅2

⃒⃒⃒
6 𝜂𝑅2 ,⃒⃒⃒ ̂︀𝑦𝐼1 − 𝑦𝐼1

⃒⃒⃒
6 𝜂𝐼1 ,

⃒⃒⃒ ̂︀𝑦𝐼2 − 𝑦𝐼2

⃒⃒⃒
6 𝜂𝐼2 ,
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where

𝜂𝑅1 = 𝜂𝑅2 =
1

2
ulp*

(︁
RZ(𝛽𝑘 + 𝛿𝑅1 ) + |RN(𝐵𝑅

1 )|
)︁

+ 𝛿𝑅1 + 𝐶𝑅
1 , (37)

with

𝐵𝑅
1 = min

{︂
2𝑘−1/2 + 𝐷𝑅

1 ;
⃒⃒⃒̂︁𝜔𝑅

⃒⃒⃒
· RZ(𝛽𝑘 + 𝛿𝑅2 ) + RN

(︁⃒⃒⃒̂︁𝜔𝐼
⃒⃒⃒
· RZ(𝛽𝑘 + 𝛿𝐼2)

)︁}︂
.

and
𝐶𝑅

1 =
1

2

(︁
1 − 0̂︁𝜔𝑅

)︁
ulp*

(︁
𝐵𝑅

1

)︁
+ 𝐷𝑅

1 ;

and

𝐷𝑅
1 =

1

2
(1 − 1̂︁𝜔𝐼 )ulp*

(︁̂︁𝜔𝐼 · RZ(𝛽𝑘 + 𝛿𝐼2)
)︁

+ |̂︁𝜔𝐼 | · 𝛿𝐼2 + |̂︁𝜔𝑅| · 𝛿𝑅2 + 𝑃 (∆𝑅
𝜔 ,∆

𝐼
𝜔).

and
𝜂𝐼1 = 𝜂𝐼2 =

1

2
ulp*

(︁
RZ(𝛽𝑘 + 𝛿𝐼1) + |RN(𝐵𝐼

1)|
)︁

+ 𝛿𝐼1 + 𝐶𝐼
1 , (38)

with

𝐵𝐼
1 = min

{︂
2𝑘−1/2 + 𝐷𝐼

1 ;
⃒⃒⃒̂︁𝜔𝐼
⃒⃒⃒
· RZ(𝛽𝑘 + 𝛿𝑅2 ) + RN

(︁⃒⃒⃒̂︁𝜔𝑅
⃒⃒⃒
· RZ(𝛽𝑘 + 𝛿𝐼2)

)︁}︂
.

and
𝐶𝐼

1 =
1

2

(︁
1 − 0̂︁𝜔𝐼

)︁
ulp*

(︁
𝐵𝐼

1

)︁
+ 𝐷𝐼

1 ;

and

𝐷𝐼
1 =

1

2
(1 − 1̂︁𝜔𝑅)ulp*

(︁̂︁𝜔𝑅 · RZ(𝛽𝑘 + 𝛿𝐼2)
)︁

+ |̂︁𝜔𝑅| · 𝛿𝐼2 + |̂︁𝜔𝐼 | · 𝛿𝑅2 + 𝑃 (∆𝑅
𝜔 ,∆

𝐼
𝜔).

We can now use Lemma 7 to “propagate” the error bounds. The structure
of the propagation algorithm is exactly the structure of the FFT algorithm. In
the pseudcode of Figure 1 we can just replace the two lines
y[j1] = x[j1] + omega[k,j] · x[j2]
y[j2] = x[j1] − omega[k,j] · x[j2]

by the calculation of error bounds on the real and imaginary parts of y[j1]
and y[j2] from the error bounds on the real and imaginary parts of x[j1] and x[j2]
using Eqs (37) and (38). However, instead of starting from Step 𝑘 = 1 with
initial error bounds equal to zero (the input values are assumed exact), one will
obtain tighter error bounds by starting from 𝑘 = 3, with initial error bounds
equal to the straightforward value 4𝑢.

The obtained bounds are given in Table 6.
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Table 6: Bounds on ‖𝑋 − 𝑋̂‖⊥∞, provided by the iterative method. We as-
sume double-precision arithmetic (𝑝 = 53), and we also assume that an FMA
instruction is available. These bounds are for ‖𝑥‖⊥∞ 6 1. To obtain bounds for
‖𝑥‖⊥∞ 6 2𝑚, it suffices to multiply all the values by 2𝑚.
𝑁 Bound on ‖𝑋 − 𝑋̂‖⊥∞
25 294.21 · 𝑢
28 5757.7 · 𝑢
210 36677 · 𝑢
212 222685 · 𝑢
214 1.321 × 106 · 𝑢
216 7.682 × 106 · 𝑢
218 4.413 × 107 · 𝑢
220 2.519 × 108 · 𝑢

Discussion and conclusion
If we consider error bounds in terms of the 2-norm, in all considered cases,
Theorem 7 gives a smaller bound than the previously published ones. When
the infinite norm is at stake, using again Theorem 7 and (7) has its interest: in
all considered cases (see Table 5), it gives better bounds than Henrici’s theorem
(Theorem 6), without the annoyance of the 𝒪(𝑢2) terms. The iterative method
developed in Section 5.2 gives a better bound than Theorem 7 and (7) only for
reasonably small input size (roughly speaking for 𝑁 < 212, see Tables 5 and 6).
We suspect that this is due to the fact that when we reason in terms of 2-norms
we are able to use “exact” relations such as ‖𝑍‖2 =

√
𝑁‖𝑧‖2, that have no

equivalent in terms of infinite norms.
When one tries to run the FFT algorithm with input values chosen randomly,

one obtains errors that are much smaller than the error bounds presented in this
paper and the FFT literature. This may make one believe that the bounds are
rather loose and need to be significantly improved. The family of examples built
in Section 5.1 shows that this is not the case. The obtained errors (for which
we have no strong reason to believe that they are worst case errors) are of the
same order of magnitude (approximately 8 times smaller) as the bounds given
by Theorem 7 and (7), as shown in Table 5.

Finally, the upper bound ‖𝑥‖⊥∞ · 𝑁 · 4/𝜋 on the values that can appear in
intermediate calculations, given in Section 4 (and used in Section 5.2), can also
be of interest for the designers of hardware implementations of the FFT, since
they need to minimize the internal representations of numbers while avoiding
overflows.
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