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ABSTRACT

With the democratization of mobile devices embedding dif-
ferent positioning capabilities, the location of users is now
collected to track the location of users. When used for behav-
ioral profiling, this tracking for enhancing raises more and
more privacy concerns.Depending on the permissions, mobile
applications can get a fine-grained user’s location from the
GPS or a coarse-grained location by requesting location data
provider with surrounding Wi-Fi access points for instance.
While using the GPS does not rely on external untrusted
party, requesting a location data provider clearly exposes the
location of users. Whereas location privacy has been an active
research field this last decade, most of the contributions are
performed on GPS-based data, and it is not clear how to
efficiently protect Wi-Fi-based positioning to preserve the
users’ privacy. In this paper, we propose a novel solution to
preserve users’ privacy from curious location data providers
when requesting users’ location from Wi-Fi while supporting
high-utility. The key idea behind our online approach is to
combine a random sampling (for controlling the quantity of
revealed information) and a obfuscation scheme (for ensuring
privacy-preserving information disclosure). We exhaustively
evaluate our solution with a real dataset of mobility traces col-
lected through multiple sensors. We show that the proposed
approach provides a trade-off between privacy (i.e., avoiding
to reveal its true location) and utility (i.e., still benefiting
from services such as places recommendation) fully control-
lable by the users. Lastly, we also discuss the integration of
our protection scheme in mobile operating systems.

CCS CONCEPTS

e Security and privacy — Privacy protections; Mobile
and wireless security; ® Networks — Location based services;

KEYWORDS

Location privacy, Location data provider, Wi-Fi-based posi-
tioning

1 INTRODUCTION

With the democratization of positioning capabilities on mo-
bile devices, location-aware computing is now exploited in
most of mobile applications. These applications are thus able
to determine the location of users in real time and to provide
them geolocated services, often called Location-Based Ser-
vices (LBSs for short). These services provide a contextual
and personalised information depending on the current users
location. A multitude of LBSs have emerged these last years
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from venue finders (e.g., Foursquare ') to social games (e.g.,
Pokemon GO ?2) or crowd-sensing applications [3].

While these LBSs require users to disclose their location
to make the application working as expected, some mobile
applications also collect the location of users through different
sensors without their explicit consent [1, 4, 9]. This intrusive
and abusing tracking for behavioral profiling purpose raises
important privacy concerns from users.

Depending on the permissions, the mobile operating system
will serve to a mobile application a fine or a coarse-grained
location information. The user’s location can be retrieved
by the operating system from the GPS (fine-grained) or by
requesting a location data provider (coarse-grained) to covert
surrounding Wi-Fi access points (APs for short), nearby cel-
lular antennas, or an IP address into location. While GPS
provided a finer-grained location, relying on location data
provider becomes increasingly used as GPS signals are not
reliably detectable in indoor environment and takes more
time for response and causes delay in location determination.
Due to the high density of detectable access points (APs
for short) in many areas, both outdoor and indoor, Wi-Fi
is an excellent communication technology on which to base
a location system. Consequently, many online location data
providers are available to request in real time the location
of users according to the surrounding Wi-Fi access points
(e.g., WiGLE ®, Google , or Skyhook ®). To illustrate this
positioning capability from Wi-Fi, Figure 1 depicts both the
location of a user in Lyon, France, collected from the GPS
(Figure la) and approximated from the Wi-Fi (Figure 1b)
using Google Maps Geolocation API. This illustration clearly
demonstrates that the user’s location can be precisely re-
vealed to the location data provider from Wi-Fi.

While relying on the GPS to retrieve the location is local
and does not reveal the location of user to any third parties,
requesting location data provider with surrounding Wi-Fi
APs points obviously exposes its location to the location
data provider. Location privacy has generated an important
literature this last decade [2, 6, 7]. However, most of the
proposed works address GPS-based location remaining the
protection of Wi-Fi-based positioning not clear. As far as
we know, only very few contributions address this issue. For
instance, [11, 12] introduces the protection of Wi-Fi-based po-
sitioning information when releasing a dataset for a challenge.
However, this privacy preserving operation includes many

1 Foursquare: https://www.foursquare.com

2Pokemon GO: http://pokemongo.nianticlabs.com

3WiGLE: Wireless Network Mapping, http://wigle.net

4Google Maps Geolocation API: https://developers.google.com/maps/
5Skyhook: https://www.skyhookwireless.com
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(a) The user’s locations captured by the GPS

(b) The locations inferred from the Wi-Fi

Figure 1: The location of the users can be precisely inferred from the Wi-Fi.

manual operations which are difficult to fully understand and
reproduce. In addition, the evaluation of both the privacy
and the utility is not reported and this protection scheme is
not adapted in our considered online scenario. Indeed, Lo-
cation Privacy-Preserving Mechanisms (LPPMs for short)
can be classified in two categories, the offline and the online
mechanisms. While offline mechanisms aim to protect entire
datasets at once before they are published, the online ones
aim at protecting on the fly the generated information before
being sent to a LBS. Protecting requests sent to location
data providers falls into the online category. This online sce-
nario has been considered by Li et al. [13], who introduced a
scheme based on homomorphic encryption to protect both
the client’s location privacy and the service provider’s data
privacy. However, the use of homomorphic encryption induces
a computation and communication cost that makes it im-
practical for large scale application. Regardless the category,
protecting (or sanitizing) location information improves the
privacy but have also an inherent harmful impact of the
utility of the protected information. For instance, introduc-
ing spatial noise obfuscates the real location of user (i.e.,
privacy gain), however this obfuscation reduces the accuracy
of recommendations of places based on the protected data
(i.e., utility loss). Privacy and utility metrics are very often
dependent on the considered application.

In this paper, we propose a novel online solution to pre-
serve users’ privacy from location data providers when re-
questing the location of users from surrounding Wi-Fi access
points, while supporting high-utility. To achieve our goal we
combine a random sampling for controlling the quantity of
revealed information and a obfuscation scheme for ensuring
privacy-preserving information disclosure. More precisely, our
protection mechanism picks at random a limited number of
Wi-Fi APs in all surrounding APs to be part of the request.
The number of samples included in the request impacts the
precision of the location approximation, the more samples,
the most accurate. Additionally, we employ an obfuscation
scheme to add noise to the request. Specifically, we locally
maintain on each user device a graph of collocated APs (i.e.,
two APs are linked together if they are visible simultaneously
in the same neighborhood by the user device). Then for each

sample, we include the true MAC address of the AP with a
certain probability or the MAC address of a random one at
a certain distance in the graph otherwise.

We exhaustively evaluate our obfuscation scheme with a
real dataset of mobility traces collected through multiple
sensors. We show that our solution can improve the privacy
of user by reducing the precision of its location while limiting
the utility loss of the protected information. We show that
the proposed approach provides a trade-off between privacy
and utility that can be controllable by the users. Lastly, we
also discuss the integration of our protection mechanism in
mobile operating systems.

The remaining of this paper is organised as follow. We
first describe the problem statement associated to revealing
Wi-Fi information and review related works in Section 2. We
then present our protection mechanism in Section 3. Finally,
we introduce the experiment setup and the evaluation we
consider to assess our protection mechanism in Section 4
and 5, respectively. Lastly, we discuss the integration of this
mechanism in mobile operating system and conclude this
paper in Section 6.

2 PROBLEM STATEMENT AND
BACKGROUND

Most of the mobile phones nowadays embed a Wi-Fi in-
terface. By regularly performing Wi-Fi scans, those Wi-Fi
enabled devices maintain an up-to-date list of nearby APs.
Consequently, through these network discovery operations, a
mobile phone is always aware off the surrounding Wi-Fi APs
available.

The collected information about the surrounding Wi-Fi
APs can be used to locate the user. Indeed, many Location
Data Providers offer online API to convert this information
into location. Specifically, these providers collect and main-
tain a database with the physical location of a large amount
of Wi-Fi APs and use position estimator [10] to translate a
list of Wi-Fi APs into a location. This location is then used
by the mobile system and transmitted to permitted mobile
applications to provide a geolocated service.
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Figure 2: The user’s location is exposed to the location data provider via the list of surrounding Wi-Fi APs.

Figure 2 gives an overview of the process. First, the mobile
system performs regularly Wi-Fi scans to discover and main-
tain an up-to-date list of nearby APs (@). From these Wi-Fi
scans the mobile system gathers several pieces of information
such as the authentication mode, the MAC address of the
AP (BSSID), the operating channel, the Service Set Iden-
tifier (SSID), a timestamp and a Received Signal Strength
Indication (RSSI), the higher the stronger. When the mobile
system decides to update the location, it requests the API
of a location data provider (@). This request contains the
MAC address of a list of Wi-Fi APs and may include the
RSSI. Obviously, requesting this service is a privacy threat
as it reveals to the location data provider information related
to the location of the users. Lastly, this service provider re-
sponds to the mobile system by providing an estimation of
the location from the request (@) which stores and delivers
this information to permitted applications. Note that in order
to avoid to maliciously collect the location of one specific
AP, those services requires that at least two Wi-Fi APs are
provided in the request. Location data providers usually can
also provide an estimation of the location from the IP ad-
dress and other wireless networks such as surrounding Cell
Towers or Bluetooth networks. In this paper, we consider the
protection of this request only including information from
Wi-Fi. We consider an adversary inferring the location of the
user from a single API request. We let the problem of an
adversary collecting and processing a history of requests and
thus inferring more information about the users for future
works.

3 PROTECTION MECHANISM

Our mechanism aims at protecting the requests sent to lo-
cation data providers to get the position of the users from
the surrounding Wi-Fi access points. Specifically, to avoid re-
vealing a fine-grained information about the location of users
while maintaining a high utility, our protection mechanism

combines two techniques: a random sampling and obfuscation
scheme.

3.1 Random Sampling

To limit and to control the precision of the users’ location re-
vealed to the service provider, we exploit a random sampling.
More precisely, we select a sample of size s from the set of all
surrounding Wi-Fi APs available, where each AP in the list
has the same chance of being included in the sample. Obvi-
ously, the larger s, the most accurate will be the estimation
of the location provided by the location data provider. We
empirically define three different values for the size s, 2 (the
smallest accepted size by the service provider for the list of
APs informed in the request), 5, and 10 for a high, medium,
and low protection of the location, respectively. Our approach
is user-driven, according to the expected privacy level, users
define the size of the sample among the three different values.
If the number of available Wi-Fi APs is smaller than the
expected threshold, we use all available Wi-Fi APs.

3.2 Obfuscation Scheme

To avoid revealing to the service provider only APs actually
located nearby the user, we exploit an obfuscation scheme.
This obfuscation protects users privacy by allowing individ-
uals to prepare a request without providing truthful list of
surrounding Wi-Fi APs all the time, yet it allows location
data provider to provide an approximation of the user lo-
cation. Our obfuscation scheme works as follows: suppose a
user willing to send a request to a location data provider to
retrieve its location. Once, the sample of APs is defined, for
each considered AP in the sample, our protection mechanism
flips a coin, if it comes up heads (with probability of p), then
the mechanism keeps the truthful MAC address associated
to the AP; otherwise with probability of (1 — p), the mecha-
nism set another MAC address. In this second case, to define
which MAC address will replace the true one, our mechanism
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exploits a local graph structure maintaining information col-
lected from past Wi-Fi scans. This undirected graph G(A, E)
maintains the past encountered APs represented by vertices,
A = a1, u2,us, ...un where edges, £ = e, e, €3, ...en, connect
APs that were part of the same Wi-Fi scan (i.e., actually
nearby located). With a probability of (1 — p), our scheme
performs a 2-hop random walk from the truthful AP in the
graph to select the MAC address that will be used instead of
the real one. Using this graph to control the obfuscation of
the request, makes the approximation of the location with
more uncertainty while maintaining a plausible list of APs in
the request. Indeed, if the list of APs present in the requests
are unrealistic (i.e., actually not nearby located), the location
data provider is not able to provide any location and returns
an error message °.

Therefore, this obfuscation scheme ensures privacy-preserving
information disclosure by bounding the amount of informa-
tion the location data provider gets when receiving a request
from a user. Instead of knowing with certainty that the user is
located nearby all the Wi-Fi APs informed in the request, the
service provider only knows that the user is located nearby
each AP of the request with a probability of (1 — p).

Intuitively, the modification of the signal strength could be
also leveraged to obfuscate the location of the users. We tried
this approach by replacing the signal strengths with random
values and by removing altogether the signal strengths from
the requests. However we obtained inconclusive results and
we thus decided to discard this method. Consequently, our
solution only leverages the list of Wi-Fi APs in the request to
protect the real users’ location and does not use other fields
such as signal strength.

4 EXPERIMENT SETUP

In this section, we present the dataset, the methodology and
the evaluation metrics we used to conduct our experiments.

4.1 Dataset

The PRIVAMOV dataset [5] involves 100 students and staff
from various campuses in the city of Lyon equipped with
smartphones running a data collection software. The data
SFor instance, using a length of random walk larger than 2 drastically

increases the number of queries that do not result to a retrieval of a
location from the location data provider.

collection took place from October 2014 to January 2016 and
gathers information from many sensors such as GPS, Wi-Fi,
GSM, accelerometer to name a few. In this paper, we use
the records from the GPS periodically collected and the logs
from the Wi-Fi scan as presented in Section 2. These two
data collection gather 156M and 25M of records, respectively.

To compare both the location of the user inferred from the
Wi-Fi and the location measured from the GPS, we first iden-
tify the information from the Wi-Fi scan that are combined to
a GPS record with less than 2 seconds difference. We identify
29,405 Wi-Fi scans (i.e., a list of surrounding Wi-Fi APs)
associated to a GPS coordinates. Figure 3 presents the distri-
bution (through CDF) of different properties of this dataset
such as the number of APs in each Wi-Fi scan (Figure 3a),
the signal strength of each Wi-Fi AP (Figure 3b), the accu-
racy of the location estimated by Google Maps Geolocation
API (Figure 3c), and the degree of APs in a graph structure
reflecting the nearby APs capturing through all Wi-Fi scans
(Figure 3d). The distributions show that on average a Wi-Fi
scan contains 15 APs and have a signal strength smaller
than -80dbm (the closer to 0, the strengthen). Distribution
Figure 3c also shows that on average the accuracy of the
location reported by the Google Geolocation service is around
40 meters when we inform the signal strength in the request.
Without this information, the accuracy reported by Google
is coarse-grained and is 150 meters for all requests. However,
as discussed previously, our analysis reports opposite results
where requests without signal strength provides on average a
slightly better accuracy. Lastly, the distribution of the degree
of APs in the collocated graph is around 40.

4.2 Utility and privacy metrics

LPPMs improve the user privacy but inherently impact the
utility of the resulting protected data [8]. Many utility and
privacy metrics have been proposed. In this paper, the con-
sidered privacy assessment is performed by measuring the
spatial distortion between the real location of the user (i.e.,
the location collected by the GPS) and the location retrieved
from the Google Maps Geolocation API with a protected
request. The utility, in turn, is evaluated by quantifying the
completeness (i.e., the recall) of the recommendations list
provided by Google Places API associated to the real location
of the user compared to the recommendations list provided
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by the approximation of the user location (i.e., from the
protected request). We consider a radius of 50 meters when
we request the recommendations from Google Places API.
Both the privacy and the utility metrics are defined as follow:

Privacy = A(coordgps, coordwi—ri) ; Utility =

[Rgps|

where, A(a,b) provides the distance between the coordi-
nate a and b, and Ryps and Rwi—r; the list of recommen-
dations associated to the real location of the user (i.e., the
GPS coordinates) and the approximation retrieved from the
protected requested sent to Google Places API.

5 EVALUATION

In this section we evaluate the capacity of our mechanism to
preserve the privacy of user by protecting the requests sent
to location data providers (Section 5.1) while limiting the
associated utility loss (Section 5.2). Finally, we analyse the
trade-off between privacy and utility (Section 5.3).

5.1 Privacy evaluation

In this section, we evaluate the gain of privacy provided
by our protection mechanism. As described in Section 3,
our protection scheme modifies on the fly the requests sent
to location data providers in order to both include only a
sub sample and uncertainly on the surrounding Wi-Fi APs.

|Rgps N Rwi—Fil

(b) Impact of obfuscation scheme (s=5)

Figure 5: Utility distribution.

We start by evaluating the impact of the random sampling.
Figure 4a plots the distribution of the distance between the
real location of users and the approximation inferred from Wi-
Fi provided by Google Maps Geolocation API for different
sizes of sample (parameter s where s = o represents no
sampling). Firstly, results show that the average accuracy of
the location retrieved from Wi-Fi from this service provider
is around 30 meters. For comparison purpose, the accuracy
of the location retrieved from the GPS is around 3 meters, 10
times for precise. Secondly, results show that a sample with
10 APs provide a similar privacy level, and reducing the size
of this sample improves the privacy level (an accuracy of 40
and 50 meters for a size of 5 and 2, respectively).

We then evaluate the impact of the obfuscation scheme.
Figure 4b depicts the distribution of the privacy for a size
of sample fixed at 5 with varying probability of obfuscation.
Results show that increasing the probability of obfuscation
(parameter p) improves the privacy (up to 40 meters for a
probability of 0.5).

Combining random sample and obfuscation scheme are
complementary and improves the privacy. For instance, com-
bining both with a size of sample of 5 provides a privacy level
from 30 to 90 meters.

5.2 Utility evaluation

‘We now evaluated the utility loss introduced by our protection
mechanism. Figure 5a starts by evaluating the impact of the



random sampling by depicting the distribution of the utility
for varying size of sample (parameter s), namely 2, 5, 10, and
without sampling (s = c0). Similarly to the privacy, retrieving
the location of users from the Wi-Fi even without sampling
inherently reduces the utility compared to a location retrieved
from the GPS. For instance, 80% of the answers have more
than 0.5 of utility, and 50% of the answers have more than
0.95 of utility. In addition, results show that reducing the
size of the sample have an important impact of the utility,
the smaller size, the smaller utility. For instance, 50% of the
answers have more than 0.7 of utility for a size of sample of
10 while this value drastically drops to 0.05 for a size of 2.
Figure 5b then assesses the impact of the obfuscation
scheme and depicts the distribution of the utility for different
probability p with a size s=2. results show that the utility
is a function of the probability p, the larger probability, the
greater utility. For instance, 25% of the requests provide a
utility at 0.5 for a probability at 0.7 while only 0.05% of the
requests reaches this utility level with a probability p at 0.5.

5.3 Privacy and Utility Trade-off

Finally, we analyse the trade-off between privacy and utility.
Figure 6 presents this trade-off for a sample size of 2, 5,
and 10, as well as without sampling (s = ). Results shows
that when results provide an important utility, the privacy
is however small (privacy of 10 meters for an utility of 0.95).
Inversely, when the privacy level is important, the utility
is small (e.g., a utility of 0.3 gives a privacy of around 75
meters). These curves illustrate the well-known conflicting
trade-off between utility and privacy.

It is interesting to note that each curve have to be corre-
lated with the distribution presented in Section 5.1 and 5.2.
Indeed, as shown Figure 4 and Figure 5, the privacy and
utility do not follow a uniform distribution over their range of
values. Consequently, for instance for r=2, most of the values
are represented for an utility inferior to 0.4 However, only
watching the trade-off do not provide enough information to
appreciate the range of values.

6 DISCUSSIONS AND CONCLUSIONS

We proposed in this paper, a practical mechanism to preserve
the privacy of users against location data providers from
Wi-Fi. We show that our protection mechanisms can improve
the privacy while maintaining a high utility. This mechanism
could be included by vendors inside their mobile operating
system. In this case, the user would then have the choice of
using the original service or to activate our mechanism and
choose its level of obfuscation. We are currently implementing
and testing this solution to measure the quality of some
services and mobile applications in real condition. As future
works, we plan to provide differential privacy guaranty by
using Randomized Response in our protection scheme.

It is interesting to note that the perturbed data requests
might have a negative impact on the database maintained by
the location data provider. Indeed, those requests are used
by the service provider to keep their database up-to-date and

to correct it; thus sending inaccurate requests might damage
the quality of the location data.
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