Torsional Alfvén waves in a dipolar magnetic field: experiments and simulations - Archive ouverte HAL Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2018

Torsional Alfvén waves in a dipolar magnetic field: experiments and simulations

Résumé

The discovery of torsional Alfv\'en waves (geostrophic Alfv\'en waves) in the Earth's core \citep{gillet_fast_2010} calls for a better understanding of their properties. We present the first experimental observations of torsional Alfv\'en waves, performed in the \dts set-up. In this set-up, 50L of liquid sodium (magnetic Prandtl number $Pm = 7.4 \times 10^{-6}$) are confined between an inner sphere ($r_i = 74$ mm) and an outer shell ($r_o = 210$ mm). The inner sphere houses a permanent magnet, imposing a vertically aligned dipolar magnetic field ($B_{max} = 345$ mT). Both the inner sphere and the outer shell can rotate around the vertical axis. \Alfven waves are triggered by a sudden and short rotation (jerk) of the inner sphere. We study the propagation of these waves when the fluid is initially at rest, and when it spins at a rotation rate up to $15$ Hz. The waves produce an azimuthal magnetic field, which we measure at different radii inside the fluid with magnetometers installed in a sleeve. We also record the electric potential signature on the outer shell at several latitudes. Besides, we probe the associated azimuthal velocity field using ultrasound Doppler velocimetry. With a $15$ Hz rotation rate, and because of the radial decay of the magnetic field intensity, the dynamical regimes we achieve are characterized by dimensionless numbers in the following ranges: Lundquist number $0.5 < Lu < 16$, Lehnert number $0.01 < Le < 0.3$, Rossby number $Ro \sim 0.1$. We observe that the magnetic signal propagates away from the inner sphere, damped by magnetic diffusion. Rotation affects the magnetic signature in a subtle way. Its effect is more pronounced on the surface electric potentials, which are sensitive to the actual fluid velocity of the wave. The ultrasound Doppler probes provide the first experimental measurement of the fluid velocity of an Alfv\'en wave. To complement these observations, we ran numerical simulations, using the XSHELLS pseudo-spectral code with parameters as close as possible to the experimental ones. The synthetic magnetic and electric signals match our measurements. The meridional snapshots of the synthetic azimuthal velocity field reveal the formation of geostrophic cylinders expected for torsional Alfv\'en waves, and the excitation of inertial modes for abrupt jerks of the inner sphere. In the absence of rotation, inertial effects become dominant both in the experiments and in the simulations. The resulting non-linear regimes reveal the formation of an equatorial sheet with a mushroom-shape cross-section. We establish scaling laws for the magnetic and kinetic energies of Alfv\'en waves with and without rotation. In both cases, we find that the magnetic energy $E_M$ saturates at a level proportional to $Rm_{jerk}^2$, where $Rm_{jerk} = U_{jerk} r_o/\eta$ is the magnetic Reynolds number built with the maximum azimuthal velocity of the inner sphere during the jerk. The $E_K^{max}/E_M^{max}$ ratio (where $E_K^{max}$ is the maximum kinetic energy), close to 1 for very short rotation, increases linearly with the jerk duration.
Fichier principal
Vignette du fichier
Torsional_waves_Zahia_gji.pdf (5.07 Mo) Télécharger le fichier
0Hz_DB2_surf_article-eps-converted-to.pdf (290.38 Ko) Télécharger le fichier
0Hz_fieldBp_0060_new-eps-converted-to.pdf (401.08 Ko) Télécharger le fichier
0Hz_fieldUp_0060_new-eps-converted-to.pdf (113.37 Ko) Télécharger le fichier
15Hz_fieldBp_0060_new-eps-converted-to.pdf (369.66 Ko) Télécharger le fichier
15Hz_fieldUp_0060_new-eps-converted-to.pdf (230.34 Ko) Télécharger le fichier
170207S7X39_phase_shift_detrended-eps-converted-to.pdf (25.21 Ko) Télécharger le fichier
170207S9X48_phase_shift_0Hz-eps-converted-to.pdf (47.93 Ko) Télécharger le fichier
170411S12X52_UDV1_surf_new_alt-eps-converted-to.pdf (57.68 Ko) Télécharger le fichier
170411S13X57_UDV2_surf_new_alt-eps-converted-to.pdf (73.42 Ko) Télécharger le fichier
Alfven_wavefronts_full-eps-converted-to.pdf (83.38 Ko) Télécharger le fichier
BP5-20_15Hz_all-eps-converted-to.pdf (71.86 Ko) Télécharger le fichier
BP_15_zoom-eps-converted-to.pdf (12.97 Ko) Télécharger le fichier
BP_stack_-20deg_50-100ms_0Hz-eps-converted-to.pdf (50.39 Ko) Télécharger le fichier
BP_stack_-20deg_50-100ms_15Hz-eps-converted-to.pdf (51.74 Ko) Télécharger le fichier
DTS_jerk_170207S7X38_jerk_3-eps-converted-to.pdf (20.32 Ko) Télécharger le fichier
EM_vs_Rm2-eps-converted-to.pdf (13.01 Ko) Télécharger le fichier
V-40_15Hz_all-eps-converted-to.pdf (231.54 Ko) Télécharger le fichier
V_15_zoom-eps-converted-to.pdf (12.27 Ko) Télécharger le fichier
V_stack_50-100ms_0Hz-eps-converted-to.pdf (58.21 Ko) Télécharger le fichier
V_stack_50-100ms_15Hz-eps-converted-to.pdf (67.02 Ko) Télécharger le fichier
bal_0_Dphi_90_75ms-eps-converted-to.pdf (14.26 Ko) Télécharger le fichier
bal_15_Dphi_90_75ms-eps-converted-to.pdf (14.95 Ko) Télécharger le fichier
dts_0_for_UDV_eq_s_low_Pm_v18_BP5_m20deg-eps-converted-to.pdf (17.43 Ko) Télécharger le fichier
dts_0_for_UDV_eq_s_low_Pm_v18_V40-eps-converted-to.pdf (17.83 Ko) Télécharger le fichier
dts_15_for_UDV_eq_s_low_Pm_v26_BP5_m20deg-eps-converted-to.pdf (17.48 Ko) Télécharger le fichier
dts_15_for_UDV_eq_s_low_Pm_v26_V40-eps-converted-to.pdf (18.49 Ko) Télécharger le fichier
dts_15_for_UDV_eq_s_low_Pm_v27_BP_m20deg-eps-converted-to.pdf (16.59 Ko) Télécharger le fichier
dts_15_for_UDV_eq_s_low_Pm_v27_V-eps-converted-to.pdf (16.02 Ko) Télécharger le fichier
fieldBp_0100_dts_0_v7_merid_new-eps-converted-to.pdf (235.42 Ko) Télécharger le fichier
fieldBp_5000_Lu_1200_15_v3_merid-eps-converted-to.pdf (565.03 Ko) Télécharger le fichier
fieldU_0042_run_15_cond_25ms_1deg_pm_10-5-eps-converted-to.pdf (195.46 Ko) Télécharger le fichier
fieldUp_0100_dts_0_v7_merid_new-eps-converted-to.pdf (103.51 Ko) Télécharger le fichier
fieldUp_5000_Lu_1200_15_v3_merid-eps-converted-to.pdf (891.44 Ko) Télécharger le fichier
m10Hz_DB5_surf_article-eps-converted-to.pdf (242.52 Ko) Télécharger le fichier
rays_for_torsional_article_zoom-eps-converted-to.pdf (17.73 Ko) Télécharger le fichier
sketch_capteurs_color.png (27.47 Ko) Télécharger le fichier
torsional_wavefronts_full-eps-converted-to.pdf (20.47 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Origine : Fichiers produits par l'(les) auteur(s)
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01949364 , version 1 (21-12-2018)
hal-01949364 , version 2 (01-08-2019)

Identifiants

  • HAL Id : hal-01949364 , version 1

Citer

Zahia Tigrine, Henri-Claude Nataf, Nathanaël Schaeffer, Philippe Cardin, Franck Plunian. Torsional Alfvén waves in a dipolar magnetic field: experiments and simulations. 2018. ⟨hal-01949364v1⟩
260 Consultations
174 Téléchargements

Partager

Gmail Facebook X LinkedIn More