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We present a new tool – Realization Tree Assessment (RTA) for assessing the mathematical quality 

of lessons and the ways in which the whole classroom discussion expose students to mathematical 

concepts. The tool, built upon the commognitive framework, depicts the different realizations of a 

mathematical object treated in a lesson, and then uses different shades to signify who articulated 

the realization – the teacher or the students. We exemplify the tool on two lessons implementing an 

identical Hexagon pattern generalization task. The RTA visualizes the manner in which one lesson 

gave students sufficient opportunities to “same” different algebraic expressions, while the other 

lesson did not. We show how this visual presentation of the mathematical ideas complements 

existing assessment tools, particularly, the Instructional Quality Assessment and Accountable Talk. 

We conclude by discussing the potential of the tool as an aid for lesson planning.  

Keywords: Teaching practices, Realization tree, commognition, cognitive demand, lesson 

assessment tools. 

Introduction 

Recent years have seen increasing efforts to train teachers to teach exploratively – provide students 

with opportunities to engage with cognitively demanding tasks, problem solve, and participate in 

rich mathematical discussions (Schoenfeld, 2014). Within such efforts an important role lies in the 

tools that are used to examine lessons enacted by the trained teachers (Boston & Smith, 2009; 

Schoenfeld, 2015). Scoring and evaluation tools (such as the Instructional Quality Assessment tool 

or TRU math) can be used both for evaluating lessons and thereby examining the effectiveness of 

the training program, as well as tools for teachers’ professional development. A common difficulty 

with these tools, however, lies in operationalizing their criteria for evaluating the quality of 

mathematical ideas dealt with in the lesson. In this paper, we propose an analytical tool – the 

Realization Tree Assessment tool which is based on the “commognitive” framework (Nachlieli & 

Tabach, 2012; Sfard, 2008). This tool enables drawing a succinct yet sufficiently meaningful picture 

of the mathematical concepts surfaced in a specific lesson in such a way that lessons can be both 

compared with each other as well as planned ahead more accurately. 

Theoretical background 

Tools for the examination and evaluation of classroom instruction can be categorized into three 

types: scoring tools such as Instructional Quality Assessment, or IQA (Boston, 2012b) and the 

Teaching for Robust Understanding of Mathematics summary, or TRU math (Schoenfeld, 2014); 

“coding and counting” tools, such as Accountable Talk (O’Connor, Michaels, & Chapin, 2015); and 

qualitative analytical tools (e.g. commognition, Sfard (2008)). Scoring and coding measures have 

the benefit that they are quantifiable. They thus enable both the comparison of teachers with each 



other, as well as comparison of within-teacher change from lesson to lesson, for example, as a result 

of professional development. Scoring tools, however, have a drawback. They are heavily based on 

extensive training of scorers for the development of inter-rater reliability. This, because of their 

high-inference nature. Coding and counting tools, which are based on coding talk moves, 

necessitate lower inferences and are therefore easier for achieving reliability. However, these tools 

are mostly good for capturing non-mathematical aspects of the discourse. 

The difficulty in assessing the surfacing of “important mathematical concepts” (Boston, 2012a) or 

“important content and practices” (Schoenfeld, 2015) in a lesson is not surprising, given that the 

definition of “mathematical concepts” has been under much dispute for decades (Sfard, 2008). To 

our aid, we draw on commognition (ibid), which we have extensively used in the past as a 

qualitative tool for describing learning-teaching processes. In the present work, we simplify this 

tool, to attune it with the demands of coding and scoring schemes that seek to evaluate lessons in a 

relatively short period of time, for the goal of comparing large sets of lessons.  

Realization trees 

Mathematical learning, says Sfard (2008), is a process whereby students gradually become able to 

communicate about mathematical objects. These objects are produced by discourse (or 

communication), and are made up of different “realizations” (ibid, p. 165). The term realization is 

used by Sfard instead of the more common term “representation”, to emphasize the fact that nothing 

is, in fact, “there” to be represented. All mathematical objects are products of human discourse and 

come to life by being different realizations being “samed” and alienated from human agency so that 

they are talked about as existing of themselves. For example, the signifier ½, the process of dividing 

a pizza into two pieces, and the process of shading 3 circles out of 6, are all samed into the object 

“one half”. Children often learn each of these realizations separately and only later come to relate to 

them all to one object. This is the heart of a process Sfard calls “objectification”. Objectification, or 

talking about mathematical signifiers as “standing for” mathematical objects that “exist” in the 

world, is a major and necessary accomplishment for advancing in the mathematical discourse. Sfard 

used the term “realization tree” to illustrate the fact that realizations are usually hierarchical. A half 

is made of different realizations (1/2, 0.5, 50%, 3/6 etc.) but the whole numbers making up these 

realizations also have endless realizations (3 apples, 3 fingers, etc.).  Nachlieli & Tabach (2012) 

used realization trees to visually explain the complexity of the object function and to relate to the 

historical development of this object, as well as to make explicit students' development of the 

discourse of function. Before moving to explain our use of realization trees as tools for assessing 

the conceptual quality of a lesson, let us briefly describe the two other tools that have been serving 

us for quantifying and comparing mathematics lessons. 

IQA 

The IQA (Instructional Quality Assessment tool) has been designed by Boston and Smith (2009; 

Boston, 2012a) to evaluate the cognitive demand of mathematical lessons. This, based on the “task 

framework” put forward by Stein and her colleagues (1996), which differentiates between the 

cognitive demand of a task, the way it is presented to the classroom, and the way students 

eventually engage in it. Every rubric in the IQA is scored on a scale from 0 to 4. For reasons of 

space, we will concentrate here only on two rubrics: AR-2 (implementation) and AR-X 



(mathematical residue). Regarding the implementation rubric, 1 means students engage only in rote 

memorization and producing facts, 2 means they engage in the application of procedures explicitly 

taught, 3 means cognitive demand is not lowered but mathematical reasoning is not sufficiently 

explicated, and 4 means full engagement in a cognitively demanding mathematical task. 

'Mathematical concepts' or ‘ideas' are mentioned almost in every rubric in the IQA. For example, in 

the rubric that refers to the mathematical residue, the highest score should be given when: "The 

discussion following students' work on the task surfaces the important mathematical ideas, 

concepts, or connections embedded in the task" (Boston, 2012b, p. 20). However, IQA does not 

provide any clear guidance on this matter, besides giving a few examples of high and low level 

lessons.  

Accountable Talk 

Accountable Talk coding (Resnick, Michales, & O’connor, 2010) is a tool originating in socio-

linguistic analysis of classroom talk (O’Connor & Michaels, 1993). It provides teachers with a set 

of specific talk moves they can make during whole classroom discussions, to hold students 

accountable to the community, to knowledge and to reasoning. Our version of Accountable Talk 

coding (Heyd-Metzuyanim, Smith, Bill, & Resnick, 2016) includes eight codes for teacher moves 

(e.g. press for reasoning, revoice, restate, agree/disagree) and four codes for students' moves (e.g. 

student-agree, student-justification). These moves track the amount in which teachers attempt to 

make students' thinking public, help students to reason mathematically, and hold them responsible 

for attending to the reasoning of others. Though the manual does contain examples of mathematical 

statements, Accountable Talk’s basic framework does not deal specifically with content. It has no 

clear indicator of what consists as more important or “conceptual” reasoning, and what does not.  

The study  

In what follows, we first describe the setting of the study on which we developed the Realization 

Tree Assessment tool (RTA). We then describe the results of analysis using the IQA and AT, 

showing what could be achieved by them and what was missing or difficult to agree upon. We 

follow this by describing the RTA results for the data, showing where they agree, complement and 

elaborate on the findings obtained by the IQA and AT.  

Setting 

The study reported here was performed in the context of a project for training Israeli teachers to 

implement explorative instructional practices in middle school mathematics classrooms, using 

methods inspired by Smith & Stein’s (2011) “Five Practices for Orchestrating Productive 

Mathematics Discussions”. In this report, we focus on two teachers: Dani and Sivan. Dani was 

teaching a 7th grade classroom in a school serving a community of middle-high socio-economic 

background. Sivan was teaching an 8th grade classroom in a school serving a community mostly 

from a low-middle socio-economic background. Both teachers participated in training sessions 

where the instructor planned together with each of them separately a lesson according to the “5 

Practices”. In both cases, the lesson centered around an identical task: the Hexagon Task. The main 

session in the task was to write description that could be used to compute the perimeter of any train 

in the pattern of hexagons (See Figure 1):  



The reason this task was used, was that it has proved in a previous study (Heyd-Metzuyanim et al., 

2016) to be very productive for teachers who are beginning to implement the “5 Practices”. We 

observed, video recorded, and transcribed both lessons. In addition, Dani and Sivan were both 

interviewed before and after the lessons, and their lesson planning sessions were recorded. In what 

follows, we present the IQA and AT measures of the two lessons, as well as what was still missing 

from them for a full understanding of the task implementation.  

Findings 

Accountable Talk in the two lessons. Both Dani and Sivan’s lessons were conducted over a 

double period (90 Minutes) and both included work in groups (or pairs) where the teacher was 

walking between the groups, followed by a whole classroom discussion. The two whole classroom 

discussions took similar time (in Dani’s classroom 28 minutes and in Sivan’s lesson 26 minutes).  

Overall, there were many more AT moves in Dani’s lesson (98) than Sivan’s (46). In particular, 

Dani’s lesson had much more student talk moves coded as AT moves, either as student 

agree/disagree (N_Dani=22, N_Sivan=0), or as student justifications (N_Dani=20, N_Sivan=11). 

Dani was also higher than Sivan in pressing for students’ reasoning (N_Dani=23, N_Sivan = 14). 

The overall picture drawn from the AT measure is, thus, that Dani’s lesson had more accountability 

to reasoning and to the community than Sivan’s lesson. Using the AT measure alone, however, does 

not enable learning about what mathematical concepts were dealt with, and which mathematical 

ideas surfaced through the discussion.  

IQA scoring of two lessons. According to the IQA, Dani's lesson got higher scores then Sivan’s 

lesson on all the rubrics, except the potential of the task, which was given in both cases by the 

teachers’ trainer. In the Implementation rubric, we scored Dani’s lesson as a 4, since multiple 

solutions were found and presented by the students; the teacher did not lead the students towards 

any particular solution; solutions were linked to each other both by the teacher and by the students; 

and there was no proceduralization of the task. In contrast, Sivan’s implementation scored a 2. 

Though students generalized the Hexagon pattern into a  expression, this was not done through the 

visual Hexagon’s representation, only through the table; connections were not made with other 

algebraic expressions; in particular, students seemed to be well rehearsed in producing a table, 

algebraic expression from it and a graph of that expression, thus the task was proceduralized.  

In the mathematical residue rubric, the results of the scoring were similar. Dani’s lesson received a 

4 since: the mathematical idea of equivalence of algebraic expressions was driven through the 

different algebraic solutions student presented. Evidence for students’ understanding could be seen 

in one of the girls' exclamation “so they’re all the same!” In contrast, Sivan’s lesson scored a “2” on 

the mathematical residue rubric, since although the discussion dealt with some mathematical ideas, 

it did not touch upon the main idea behind the Hexagon task. The teacher did not focus on the 

different algebraic expressions but rather on the different representations of a linear function (graph, 

Figure 1: The Hexagons Pattern 



table and algebraic expression). However, as will be shown later, even this idea was not treated 

fully and appropriately.  

Of all the Academic Rigor rubrics, we found the “Mathematical Residue1” most difficult to 

operationalize. It appeared Dani and Sivan had different ideas regarding the mathematical goals of 

their lessons and this had consequence for the way they led the lesson. While Dani seemed to be 

well aligned with the goal of showing the equivalence of algebraic expressions, Sivan seemed as 

though she was mostly aiming at ideas related to linear functions (which are, indeed, part of the 8th 

grade curriculum). We therefore searched for a tool that would aid in explicating the mathematical 

ideas explored in the two lessons. For this end, we developed the RTA. 

Realization Tree Assessment tool 

The first step in RTA is examining the task and explicating the mathematical object(s) that can be 

surfaced through engagement with the task. This includes the different realizations that are 

reasonable to expect from students at a certain grade level. In our case, we built our realization tree 

based on a lesson plan provided by the Institute for Learning 

(http://ifl.pitt.edu/index.php/educator_resources), where the different solutions, expected from 

middle schoolers for this task were drawn out. This produced a “blank” tree, with nodes as seen in 

Figures 2 and 3. We then proceeded to shade the tree nodes with four different colors, as follows: 

Shade no 4: the student's explanation was complete and accurate; Shade no. 3: the student’s 

explanation was not complete and accurate but the teacher helped explicating the idea; Shade no. 2: 

the student did not articulate the realization, but the teacher did; Shade no. 1: The realization was 

partially mentioned, but neither the student nor the teacher explained it fully. 

 

 

 

 

 

 

                                                 

1 The Mathematical Residue rubric appears in our manual as “under development”. 

Figure 2: The RTA of Dani's lesson Figure 3: The RTA of Sivan's lesson 



Finally, if the realization was not mentioned at all, but was hypothesized to be relevant to the lesson 

and the grade level according to the lesson plan, it was shaded white (no. 0).  

As can be seen in Figures 2 and 3, the main branch of our realization tree (“algebraic expression”), 

branches out on the multiple realizations of the algebraic expression . This, in accordance with the 

potential of the task to explore the different ways in which the visual representation of the hexagon 

sides can be generalized into a pattern and expressed algebraically.  

Figure 2 describes the RTA for Dani’s lesson. It shows that three realizations were explained fully 

and completely by students, three were explained by students, but the teacher filled in some gaps in 

these explanations, and one realization was explained only by the teacher. This full treatment of the 

“algebraic expressions” branch led students to endorsement of the narrative that “they all (all the 

algebraic expressions describing the pattern) equal to ”, thus to the saming of different realizations, 

which was the goal of the lesson, as expressed both by Dani and by the teacher trainer.  

In contrast, the RTA for Sivan’s lesson (see Figure 3) is much lighter and sparser. It shows that only 

three realizations were treated in the lesson, and none of them was fully explained by the students. 

Moreover, the main branch of the tree – the “algebraic expressions” branch, is particularly empty. 

Only the  realization was treated, and even that one was not explained accurately by the teacher or 

the students. The relative “emptiness” of Sivan’s RTA corresponds well with the relatively low IQA 

and AT scores her lesson received. Still, it puzzled us, since Sivan was prepared in the PD very 

specifically for a lesson that was envisioned as similar to that of Dani. “What went wrong?”, we 

asked ourselves. In order to answer that, we went back to the planning session, as well as to the 

post-lesson interview with Sivan, conducted right after the lesson. We found that, despite the PD 

instructor’s conviction that she and Sivan were “on the same page”, Sivan, in fact, had different 

goals for the lesson. She was focused on connecting the lesson to the previously learned unit on 

linear functions, where she had taught students to connect the concept of “slope” with the term 

“ ” in  , as well as connect it with the visual slope of a linear graph: 

“I wanted the students to see that every time it rises by four so that they will connect it with the 

slope that we have done with functions… I deliberately divided the board into three sections, to 

show the different stages in reaching the function itself - the graph that combines all the various 

representations of the function". (Sivan, Post-lesson interview)  

It appears, then, that Sivan had a different mathematical object in mind (though probably only 

tacitly) when she planned the lesson – the “linear function” object2. Within the linear function 

object, the “slope” attribute of that object was her focus of attention. This could have been an 

appropriate goal for the lesson, had it been explicated and thought through. In particular, the 

following realization tree (see Figure 4) could have been appropriate for discussing slope and linear 

functions.  

                                                 

2 Though she named it inaccurately simply a “function”, we understood from the context and from the curriculum she 

was referring to linear functions. 



 

 

 

 

 

 

 

 

 

 
 

Figure 4: Alternative Realization Tree for discussing slopes and rate of change 

However, the Hexagon task, especially as written for this lesson, was probably not the optimal task 

for talking about “slope”. This, since it depicts a situation where the function is discreet and cannot 

be described using a linear line. In practice, Sivan neglected very early the connection to the 

Hexagons drawing. Thus even the “rate of change” (which could have been visualized as the 

addition of four sides with the addition of each hexagon) was not connected to the “slope” on the 

graph.  

Discussion 

Our goal in the present report was to present a new analytical tool for the evaluation of 

mathematical lessons – the RTA. Though this tool does not give a numerical value such as scoring 

and “coding and counting” tools do, it still enables relatively easy qualitative comparisons between 

lessons. We have used this tool to enable comparison between two more lessons that were 

performed on the Hexagon task, and the results give a quick overview of the mathematical 

opportunities to learn in each lesson. The RTA can also serve as an aid for determining the quality 

of mathematical content (or “mathematical residue”) that is sought after in coarser grained 

assessment tools such as the IQA. In addition, the RTA can give us information about the potential 

of the task to engage students in explorative mathematical learning and about the relation between 

this potential and the actual implementation of the task in the classroom.   

In the two cases reported here, the application of the RTA was done post-hoc, after the lessons were 

planned, implemented and recorded. However, we believe there is much potential for using this tool 

as an aid for planning lessons and training teachers for explorative mathematics instruction. Such a 

tool is particularly needed in light of previous findings which point to the difficulty of teachers to 

explicate to themselves the mathematical goals of the lesson (Heyd-Metzuyanim, Smith, Bill, & 

Resnick, submitted). We also believe that drawing realization trees with teachers will help them 

plan tasks and whole classroom discussions that provide sufficient opportunities for explorative 

participation. Often, when teachers talk about explorative instruction, their focus lies on the social 

or socio-mathematical norms of the classroom, such as students talking and listening to each other 



(Heyd-Metzuyanim, Munter, & Greeno, submitted). We believe no less emphasis should be put on 

the nature of mathematical objects that students get exposed to, and on the paths for objectification 

that are opened through sufficiently rich mathematical discussions.  
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