Modeling Electric Vehicle Consumption Profiles for Short-Term Forecasting and Long-Term Simulation

Abstract : The growing number of electric vehicles (EV) is challenging the traditional distribution grid with a new set of consumption curves. We employ information from individual meters at charging stations that record the power drawn by an EV at high temporal resolution (i.e. every minute) to analyze and model charging habits. We identify 5 types of battery that determine the power an EV draws from the grid and its maximal capacity. In parallel, we identify 4 main clusters of charging habits. Charging habits models are then used for two applications: short-term forecasting and long-term simulation. We start by forecasting day-ahead consumption scenarios for a single EV. By summing scenarios for a fleet of EVs, we obtain probabilistic forecasts of the aggregated load, and observe that our bottom-up approach performs similarly to a machine-learning technique that directly forecasts the aggregated load. Secondly, we assess the expected impact of the additional EVs on the grid by 2030, assuming that future charging habits follow curren behavior. Although the overall load logically increases, the shape of the load is marginally modified, showing that the current network seems fairly well-suited to this evolution.
Type de document :
Communication dans un congrès
11th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion, MEDPOWER 2018, Nov 2018, Dubrovnik (Cavtat), Croatia. 〈http://www.medpower2018.com〉
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01948609
Contributeur : Georges Kariniotakis <>
Soumis le : vendredi 7 décembre 2018 - 20:02:08
Dernière modification le : jeudi 7 février 2019 - 09:44:46
Document(s) archivé(s) le : vendredi 8 mars 2019 - 16:03:13

Fichier

 Accès restreint
Fichier visible le : 2020-12-07

Connectez-vous pour demander l'accès au fichier

Identifiants

  • HAL Id : hal-01948609, version 1

Citation

Alexis Gerossier, Robin Girard, George Kariniotakis. Modeling Electric Vehicle Consumption Profiles for Short-Term Forecasting and Long-Term Simulation. 11th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion, MEDPOWER 2018, Nov 2018, Dubrovnik (Cavtat), Croatia. 〈http://www.medpower2018.com〉. 〈hal-01948609〉

Partager

Métriques

Consultations de la notice

94