T. A. Milnes and R. J. Evans, Biomass gasifier "tars": their nature, formation, and conversion, 1998.

L. Devi, K. J. Ptasinski, and F. Janssen, A review of the primary measures for tar elimination in biomass gasification processes, Biomass Bioenergy, vol.24, pp.125-165, 2003.

A. El-rub, Z. Bramer, E. A. Brem, and G. , Review of catalysts for tar elimination in biomass gasification processes, Ind Eng Chem Res, vol.43, pp.6911-6920, 2004.

D. Dayton, A review of the literature on catalytic biomass tar destruction, Milestone Completion Report, 2002.

D. Sutton, B. Kelleher, and J. Ross, Review of literature on catalysts for biomass gasification, Fuel Process Technol, vol.73, pp.155-73, 2001.
DOI : 10.1016/s0378-3820(01)00208-9

J. Corella, J. M. Toledo, and R. Padilla, Olivine and dolomite as in-bed additive in biomass gasification with air in a fluidized bed reactor: which is better?, Energy Fuels, vol.18, pp.713-733, 2004.

P. Simell, E. Kurkela, P. Ståhlberg, and J. Hepola, Catalytic hot gas cleaning of gasification gas, Catal Today, vol.27, pp.55-62, 1996.
DOI : 10.1016/0920-5861(95)00172-7

S. Rapagnà, N. Jand, A. Kiennemann, and P. U. Foscolo, Steam-gasification of biomass in a fluidized-bed of olivine particles, Biomass Bioenergy, vol.19, pp.187-97, 2000.

A. Olivares, M. P. Aznar, M. A. Caballero, J. Gil, E. Francés et al., Biomass gasification: produced gas upgrading by in-bed use of dolomite, Ind Eng Chem Res, vol.36, pp.5220-5226, 1997.
DOI : 10.1021/ie9703797

F. Miccio, B. Piriou, G. Ruoppolo, and R. Chirone, Biomass gasification in a catalytic fluidized bed reactor with beds of different materials, Chem Eng J, vol.154, pp.369-74, 2009.

J. M. De-andrés, A. Narros, and M. E. Rodríguez, Behaviour of dolomite, olivine and alumina as primary catalysts in air-steam gasification of sewage sludge, Fuel, vol.90, pp.521-528, 2011.

S. Koppatz, C. Pfeifer, and H. Hofbauer, Comparison of the performance behaviour of silica sand and olivine in a dual fluidized bed reactor system for steam gasification of biomass at pilot plant scale, Chem Eng J, vol.175, pp.468-83, 2011.

C. Christodoulou, D. Grimekis, K. D. Panopoulos, E. P. Pachatouridou, E. F. Iliopoulou et al., Comparing calcined and un-treated olivine as bed materials for tar reduction in fluidized bed gasification, Fuel Process Technol, vol.124, pp.275-85, 2014.
DOI : 10.1016/j.fuproc.2014.03.012

K. Göransson, U. Söderlind, P. Engstrand, and W. Zhang, An experimental study on catalytic bed materials in a biomass dual fluidized bed gasifier, Renewable Energy, vol.81, pp.251-61, 2015.

A. Erkiaga, G. Lopez, M. Amutio, J. Bilbao, and M. Olazar, Steam gasification of biomass in a conical spouted bed reactor with olivine and ?-alumina as primary catalysts, Fuel Process Technol, vol.116, pp.292-301, 2013.

J. N. Kuhn, Z. Zhao, L. G. Felix, R. B. Slimane, C. W. Choi et al., Olivine catalysts for methane-and tar-steam reforming, Appl Catal B, vol.81, pp.14-26, 2008.
DOI : 10.1016/j.apcatb.2007.11.040

M. Virginie, S. Libs, C. Courson, and A. Kiennemann, Iron/olivine catalysts for tar reforming: comparison with nickel/olivine, 2008.

M. Morin, X. Nitsch, S. Pécate, and M. Hémati, Tar conversion over olivine and sand in a fluidized bed reactor using toluene as model compound, Fuel, vol.209, pp.25-34, 2017.
DOI : 10.1016/j.fuel.2017.07.084

URL : https://hal.archives-ouvertes.fr/hal-01840800

X. Nitsch, J. M. Commandré, P. Clavel, E. Martin, J. Valette et al., Conversion of phenol-based tars over olivine and sand in a biomass gasification atmosphere, Energy Fuels, vol.27, pp.5459-65, 2013.

U. Mda, H. Tsuda, S. Wu, and E. Sasaoka, Catalytic decomposition of biomass tars with iron oxide catalysts, Fuel, vol.87, pp.451-460, 2008.

M. A. Caballero, M. P. Aznar, J. Gil, J. A. Martin, E. Francés et al., Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixtures. 1. Hot gas upgrading by the catalytic reactor, Ind Eng Chem Res, vol.36, pp.5227-5266, 1997.

G. Taralas and M. G. Kontominas, Numerical modeling of tar species/VOC dissociation for clean and intelligent energy production, Energy Fuels, vol.19, pp.87-93, 2005.

D. Fuentes-cano, A. Gómez-barea, S. Nilsson, and P. Ollero, Decomposition kinetics of model tar compounds over chars with different internal structure to model hot tar removal in biomass gasification, Chem Eng J, vol.228, pp.1223-1256, 2013.

S. Hosokai, K. Kumabe, M. Ohshita, K. Norinaga, C. Li et al., Mechanism of decomposition of aromatics over charcoal and necessary conditions for maintaining its activity, Fuel, vol.87, pp.2914-2936, 2008.

T. Sueyasu, T. Oike, A. Mori, S. Kudo, K. Norinaga et al., Simultaneous steam reforming of tar and steam gasification of char from the pyrolysis of potassiumloaded woody biomass, Energy & Fuels, vol.26, pp.199-208, 2012.

A. El-rub and Z. , Biomass char as in-situ catalyst for tar removal in gasification systems PhD Thesis University of Twente, 2008.

A. El-rub and Z. , Experimental comparison of biomass chars with other catalysts for tar reduction, Fuel, vol.87, pp.2243-52, 2008.

S. Hosokai, K. Norinaga, T. Kimura, M. Nakano, C. Li et al., Reforming of volatiles from the biomass pyrolysis over charcoal in a sequence of coke deposition and steam gasification of coke, Energy & Fuels, vol.25, pp.5387-93, 2011.

Y. Shen, Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification, Renew Sustain Energy Rev, vol.43, pp.281-95, 2015.

N. B. Klinghoffer, M. J. Castaldi, and A. Nzihou, Catalyst properties and catalytic performance of char from biomass gasification, Ind Eng Chem Res, vol.51, pp.13113-13135, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01632400

X. Nitsch, J. Commandré, J. Valette, G. Volle, and E. Martin, Conversion of phenol-based tars over biomass char under H2 and H 2 O atmospheres, Energy Fuels, vol.28, pp.6936-6976, 2014.

M. Morin, S. Pécate, M. Hémati, and Y. Kara, Pyrolysis of biomass in a batch fluidized bed reactor: effect of the pyrolysis conditions and the nature of the biomass on the physicochemical properties and reactivity of the char, J Anal Appl Pyrol, vol.122, pp.511-534, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01907322

A. Dufour, A. Celzard, B. Ouartassi, F. Broust, V. Fierro et al., Effect of micropores diffusion on kinetics of CH 4 decomposition over a wood-derived carbon catalyst, Appl Catal A, vol.360, pp.120-125, 2009.

L. De-sousa, Gasification of wood, urban wastewood (Altholz) and other wastes in a fluidized bed reactor, 2001.

D. Blasi and C. , Combustion and gasification rates of lignocellulosic chars, Prog Energy Combust Sci, vol.35, pp.121-161, 2009.

. , one of char gasification (R g ) indicating that the catalytic activity of char is maintained. Besides, it was found that an increase in the steam partial pressure yields to a raise of the toluene conversion rate and a decrease in the selectivity of benzene. Finally, a comparison between different solid catalysts in the flui dized bed reactor showed that two operating conditions may be em