
HAL Id: hal-01945245
https://hal.science/hal-01945245

Submitted on 4 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Effective Bridging Between Ecore and Coq: Case of a
Type-Checker with Proof-Carrying Code

Jérémy Buisson, Seidali Rehab

To cite this version:
Jérémy Buisson, Seidali Rehab. Effective Bridging Between Ecore and Coq: Case of a Type-Checker
with Proof-Carrying Code. Modelling and Implementation of Complex Systems, pp.259-273, 2019.
�hal-01945245�

https://hal.science/hal-01945245
https://hal.archives-ouvertes.fr

Effective Bridging between Ecore and Coq: Case

of a Type-Checker with Proof-Carrying Code

Jérémy Buisson1 and Seidali Rehab2

1 IRISA, Écoles de Saint-Cyr Coëtquidan, Guer, France
2 MISC, University of Constantine 2 - Abdelhamid Mehri, Constantine, Algeria

Abstract. The work presented in this paper lies in the context of imple-
menting supporting tools for a domain-specific language named SosADL,
targeted at the description and analysis of architecture for systems of
systems. While the language has formal definition rooted in the Cc-pi
calculus, we have adopted the Eclipse ecosystem, including EMF, Ecore
and Xtext for the convenience they provide in implementation tasks.
Proof-carrying code is a well-known approach to ensure such an im-
plementation involving non-formal technologies conforms to its formal
definition, by making the implementation generate proof in addition to
usual output artifacts. In this paper, we therefore investigate for an in-
frastructure that eases the development of proof-carrying code for an
Eclipse/EMF/Ecore/Xtext-based tool in relation with the Coq proof as-
sistant. At the core of our approach, we combine an automatic transfor-
mation of a metamodel into a set of inductive types, in conjunction with
a second transformation of model elements into terms. The first one,
reused from our previous work, provides necessary abstract syntax defi-
nitions such that the formal definition of the language can be mechanized
using Coq. The second transformation is part of the proof generator.

Keywords: Ecore · Coq · Proof-carrying code · model transformation.

1 Introduction

In our previous work [4], we have presented a transformation that maps an Ecore
metamodel [13] to a collection of inductive types, more specifically targeting
Gallina and Vernacular, the language of the Coq proof assistant [2]. Thanks to
this previous work, we are able not only to define instances of the metamodel
within the proof assistant, but also to, e.g., quantify over objects of given classes
in order to prove properties or provide specifications involving this metamodel.
The latter is useful, for instance, to formally mechanize the semantics or the
type system of the language whose abstract syntax is given by the metamodel.

Still, we think that this transformation, alone, is not sufficient to effectively
bridge between the two technical spaces. Indeed, transforming model elements
might be useful as well, especially when the application relying on the metamodel
has to send parts of models to the proof assistant. This is for instance the case
when this application generates proofs, e.g., in the context of proof-carrying

2 J. Buisson and S. Rehab

code [11], to increase confidence in the implementation of the tools supporting
the language.

This paper presents our preliminary work in this specific area. We extend
our previous transformation [4] in order to generate a secondary transformation,
which translates models to terms, consistently with inductive types produced
accordingly to our previous work [4]. Consistent means here: when an EMF
object is translated into a Gallina term, the object is an instance of an Ecore
class (let name it C), and the term is of a inductive type; this inductive type is
the result of the transformation of that Ecore class C. Then we combine the two
transformations, yielding to an overall infrastructure for proof-carrying code.

In Section 2, we first present the context that motivates our work, here the
development of supporting tools for SosADL [12], a domain-specific language
for describing and analyzing architecture of systems of systems, and following
the proof-carrying code approach. Then Section 3 gives some background on
how an Ecore metamodel can be turned into a collection of inductive types,
mechanization of the type system, and typical approach to the implementation of
the type checker. Section 4 depicts how the type checker can be extended in order
to generate proofs. Section 5 addresses the transformation of a model element
into a term. Section 6 presents the related works. Last, Section 7 concludes the
paper and gives our agenda for future work.

2 Context

To motivate our work, we consider the case of developing tools supporting a
domain-specific language. In our case, we consider the implementation of the
tools supporting SosADL [12], an architecture description language for system of
systems. The language is intended to let an architect describe systems, which can
be flexibly assembled into a larger system of systems by means of a constraint-
based description of the assembly, based on the Cc-π formal calculus [5]. The
resulting system of systems can be analyzed and simulated, e.g., in order to dis-
cover emerging behavior or to ensure the expected behavior is achieved. Analysis
and simulation are enabled by the formal definition of the language.

The supporting tools for SosADL are developed using model-driven engineer-
ing, and more specifically Ecore/EMF [13] and Xtext [3] technologies from the
Eclipse ecosystem. The formal definition of the language is mechanized using
the Coq proof assistant [2], which enables to verify that the language definition
is sound. In order to ensure that the tools conform to the formal definition, we
set up a proof-carrying code infrastructure [11]. That is, in addition to perform-
ing analysis or producing output artifacts, the SosADL supporting tools issue a
proof that the produced outcomes are correct. By checking the proof, the user
ensures that the tools performed in conformance to the formal definition.

We have more specifically applied the proof-carrying code approach to the
type checker in SosADL supporting tools. Figure 1 is an overview of it, described
in subsequent sections. In the spirit of model-driven engineering, our challenge
is to generate automatically (part of) the proof-carrying code infrastructure.

Effective Bridging between Ecore and Coq 3

metamodel
compilation

infrastructure

model
type

annotations

proof

type checker

abstract
syntax tree

abstract
syntax type

proof
generation

infrastructure

type system,
semantics, ...

is transformed into
depends on
is an instance of
is composed of

Fig. 1. Overview of applying the proof-carrying code approach to a type checker, by
using model-driven engineering.

3 Background

In this section, we describe first in 3.1 how an Ecore metamodel can be turned
into a collection of inductive types, following our previous work [4]. Then in 3.2,
we depict a typical approach to mechanize a type system and to implement the
corresponding type checker.

3.1 Transformation of a Metamodel to Inductive Types

On the one side, in the Ecore metamodel, each class defines one type of nodes
of abstract syntax trees. The fields of the class describe the attributes of the
nodes of that type, and the composition relationships between classes encode
the parent-children relationships between the nodes in the abstract syntax tree.
On the other side, an inductive type is a typical type definition in functional
programming. An inductive type is made of a collection of constructors, such that
any value of that type is the result of one of these constructors. Each inductive
type defines one type of nodes of abstract syntax trees. The parameters of a
constructor describe the data structure of the value, hence they encode both
the attributes and the parent-children relationships between the nodes in the
abstract syntax tree.

4 J. Buisson and S. Rehab

« abstract »
System

name: EString

Sos

Constituent

name: EString
cardinality: Cardinality

« abstract »
Expression

« enum »
Cardinality

ONE

MANY

* constituents 1 constraint

1
system

Fig. 2. An example metamodel, inspired by the SosADL case study.

Following the principle drawn by Djeddai et al. [7], each abstract class A is
turned into an inductive type A, and any concrete class C that specializes A is
transformed to a constructor C that belongs to inductive type A. In the example
of Figures 2 transformed into Figure 3, abstract class System is mapped to induc-
tive type sosadl System, which declares constructor sosadl System sosadl Sos,
which is mapped from concrete class Sos that specializes System.

Members of concrete classes are mapped to parameters of the corresponding
constructors. For example, members cardinality, name and system of class
Constituent are mapped to parameters cardinality, name and system of con-
structor sosadl Constituent sosadl Constituent.

Klint et al [8] propose preprocessing steps to support arbitrary source meta-
models. The transformation first pulls class members down the specialization
relationship, generalizes referenced classes then flattens the specialization rela-
tionship. Then the same principle as in [7] is applied to generate inductive types.

We have further improved the transformation in [4] in order to better sup-
port multiple inheritance. Constructors are duplicated in as many inductive
types as classes in the specialization relationship. In the example, class Sos

illustrates this approach. First, each class is mapped to an inductive type: class
System is mapped to sosadl System, and class Sos is mapped to sosadl Sos 0.
Then, concrete classes are mapped to constructors that belong to the types
mapped from the super classes: class Sos is therefore mapped to two construc-
tors, sosadl System sosadl Sos (in type sosadl System mapped from System) and
sosadl Sos sosadl Sos (in type sosadl Sos mapped from Sos).

3.2 Mechanization of the Type System and Implementation of the

Type Checker

By using inductive types generated like described in Section 3.1, we mechanize
the type system of SosADL. Following the usual approach, the mechanized type

Effective Bridging between Ecore and Coq 5

Inductive sosadl Expression 0: Type := .

Inductive sosadl Cardinality 0: Type :=
| sosadl Cardinality MANY: sosadl Cardinality 0

| sosadl Cardinality ONE: sosadl Cardinality 0.

Definition ecore EString 0: Type := string.

Definition NoDupList 0: (Type → Type) := list.

Inductive sosadl Constituent: Type :=
| sosadl Constituent sosadl Constituent: (∀ (cardinality : sosadl Cardinality 0),

(∀ (name: ecore EString 0), (∀ (system: (URI 0 sosadl System)),
sosadl Constituent)))

with sosadl System: Type :=
| sosadl System sosadl Sos: (∀ (constituents: (NoDupList 0 sosadl Constituent)),

(∀ (constraint : sosadl Expression 0), (∀ (name 0 : ecore EString 0),
sosadl System))).

Inductive sosadl Sos 0: Type :=
| sosadl Sos sosadl Sos: (∀ (constituents 0 : (NoDupList 0 sosadl Constituent)),

(∀ (constraint 0 : sosadl Expression 0), (∀ (name 1 : ecore EString 0),
sosadl Sos 0))).

Fig. 3. Output of the transformation [4] for the metamodel of Figure 2.

Inductive system is well typed: environment → sosadl System → Prop :=
| sos is well typed: ∀ (Γ : environment)

(constituents: NoDupList 0 sosadl Constituent)
(constraint : sosadl Expression 0) (name: ecore EString 0),
∀ constituents exist : (∀ c, c ∈ constituents → constituent exists Γ c),
∀ constraint is well typed : expression has type Γ constraint type boolean,

system is well typed Γ (sosadl System sosadl Sos constituents constraint name).

Fig. 4. Example of a mechanized rule.

system is itself a collection of inductive types, where each inductive type defines
a judgment and its constructors are the axioms that encode rules for that judg-
ment. Figure 4 illustrates the approach. Judgment system is well typed asserts
that a system declaration conforms to the type system. The inductive type en-
coding this judgment accepts two parameters: an environment and the system
under consideration. In the figure, we provide only one rule for this judgment.
This rule is encoded by constructor sos is well typed. The first four parame-
ters of the constructor (Γ , constituents , constraint and name) are the variables
that have to be bound in order to apply the rule. Additional parameters (con-

stituents exist and constraint is well typed) are the two premises of the rule.
The return type of the constructor, where the inductive type has effective pa-
rameters, is the conclusion of the rule.

6 J. Buisson and S. Rehab

public boolean proveSystemIsWellTyped(Environment g,

System s) throws Unprovable {

if(s instanceof Sos

&& ((Sos)s). constituents .stream()

.allMatch(c -> proveConstituentExists(g, c))

&& proveExpressionHasType(g,

((Sos)s). constraint , BOOLEAN)){

// proved by rule sos is well typed

return true;

} else {

throw new NoMatchingRule ();

}

}

Fig. 5. Typical code pattern for the type checker.

When the type system is syntax directed, a typical approach to implement a
type checker is to follow the principle of Milner’s algorithm W . Like illustrated in
Figure 5, for each judgment, a function is implemented such that it attempts to
prove a goal by selecting the adequate typing rule according to the content of the
abstract syntax tree, then recursively calling itself (and other functions mapped
from other judgments) in order to try to prove the premises of the chosen typing
rule. In Figure 5, Java function proveSystemIsWellTyped is the function that
aims at proving system is well typed judgments. Depending on the syntactical
type of the node s of the abstract syntax tree, it selects the rule it attempts. In
the example, it attempts to prove the judgment by using rule sos is well typed

when s is an instance of Sos. If premises can in addition be proved, here by
successfully calling proveConstituentExists and proveExpressionHasType,
the function concludes that the judgment is successfully proved. Otherwise, if
no rule applies, the function reports typing error, e.g., by throwing an exception.
In addition to answering whether the source model is correctly typed or not, the
type checker may annotate the source model with type information.

4 Generation of Proofs

By instrumenting the type checker, we extend it to generate a well-typed proof
as well. Like illustrated by the example of Figure 6, each function that proves
a judgment is changed such that it returns a proof object, that is, an instance
of a class that corresponds to the constructor encoding the rule in the mech-
anized type system. In the given example, class SosIsWellTyped is the con-
crete class that corresponds to rule sos is well typed; it specializes abstract class
SystemIsWellTyped that corresponds to judgment system is well typed.

We have not worked yet on how these classes could be generated, but we
think that Coq’s extraction mechanism may be used to address this issue.

Effective Bridging between Ecore and Coq 7

public SystemIsWellTyped proveSystemIsWellTyped(

Environment g, System s) throws Unprovable {

if(s instanceof Sos) {

return new SosIsWellTyped (g, ((Sos)s). constituents ,

((Sos)s). constraint , ((Sos)s).name ,

proveForAll ((Sos)s). constituents ,

c -> proveConstituentExists(g, c),

proveExpressionHasType(g,

((Sos)s). constraint , BOOLEAN));

// proved by rule sos is well typed, the proof object is returned
} else {

throw new NoMatchingRule ();

}

}

Fig. 6. Code pattern for the instrumented proof-generating type checker.

Definition proof: system is well typed [("foo", foo); ("bar", bar)]

(sosadl System sosadl Sos

[sosadl Constituent sosadl Constituent sosadl Cardinality ONE "a" ref foo;

sosadl Constituent sosadl Constituent sosadl Cardinality MANY "b" ref bar]

c "world") :=
sos is well typed [("foo", foo); ("bar", bar)]

[sosadl Constituent sosadl Constituent sosadl Cardinality ONE "a" ref foo;

sosadl Constituent sosadl Constituent sosadl Cardinality MANY "b" ref bar]

c "world" P1 P2.

Fig. 7. Proof term, after generation of the Vernacular definition.

The proof object is then serialized into a Vernacular definition like the ex-
ample of Figure 7, such that Coq’s compiler can check whether the proof is cor-
rect. In this excerpt, proof is defined to be a proof of system is well typed with
the given parameters (environment and system definition). Its value is the proof
term, here built by applying suitable parameters to constructor sos is well typed.
Section 5.2 explains the principles behind the generation of this term.

5 Transformation of Model Elements into Terms

Like seen in the previous section, the generated proof contains terms that encode
some elements from the model being type checked. In this section, we first extend
in 5.1 the transformation of Section 3.1 with correspondence information. Corre-
spondence information is used in 5.2 in order to first present a generic algorithm
that transforms any model element into a term, whose type is the inductive type
mapped from the class of the model element (mapped from by the transfor-
mation of Section 3.1). Then, to avoid runtime introspection of correspondence

8 J. Buisson and S. Rehab

// x: model element that is going to be transformed to a term
// c: class that denotes the type of the generated term
// trace: correspondence information between the metamodel and inductive types
element_to_term (x, c, trace) {

inductive ← trace.inductives [c]

ctor ← filter (trace.constructors [x.eClass],
f 7→ f.inductive = inductive)

return apply(ctor , map(ctor .parameters ,
p 7→ feature_to_term (t.features[p], x, trace)))

}

// x: value that is going to be transformed to a term
// t: data type of the value
attribute_to_term (x, t) { // ad-hoc code that deals with primitive types

if (EINTEGER == t) { // EInteger may be mapped to nat

return x.toString

} else if (ESTRING == t) { // EString may be mapped to string;
return ’"’ + x + ’"’

} else ... // and so on
}

// f: structural feature (either attribute or reference) to be transformed to a term
// x: model element to which the structural feature belongs
// trace: correspondence information between the metamodel and inductive types
feature_to_term (f, x, trace) {

if (f.isMany) { // generate a list if the structural feature is a collection one
returnlist(map(x.eGet(f), o 7→ value_to_term (o, f, x, trace)))

} else {

return value_to_term (x.eGet(f), f, x, trace)

}

}

// o: value to be transformed to a term
// f: structural feature from which o comes from
// x: model element to which the structural feature belons
// trace: correspondence information between the metamodel and inductive types
value_to_term (o, f, x, trace) {

if (EREFERENCE .isSuperTypeOf (f) ∧ f.isContainment) {

return element_to_term (x.eGet(f), f.eType , trace)

} else if (EREFERENCE .isSuperTypeOf (f) ∧ ¬f.isContainment) {

return uri(x.eGet(f)) // non-containment references are mapped to URIs
} else if (EDATA_TYPE .isSuperTypeOf (f)) {

return attribute_to_term (x.eGet(f), f.eType)

}

}

Fig. 8. Generic algorithm that transfoms any model element into a Gallina term.

Effective Bridging between Ecore and Coq 9

Trace

EClass_ConstructorEClass_Inductive EStructuralFeature_Binder

EClass Inductive

EStructuralFeature Constructor

Binder

inductives * constructors * features*

eStructuralFeatures *

inductive

*constructors

*parameters

1

1

1

1

*

1

1

1

1

1

*

1

Fig. 9. Structure of correspondence information between a source Ecore metamodel
and generated inductive types.

information, we present in 5.3 how we can generate an ad hoc transformation,
which transforms any element whose class belongs to the given metamodel into
a term of the inductive type mapped the element’s class.

5.1 Correspondence Information

In addition to the inductive types generated like described in Section 3.1, corre-
spondence information that maps between Ecore classes of the source metamodel
and generated inductive types have to be produced. This information is going
to be used like described in Section 5.2 in order to generate Gallina terms for
model elements.

Figure 9 presents the structure of correspondence information. A Trace con-
tains three reified associations. The first one named inductives contains one-
to-one mapping between classes and inductive types. The second one named
constructors contains many-to-one mapping between concrete classes and con-
structors. The last one named features contains many-to-one correspondence
information between structural features and constructor parameters.

In this class diagram, EClass and EStructuralFeature are imported from
the Ecore metametamodel, and Inductive, Constructor and Binder are im-
ported from our own metamodel for Gallina and Vernacular.

10 J. Buisson and S. Rehab

5.2 Generic Transformation

The Vernacular definition of Figure 7 is composed of two Gallina terms that
have to be generated: the value (after the := symbol – here sos is well typed ...
P2) and the type (between : and := – here system is well typed ... "world").

To begin with, we consider the value bound by the definition. It is the trans-
lation of the objects lying in the Ecore technological space. Figure 8 provides the
pseudo-code of a generic algorithm that transforms a model element into such a
term. It proceeds by introspecting the type of object by means of EMF reflection
facilities. For each object x (function element_to_term) the constructor corre-
sponding to its class is applied in order to build the subterm. The constructor
is found thanks to the trace parameter, which is the object that records corre-
spondence information described in Section 5.1 and obtained after the transfor-
mation of the metamodel into inductive types. Because the transformation may
generate several constructors for each concrete class of the metamodel, function
element_to_term has to select the right one. The suitable constructor depends
on the inductive type the generated term is expected to have. This is the rea-
son motivating the c parameter of element_to_term: this parameter c is the
static type of the reference from which x has been got. Like shown in func-
tion feature_to_term, the effective parameter for c is indeed the static type of
the reference in the parent object.

Once the constructor has been found, a function application term is gener-
ated by calling function apply. To generate effective parameters, each formal
parameter of the constructor is first mapped back to the Ecore structural fea-
ture it comes from. Then function feature_to_term is called to generate the
term for the effective parameter. This function deals with collections by issuing
a list if necessary, and it calls value_to_term to convert individual objects. This
latter function discriminates between containment references, non-containment
references and attributes. The first ones, i.e., containment references, are con-
verted by a recursive call to element_to_term. Non-containment references are
translated into an URI, i.e., an identifier of the referenced object. Attributes
are plain-old Java objects, which are translated to corresponding Coq terms by
hard-coded rules.

The second term, the type of the generated definition, is the translation of
the class of the object translated by the algorithm of Figure 8. Because of how
the type system is mechanized, the type has parameters that are values, like
in the example of Figure 7. However, none of Java nor EMF supports using an
object as a type parameter in static types, and both Java and EMF erase type
parameters from dynamic types. Therefore, we rely instead on type inference
in Coq’s compiler in order to suitably generate the type of the definition. In
SosADL supporting tools, we have not faced any case when type inference fails.

5.3 Generation of the Transformation

The algorithm presented in the previous subsection is a generic one that uses
Java and EMF reflection at runtime, in conjunction with correspondence infor-

Effective Bridging between Ecore and Coq 11

sosadl_Constituent (Constituent c) {

return apply(sosadl Constituent sosadl Constituent,

sosadl_Cardinality (c.cardinality), string(c.name),

uri(c.system));
}

sosadl_System (System s) {

if (SOS.isSuperTypeOf (s.eClass)) {

return apply(sosadl System sosadl Sos,

map(s.constituents , c 7→ sosadl_Constituent (c)),

sosadl_Expression (s.constraint), string(s.name))

} else {

raise error
}

}

sosadl_Sos (Sos s) {

return apply(sosadl Sos sosadl Sos,

sosadl_Constituent (s.constituents),

sosadl_Expression (s. constraint), string(s.name))

}

// and so on

Fig. 10. Generated algorithm that transfoms a SosADL model element into a term.

mation issued at the same time as inductive types generated by the transfor-
mation of Section 3.1. Instead of interpreting these data structures at runtime,
a model element transformation can be statically generated specifically for the
metamodel.

Figure 10 illustrates the generated code. For each inductive type, that is, for
each class that may be used as a static type in the EMF technological space, a
function is generated. When the class is concrete and when it has no known spe-
cializing class, the corresponding inductive type owns a single constructor. The
generated function, e.g., sosadl_Constituent and sosadl_Sos in Figure 10, ap-
plies that constructor to effective parameters got by (possibly recursively calling)
other generated functions. When the class is abstract or when it has specializ-
ing classes, the generated function, e.g., sosadl_System in Figure 10, uses Java
or EMF reflection to find out the concrete class of the object and select the
constructor accordingly.

Figure 11 outlines an algorithm to automatically generate such functions
from correspondence information depicted at Section 5.1. To generate the ad-
hoc transformation, function generate_transformation generates a function
for each class (or inductive type) of the metamodel for which the transformation
is generated. This is done by invoking generate_function on each class. Like its
name tells, this function generates one generator function, for one inductive type.

12 J. Buisson and S. Rehab

// trace: correspondence information from which the transformation is derived
generate_transformation(trace) {

returnmap(trace.inductives ,
(c,i) 7→ generate_fun (trace , c, i))

}

// class: Ecore class (abstract or concrete) that corresponds to the inductive type
// inductive: inductive type generated that corresponds to the class
generate_fun (trace , class , inductive) {

if (class.isAbstract ∨ ∃ c, class.isSuperTypeOf (c)) {

cases ← map(filter (trace.constructors ,
(cl, ctor) 7→ ctor .inductive == inductive),

(cl , ctor) 7→ generate_case (trace , cl, ctor , «x»))
return function(inductive .name , [(class , «x»)], cases)

} else {

ctor ← filter (trace.constructors [class],
c 7→ c.inductive == inductive)

return function(inductive .name , [(class , «x»)],
generate_generate (trace , ctor , «x»)

}

}

// class: Ecore concrete class of the object that corresponds to the constructor
// constructor: constructor mapped from the class
// object: name of the parameter in the generated function
generate_case (trace , class , constructor , object) {

return « if (» object «instanceof» class.name «) {»
generate_generate (trace , constructor , object) «}»

}

// constructor: constructor that is going to be issued to transform the object
generate_generate (trace , constructor , object) {

return «return apply(» constructor .name «(»
map(constructors .parameters ,

p 7→ generate_call (trace , p, object)) «)»
}

// parameter: binder (in Gallina) that declares the parameter of the constructor
generate_call (trace , parameter , object) {

feature ← trace.features [parameter]

if (¬feature.isMany) {

inductive ← trace.inductives [feature.eType]

return inductive .name «(» object «.» feature.name «)»
} else // deal with lists, and so on

}

Fig. 11. Automatic generation of the ad-hoc transformation of Figure 10.

Effective Bridging between Ecore and Coq 13

Regarding the body of the generated function, generate_function first checks
whether the class under consideration is abstract or has any specializing class.
If so, it generates tests for each specializing class (by calling generate_case). If
not, it directly invokes generate_generate, which generates instructions to issue
a call to the constructor. Function generate_generate uses generate_call for
each formal parameter of the constructor in order to generate function calls that
issue terms for effective parameters of the constructor.

In this paper, we omit details to deal with collections and attributes.

6 Related Works

To the best of our knowledge, no previous work has studied automatic generation
of an infrastructure for proof-carrying code for a language whose abstract syntax
is described by a metamodel. Though, the approach is appealing since several
popular language workbenches such as the Eclipse-EMF-Ecore-Xtext combina-
tion or MPS hardly integrate formal tools that may help in the verification of
language definitions and implementations. In this regard, even if our work is still
preliminary, it provides a novel step towards bridging semi-formal metamodels
and formal approaches.

Like stated in Section 3.1, our work is based on and improves previous work
on transforming a metamodel into a group of inductive types. In comparison
to [7], our improved transformation does not suffer from any restriction on the
source metamodel. In comparison to [8], we further improve support for multiple
inheritance as we need not assume existence of a unique most-general super class
for any class. As a consequence, generated inductive types are stricter. In com-
parison to our own previous work [4], improvements cover the handling of corre-
spondence information and of model elements. In addition of transforming the
metamodel, in this paper, we propose two approaches to consistently transform
instances of that metamodel, i.e., model elements into terms: a generic algorithm
that introspects the metamodel at runtime, and a algorithm that automatically
generates ad-hoc code, hence avoiding the need for runtime introspection. In this
paper, we also propose the combination of the transformations in order to build
an infrastructure for proof-carrying code in the context of Eclipse and related
DSL technologies (EMF-Ecore-Xtext).

Several previous work such as [10, 9, 1, 6] have proposed approaches to trans-
form OMT or UML class diagrams into terms or values in various formal calcu-
lus, hence enabling formal verification of these class diagrams. If we consider the
abstract syntax for OMT or UML class diagrams (or even the Ecore metameta-
model) as the metamodel, we think that our work may be able to generate
automatically one such transformation, instead of hard-coding the transforma-
tion. Additional work is required in order to better evaluate how our own work
might be usable in such a context.

14 J. Buisson and S. Rehab

7 Conclusion

In this paper, we have proposed to automatically generate an infrastructure for
proof-carrying code given a metamodel produced in the context of the Eclipse-
EMF-Ecore-Xtext ecosystem [13, 3] language workbench. The work presented
in this paper is motivated by our effort on providing supporting tools for the
SosADL domain-specific language [12]. Our proposal is the combination of trans-
forming the Xtext-generated metamodel into a collection of inductive types suit-
able for the Coq proof assistant. Then, from the same metamodel, we automat-
ically derive a transformation that, consistently with the generated inductive
types, transforms any model element into a term that can be successfully com-
piled by Coq.

Even if the infrastructure has been fully implemented in the type checker of
SosADL supporting tools, we think that the area needs further investigation.
This work allows us to define our agenda for future work in the area.

First, we plan to further study the transformation of model elements into
terms. In addition to using this transformation in the context of our proof-
carrying code infrastructure, we plan to assess how this automatic transforma-
tion could be used to verify properties of some models like done with various
hard-coded UML-to-B transformations proposed in previous work.

Second, we have left open the question of defining classes that implement
in the Java or Ecore the inductive types encoding the mechanized type system.
These classes are indeed required in order to instrument the type checker such
that it produces proofs. Existing Coq’s extraction mechanism translates Gallina
and Vernacular definitions into other languages. While this mechanism is a basis,
it is designed to skip any proof-related item from the translation, which are pre-
cisely the items we want to translate to Java or Ecore. Changing the mechanism
in this regard would need to study how it must be adapted in order to conform
to restrictions and constraints imposed by Java and Ecore type systems.

Last, one may ask how much confidence can be put in our proposed approach.
To address this issue, we consider applying our proof-carrying code infrastructure
to itself. Namely, we consider instrumenting the transformations involved in our
approach in order to generate conformance proofs that could be checked by the
Coq proof assistant.

References

1. Barbier, F., Cariou, E.: Inductive UML. In: Abelló, A., Bellatreche, L., Benatal-
lah, B. (eds.) Model and Data Engineering - 2nd International Conference, MEDI
2012, Poitiers, France, October 3-5, 2012. Proceedings. Lecture Notes in Computer
Science, vol. 7602, pp. 153–161. Springer (2012). https://doi.org/10.1007/978-3-
642-33609-6, https://doi.org/10.1007/978-3-642-33609-6 15

2. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series, Springer (2004). https://doi.org/10.1007/978-3-662-
07964-5, https://doi.org/10.1007/978-3-662-07964-5

Effective Bridging between Ecore and Coq 15

3. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend. Packt
Publishing (2013)

4. Buisson, J., Rehab, S.: Automatic transformation from ecore metamodels towards
gallina inductive types. In: Hammoudi, S., Pires, L.F., Selic, B. (eds.) Proceedings
of the 6th International Conference on Model-Driven Engineering and Software
Development, MODELSWARD 2018, Funchal, Madeira - Portugal, January 22-24,
2018. pp. 488–495. SciTePress (2018), https://doi.org/10.5220/0006608604880495

5. Buscemi, M.G., Montanari, U.: Cc-pi: A constraint language for service negotiation
and composition. In: Wirsing, M., Hölzl, M.M. (eds.) Rigorous Software Engineer-
ing for Service-Oriented Systems - Results of the SENSORIA Project on Software
Engineering for Service-Oriented Computing, Lecture Notes in Computer Science,
vol. 6582, pp. 262–281. Springer (2011), https://doi.org/10.1007/978-3-642-20401-
2 12

6. Cabot, J., Clarisó, R., Riera, D.: On the verification of UML/OCL class diagrams
using constraint programming. Journal of Systems and Software 93, 1–23 (2014),
https://doi.org/10.1016/j.jss.2014.03.023

7. Djeddai, S., Strecker, M., Mezghiche, M.: Integrating a formal develop-
ment for dsls into meta-modeling. J. Data Semantics 3(3), 143–155 (2014),
https://doi.org/10.1007/s13740-013-0030-4

8. Klint, P., van der Storm, T.: Model transformation with immutable data. In: Gorp,
P.V., Engels, G. (eds.) Theory and Practice of Model Transformations - 9th In-
ternational Conference, ICMT 2016, Held as Part of STAF 2016, Vienna, Austria,
July 4-5, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9765, pp.
19–35. Springer (2016), https://doi.org/10.1007/978-3-319-42064-6 2

9. Lano, K., Clark, D., Androutsopoulos, K.: UML to B: formal verification of object-
oriented models. In: Boiten, E.A., Derrick, J., Smith, G. (eds.) Integrated Formal
Methods, 4th International Conference, IFM 2004, Canterbury, UK, April 4-7,
2004, Proceedings. Lecture Notes in Computer Science, vol. 2999, pp. 187–206.
Springer (2004). https://doi.org/10.1007/b96106, https://doi.org/10.1007/978-3-
540-24756-2 11

10. Meyer, E., Souquières, J.: A systematic approach to transform OMT diagrams to
a B specification. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM’99 - For-
mal Methods, World Congress on Formal Methods in the Development of Com-
puting Systems, Toulouse, France, September 20-24, 1999, Proceedings, Volume
I. Lecture Notes in Computer Science, vol. 1708, pp. 875–895. Springer (1999).
https://doi.org/10.1007/3-540-48119-2, https://doi.org/10.1007/3-540-48119-2 48

11. Necula, G.C.: Proof-carrying code. In: Lee, P., Henglein, F., Jones, N.D. (eds.)
Conference Record of POPL’97: The 24th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, Papers Presented at the Sym-
posium, Paris, France, 15-17 January 1997. pp. 106–119. ACM Press (1997),
http://doi.acm.org/10.1145/263699.263712

12. Oquendo, F., Buisson, J., Leroux, E., Moguérou, G.: A formal approach for ar-
chitecting software-intensive systems-of-systems with guarantees. In: 13th Annual
Conference on System of Systems Engineering, SoSE 2018, Paris, France, June 19-
22, 2018. pp. 14–21. IEEE (2018), https://doi.org/10.1109/SYSOSE.2018.8428726

13. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0. Addison-Wesley Professional, 2nd edn. (2009)

