
HAL Id: hal-01945091
https://hal.science/hal-01945091

Preprint submitted on 5 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

VideoMem: Constructing, Analyzing, Predicting
Short-term and Long-term Video Memorability

Romain Cohendet, Claire-Hélène Demarty, Ngoc Q. K. Duong, Martin
Engilberge

To cite this version:
Romain Cohendet, Claire-Hélène Demarty, Ngoc Q. K. Duong, Martin Engilberge. VideoMem: Con-
structing, Analyzing, Predicting Short-term and Long-term Video Memorability. 2018. �hal-01945091�

https://hal.science/hal-01945091
https://hal.archives-ouvertes.fr


VideoMem: Constructing, Analyzing, Predicting Short-term and Long-term
Video Memorability

Romain Cohendet
Technicolor

975 Avenue des Champs Blancs, 35576 Cesson-Sevigne, France
romain.cohendet@technicolor.com

Claire-Hélène Demarty
claire-helene.demarty@technicolor.com

Ngoc Q. K. Duong
quang-khanh-ngoc.duong@technicolor.com

Martin Engilberge
martin.engilberge@technicolor.com

Abstract

Humans share a strong tendency to memorize/forget
some of the visual information they encounter. This paper
focuses on providing computational models for the predic-
tion of the intrinsic memorability of visual content. To ad-
dress this new challenge, we introduce a large scale dataset
(VideoMem) composed of 10,000 videos annotated with
memorability scores. In contrast to previous work on image
memorability – where memorability was measured a few
minutes after memorization – memory performance is mea-
sured twice: a few minutes after memorization and again
24-72 hours later. Hence, the dataset comes with short-term
and long-term memorability annotations. After an in-depth
analysis of the dataset, we investigate several deep neural
network based models for the prediction of video memo-
rability. Our best model using a ranking loss achieves a
Spearman’s rank correlation of 0.494 for short-term memo-
rability prediction, while our proposed model with attention
mechanism provides insights of what makes a content mem-
orable. The VideoMem dataset with pre-extracted features
is publicly available1.

1. Introduction

While some contents have the power to burn themselves
into our memories for a long time, others are quickly for-
gotten [17]. Evolution made our brain efficient to remem-
ber only the information relevant for our survival, repro-
duction, happiness, etc. This explains why, as humans, we

1https://www.technicolor.com/dream/
research-innovation/video-memorability-dataset

share a strong tendency to memorize/forget the same im-
ages, which translates into a high human consistency in im-
age memorability (IM) [20], and probably also a high con-
sistency for video memorability (VM). This shared-across-
observers part of the memorability is the most obvious one
to capture by machines, as it can be assessed by averag-
ing individual memory performances, avoiding to deal with
individual differences. It also has a very broad range of ap-
plications in various areas, including education and learn-
ing, content retrieval and search, content summarizing, sto-
rytelling, content filtering, etc. For these reasons, this paper
targets the prediction of the part of the memorability that is
shared by humans.

The study of VM from a computer vision point of view
is a new field of research, encouraged by the success of IM,
which has attracted increasing attention since the seminal
work of Isola et al. [17]. In contrast to other cues of video
importance, such as aesthetics, interestingness or emotions,
memorability has the advantage of being clearly definable
and objectively measurable (i.e., using a measure that is
not influenced by the observer’s personal judgment). This
certainly participates to the growing interest for its study.
IM has initially been defined as the probability for an im-
age to be recognized a few minutes after a single view,
when presented amidst a stream of images [17]. This def-
inition has been widely accepted within subsequent work
[24, 21, 4, 20, 23]).

The introduction of deep learning to address the chal-
lenge of IM prediction causes models to achieve results
close to human consistency [20, 2, 33, 18, 31, 12].As a re-
sult of this success, researchers have recently extended this
challenge to videos [14, 30, 8, 6]. However, this new re-
search field is nascent. As argued in [8], releasing a large-
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scale dataset for VM would highly contribute to launch
this research field, as it was the case for the two impor-
tant dataset releases in IM [17, 20]. Such a dataset should
try to overcome the weaknesses of the previously released
datasets. In particular, previous research on IM focused on
the measurement of memory performances only a few min-
utes after memorization. However, passage of time is a fac-
tor well-studied in psychology for its influence on memory,
while having been largely ignored by previous work on IM,
probably because of the difficulty to collect long-term mem-
orability annotations at a large scale, in comparison with
short-term ones. Measuring a memory performance a few
minutes after the encoding step is already a measure a long-
term memory, since short-term memory usually lasts less
than a minute for unrehearsed information[28]. However,
memories continue to change over time: going through a
consolidation process (i.e., the time-dependent process that
creates our lasting memories), some memories are consoli-
dated and others are not [25]. In other words, as claimed in
[5], short-term memory performances might be poor predic-
tors of longer term memory performances. Since long-term
memorability is more costly and difficult to collect than
short-term memorability, it would nevertheless be interest-
ing to know if the former can be inferred from the latter,
which would also push forward our understanding of what
makes a video durably memorable. A way to achieve this
consists in measuring memorability for the same videos at
two points of time. These two measures would be partic-
ularly interesting if spaced by a time interval in which for-
getting is quite significant, to maximize the size of the po-
tentially observable differences depending on the different
video features. Observing the different forgetting curves in
long-term memory (e.g., Ebbinghauss seminal work [10]),
one can observe that the drop in long-term memory perfor-
mance in recall follows an exponential decay and is partic-
ularly strong in the first hour, and to a lesser extent in the
first day, immediately after the memorization. Measuring
long-term memory a few minutes after encoding (as done
in studies of IM [17, 20]), and again one day or more after
(i.e., to obtain a measure close to very long-term memory),
sounds therefore a good trade-off.

The main contributions of this work are fourfold:

• We introduce a new protocol to objectively measure
human memory of videos at two points of time (a few
minutes after memorization, and 24-72 hours later) and
release VideoMem, the premier large-scale dataset for
VM, composed of 10,000 videos with short-term and
long-term memorability scores (Sections 3.1 and 3.2).

• Through an analysis of the dataset, we address the
problem of understanding VM, by highlighting some
factors involved in VM (Section 4).

• We investigate three DNN-based models for VM pre-
diction that we compare to two baseline IM models

(Section 5). The best model reaches a performance of
0.494 for Spearman’s rank correlation on VideoMem.

• We propose an extension of the best performing model
with an attention mechanism to localize what in an im-
age makes it memorable (Section 5.6).

2. Related work
If long-term memory has been studied for over a cen-

tury in psychology, since the seminal experimental stud-
ies of Ebbinghaus [11], its study from a computer vision
point of view is quite recent, starting with [17]. Images and
videos had long been used as material to assess memory per-
formances [32, 3, 13], proving that human posses an exten-
sive long-term visual memory. The knowledge accumulated
in psychology helped to measure memory using classical
memory tests (see [29] for an extensive overview) such as
recognition tests [17, 20, 14, 8] or textual question-based re-
call surveys [30]. Several factors are highlighted in the psy-
chological literature for their critical influence on long-term
memory, including emotion [19], attention [9], semantics
[27], several demographic factors [7], memory re-evocation
[26], or passage of time [25], also providing computer vi-
sion researchers with insights to craft valuable computa-
tional features for IM and VM prediction [24, 16, 8].

Focusing on the work on IM in computer vision, most
studies made use of one of the two available large datasets,
specifically designed for IM prediction, where IM was mea-
sured a few minutes after memorization [17, 20], and con-
sequently focused on predicting a so-called short-term IM
[24, 21, 4, 20, 2, 23, 31, 12]. The pioneering work of [17]
focused primarily on building computational models to pre-
dict IM from low-level visual features [17], and showed
that IM can be predicted to a certain extent. Several char-
acteristics have also been found to be relevant for predict-
ing memorability in subsequent work, for example saliency
[24], interestingness and aesthetics [16], or emotions [20].
The best results were finally obtained by using fine-tuned or
pre-extracted deep features, which outperformed all other
features [20, 2, 31, 12], with models achieving a Spear-
man’s rank correlation near human consistency (i.e., .68)
when measured for the ground truth collected in [17, 20].

Work on VM is more recent. To the best of our knowl-
edge, there exist only three previous attempts at measuring
it [14, 30, 8]. Inspired by [17], Han et al. built a similar
but far much heavier protocol to measure VM. Indeed, the
long time span of the experiment makes the generalization
of this protocol difficult, in particular if one targets the con-
struction of an extensive dataset. Another earlier approach
uses questions instead of a classic visual recognition task
to measure VM [30]. As a results, memorability annota-
tions collected for the videos may reflect not only the dif-
ferences in memory performances but also the differences
between the questions in terms of difficulty, especially since
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the authors use the response time to calculate memorability
scores, which might also critically depend on the complex-
ity of the questions. The most recent attempt at measur-
ing VM, and the only one, to our knowledge, resulting in a
publicly available dataset, comes from [8]. The authors in-
troduced a novel protocol to measure memory performance
after a significant retention period – that is, weeks to years
after memorization – without needing a longitudinal study.
In contrast with previous work, the annotators did not pass
through a learning task, which was replaced with a ques-
tionnaire designed to collect information about the partici-
pants’ prior memory of Hollywood-like movies. However,
such a protocol implies a limited choice of content: authors
needed contents broadly disseminated among the popula-
tion surveyed, as the participants should have seen some of
them before the task (hence the Hollywood-like movies),
conducting to a number of annotations biased towards most
famous content. Furthermore, the absence of control of the
memorizing process and the answers of the questionnaire
based on subjective judgments make the measure of mem-
ory performance not fully objective. To sum up, none of the
previous approaches to measure VM is adapted to build a
large-scale dataset with a ground truth based on objective
measures of memory performance.

Results obtained for VM prediction are yet far from
those obtained in IM prediction. Han et al. proposed
a method which combines audio-visual and fMRI-derived
features supposedly conveying part of the brain activity
when memorizing videos, which in the end enables to pre-
dict VM without the use of fMRI scans [14]. However,
the method would be difficult to generalize. Shekhar et
al. investigated several features, including C3D, seman-
tic features obtained from some video captioning process,
saliency features, dense trajectories, and color features, be-
fore building their memorability predictor [30]. They found
that the most predictive feature combination used caption-
ing features, dense trajectories, saliency and color features.

3. VideoMem: large-scale video memorability
dataset

In section 3.1, we describe the collection of source
videos that compose the VideoMem dataset. We then in-
troduce a new protocol to collect short-term and long-term
memorability annotations for videos (Section 3.2), before
explaining the computation of VM scores (Section 3.3).

3.1. Video collection

The dataset is composed of 10,000 soundless videos of
7 seconds shared under a license that allows their use and
redistribution for research purpose only. In contrast to pre-
vious work on VM, where videos came from TRECVID
[30, 14] or were extracted from Hollywood-like movies [8],
videos in our dataset were extracted from raw footage used

by professionals when creating content. Raw footage is raw
material dedicated to be further edited and included into
a new motion picture, video clip, television show, movie
parts, advertisements, etc. Because such video footage is
typically used to save shooting new material, it is usually
generic enough to be easily integrated in different sorts of
creations. As such, they are context-independent and con-
tain only one semantic scene. By this choice of content, we
expect these basic building units to be relevant to train mod-
els which generalize on other types of videos. We are also
confident that observers never saw the videos before par-
ticipating in the experiment. Videos are varied and contain
different scene types such as animal, food and beverages,
nature, people, transportation, etc. A few of them contain
similarities, e.g., same actor, same place but slightly differ-
ent action, as it is the case in everyday video consumption.A
small fraction is also slow-motion. Each video comes with
its original title, that can often be seen as a list of tags
(textual metadata). Some examples of keyframes extracted
from these videos are shown in Fig. 1.

The original videos are of high quality (HD or 4k) and of
various durations (from seconds to minutes). As it will be
described in Section 3.2, our protocol relies on crowdsourc-
ing. For the sake of fluency during the annotation collection
and consistency between the videos, we rescaled the videos
to HD and re-encoded them in .webm format, with a bitrate
of 3,000 kbps for 24 fps. To satisfy to the protocol’s con-
straints, we also cut the videos to keep only the 7 seconds
that represented the best the videos. Videos are soundless,
firstly because a large part of the original data came without
audio, and secondly, because it is difficult to control the au-
dio modality in crowdsourcing. Accordingly, memorability
would be linked only to the visualization of a semantic unit,
which sounds a reasonable step forward for VM prediction,
without adding a potentially biasing dimension.

Figure 1: Example keyframes extracted from the first 20
videos (according to their names) of VideoMem, sorted by
their long-term memorability (decreasing from left to right).

3.2. Annotation protocol

To collect memorability annotations, we introduced a
new protocol which enables to measure both human short-
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term and long-term memory performances for videos. In-
spired by what was proposed in [16, 17] for IM, we also
used recognition tests for our memorability scores to reflect
objective measures of memory performance. However, our
protocol differs in several ways, not mentioning the fact that
it is dedicated to video content. Firstly, as videos have an in-
herent duration compared to images, we had to revise 1/ the
delay between the memorization of a video and its recog-
nition test and 2/ the number of videos, for the task not be
too easy. Secondly, in contrast to previous work on IM pre-
diction, where memorability was measured only a few min-
utes after memorization, memory performance is measured
twice to collect both short-term and long-term memorabil-
ity annotations: a few minutes after memorization and again
(on different items) 24-72 hours later. The retention interval
between memorization and measure is not as important as in
[8], where it lasts weeks to years. As previously explained,
we hope, however, that this measure reflects very-long term
memory performance better than short-term memorability,
as forgetting happens to a large extent during the first day
following the memorization.

Our protocol, that works in two steps, is illustrated in
Fig. 2. Step #1, intended to collect short-term memorability
annotations, consists of interlaced viewing and recognition
tasks. Participants watch a series of videos, some of them –
the targets – repeated after a few minutes. Their task is to
press the space bar whenever they recognize a video. Once
the space bar is pressed, the next video is displayed, other-
wise current video goes on up to its end. Each participant
watches 180 videos, that contain 40 targets, repeated once
for memory testing, and 80 fillers (i.e., non target videos),
20 of which (so-called vigilance fillers) are also repeated
quickly after their first occurrence to monitor the partici-
pant’s attention to the task. The 120 videos (not counting
the repetitions) that participate to step #1 are randomly se-
lected among the 1000 videos that received less annotations
at the time of the selection. Their order of presentation is
randomly generated by following the given rule: the repeti-
tion of a target (respectively a vigilance filler) occurs ran-
domly 45 to 100 (resp. 3 to 6) videos after the target (resp.
vigilance filler) first occurrence. In the second step of the
experiment, that takes place 24 to 72 hours after step #1, the
same participants are proposed another similar recognition
task, intended to collect long-term annotations. They watch
a new sequence of 120 videos, composed of 80 fillers (ran-
domly chosen totally new videos) and 40 targets, randomly
selected from the non-vigilance fillers of step #1. Again,
their task is to recognize these new targets.

Apart from the vigilance task (step #1 only), we added
several controls, settled up upon the results on an in-lab test:
a minimum correct recognition rate (15%, step #2 only), a
maximum false alarm rate (30% for step #1; 40% for step
#2) and a false alarm rate lower than the recognition rate

(step #2 only). This allows to obtain quality annotations
by validating each user’s participation; a participant could
participate only once to the study. We recruited participants
from diverse countries and origins via the Amazon Mechan-
ical Turk (AMT) crowdsourcing platform. Thanks to our
own controls, we did not rely on any selection of (master)
workers as proposed by AMT.

3.3. Memorability score calculation

After a filtering of the participants to keep only those
that passed the vigilance controls, we computed the final
memorability scores on 9,402 participants for short-term,
and 3,246 participants for long-term memorability. On av-
erage, a video was viewed as a repeated target 38 times (and
at least 30 times) for the short-term task, and 13 times (at
least 9 times) for the long-term task (this difference is inher-
ent to the lower number of participants in step #2). We as-
signed a first raw memorability score to each video, defined
as the percentage of correct recognitions by participants, for
both short-term and long-term memorability.

The short-term raw scores are further refined by applying
a linear transformation that takes into account the memory
retention duration to correct the scores. Indeed, in our pro-
tocol, the repetition of a video happens after variable time
intervals, i.e., after 45 to 100 videos for a target. In [16],
using a similar approach for images, it has been shown that
memorability scores evolve as a function of the time interval
between repeats while memorability ranks are largely con-
served. We were able to prove the same relation for videos,
i.e., memorability decreases linearly when the retention du-
ration increases (see Fig. 3, left). Thus, as in [20], we use
this information to apply a linear correction (shown in Fig.
3) to our raw memorability scores to explicitly account for
the difference in interval lengths, with the objective for our
short-term memorability scores to be the most representa-
tive of the typical memory performance after the maximal
interval (i.e., 100 videos). Note that the applied correction
has nevertheless little effect on the scores both in terms of
absolute and relative values. Note also that we did not ap-
ply any correction for long-term memorability scores (Fig.
3, right). Indeed, we observed no specific, strong enough re-
lationship between retention duration and long-term mem-
orability. This was somehow expected from what can be
found in the literature : according to our protocol, the sec-
ond measure was carried out 24 to 72 hours after the first
measure. After such a long retention duration, it is expected
that the memory performance is no more subjected to sub-
stantial decrease due to the retention duration. In the end,
the average short-term memorability score is 0.859 (instead
of 0.875) and the average long-term memorability score is
0.778, all values showing a bias towards high values.
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7 sec 1 sec

…

Vigilance repeat
3 to 6 videos

Target repeat
45 to 100 videos

(a) Step #1. Interlaced encoding and recognition tasks.

7 sec 1 sec

…

Target repeat Target repeat

(b) Step #2. Second recognition task after 24 to 72 hours.

Figure 2: Proposed protocol to collect both short-term and long-term video memorability annotations. The second recognition
task measures memory of videos viewed as fillers during step #1, to collect long-term memorability annotations.

(a) Step #1. Recognition rate de-
creases linearly over time.

(b) Memory performances does not
significantly change between 24
and 72 hours after memorization.

Figure 3: Mean correct recognition rate vs. the retention in-
terval between the memorization and the measure of mem-
ory performance. Blue lines represent linear fitting.

4. Understanding video memorability

4.1. Human consistency vs. annotation consistency

Following the method proposed in [16], we measured
human consistency when assessing VM. For this purpose,
we randomly split our participants into two groups of equal
size, i.e., 4,701 for short-term memorability, 1,623 for
long-term memorability, and computed VM scores inde-
pendently in each group as described in Section 3.3. We
then calculated a Spearman’s rank correlation between the
two groups of scores. Averaging over 25 random half-
split trials, an average Spearman’s rank correlation, i.e., a
global human consistency, of 0.481 is observed for short-
term memorability and of 0.192 for long-term memorabil-
ity.

Such a method divides the number of annotations that is
taken into account for the score computation at least by a
factor of 2. Moreover, it may ends with groups with unbal-

anced number of annotations per video as the split is ran-
domly applied on the participants, not taking into account
which videos they watched. For this reason, we computed
a new metric so-called annotation consistency. We repro-
duced the previous process of human consistency computa-
tion but on successive subparts of the dataset by consider-
ing for each sub-part only videos which received at least N
annotations. Each subpart is then split in two groups of par-
ticipants while ensuring a balance number of participants
per video. By doing so, we obtain the annotation consis-
tency as a function of the number of annotations per video,
as presented in Fig. 4. This allows us to interpolate the fol-
lowing values: Annotation consistency reaches 0.616 (re-
spectively 0.364) for the short-term (resp. long-term) task,
for a number of annotations of 38 (resp. 13). The value of
0.616 for short-term memorability is to be compared to the
one found in [20] (0.68) for images. Slightly lower than the
latter, one should note that this consistency on VideoMem
was obtained with less annotations than in the work of [20],
which is consistent with [8]. The maximum consistency is
also slightly higher for VM than for IM (0.81 against 0.75
in [17] and 0.68 in [20]). An explanation is that videos con-
tain more information than images and thus are more eas-
ily remembered However, one should keep in mind that the
protocols to collect annotations differ in several ways, mak-
ing these results not fully comparable. From Fig. 4, we
see that long-term consistency follows the same evolution
as short-term consistency.

4.2. Memorability consistency over time

In this study, we are interested in assessing how well
memorability scores remain consistent over time, i.e., if a
video highly memorable after a few minutes of retention
remains also highly memorable after 24 to 72 hours. The
computation of a Spearman’s rank correlation coefficient
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Figure 4: Annotation consistency vs. mean number of an-
notations per video (left: short-term, right: long-term).

between the long-term and short-term memorability scores
for the 10,000 videos exhibits a moderate positive correla-
tion (ρ = 0.305, p < .0001) between the two variables,
as also shown in Fig. 5. To discard a potential bias that
would come from the highest number of annotations in step
#1 compared to step #2, we computed the correlation for
the 500 most annotated videos in the long-term task (that
have at least 21 annotations) and then again for the 100
most annotated (at least 28 annotations), observing similar
Spearman values of ρ = 0.333, p < .0001 and ρ = 0.303,
p < .0001, respectively. This result suggests that mem-
ory evolves with time and in a non homogeneous manner
depending on the videos: a video highly memorable a few
minutes after visualization might not remain highly memo-
rable in long-term memory. This finding is consistent with
the hypothesis we proposed in the introductory section, that
the information important for a content to be memorized
might not be the same for short-term and long-term memo-
rization.

Figure 5: Short-term vs. long-term memorability scores
(left) and average response times (right).

4.3. Memorability and response time

We observed negative Pearson correlations between the
mean response time to correctly recognize targets and their
memorability scores, both for short-term (r = 0.307, p <
.0001) and long-term (0.176, p < .0001) memorability, as
also illustrated in Fig. 6. This tends to prove that, globally,

participants tended to answer more quickly for the most
memorable videos than for the less memorable ones. This
is consistent with [8], where the authors propose two expla-
nations to this result: either the most memorable videos are
also the most accessible in memory, and/or the most memo-
rable videos contain more early recognizable elements than
the less memorable ones. As videos in VideoMem consist
of semantic units with often one unique shot – with most
of the information already present from the beginning – the
first explanation sounds more suitable here. This also sug-
gests that participants tend to quickly answer after recogniz-
ing a repeated video (even though they did not receive any
instruction to do so), maybe afraid of missing the time to
answer, or to alleviate their mental charge.This correlation
highlights that the average response time might be a useful
feature to further infer VM in computational models.

The correlation is, however, lower for long-term memo-
rability. One explanation might be that, after one day, re-
membering is more difficult. In connection with this ex-
planation, we observed a significant difference between the
mean response time to correctly recognize a video during
step #1 and during step #2 (1.43sec. vs. 3.37sec.), as
showed by a Student’s t-test (t(9999) = −122.59, p <
0001). Note that the Pearson correlation (0.291) be-
tween average response time per video for short-term and
long-term memorability is close to the Pearson correlation
(0.329) observed between short-term and long-term mem-
orability scores (see Fig. 5, right). Note that the mean re-
sponse time for a false alarm was 3.17sec. for step #1 and
3.53sec. for step #2.

Figure 6: Average response time (correct recognitions only)
as a function of memorability scores, for short-term (left)
and long-term memorability (right).

5. Predicting video memorability
In this section we focus on predicting VM using vari-

ous machine learning approaches. We pose the VM score
prediction as a standard regression problem. Among the
five models we proposed, the first two are IM models re-
used as is on our data (see Section 5.1). They will serve as
a baseline for the purpose of performance comparison and
understanding the correlation between IM and VM. We then
propose in section 5.2 a simple model based on Image Cap-
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tioning (IC) features, that derives from the finding in [31, 8].
The fourth model consists of a fine-tuned version of a state-
of-the-art high performance DNN for the task of image
recognition (Section 5.3). We pursue our model investiga-
tion with a fine-tuning of an advanced complete IC model in
section 5.4. In section 5.5, we analyze the prediction results
of these five models. Last, in section 5.6, we modify the ad-
vanced IC-based model by adding an attention mechanism
that helps us better understand what makes a content mem-
orable. Note that, for training (when applied) and evaluat-
ing the considered models, we split VideoMem dataset into
training (6500 videos), validation (1500 videos), and test
(2000 videos) sets, where the test set contains 500 videos
having a greater number of annotations. Similarly to previ-
ous work in IM and VM, the prediction performance is eval-
uated in term of the Spearman’s rank correlation between
the ground truth and the predicted memorability scores.

Figure 7: Semantic embedding based model without (green
pipeline) and with an attention mechanism (adding the or-
ange branch).

5.1. Image memorability based models

In order to investigate the correlation between IM and
VM, we used two state-of-the-art models available for IM
prediction to directly compute a memorability score for 7
successive frames in the video (one per second). The first
IM model, so-called MemNet [20], fine-tuned CNN pre-
trained on both the ImageNet and Places databases using the
LaMem dataset [16] and obtained prediction results close to
human consistency on LaMem. The second considered IM
model [31] obtained even better performance on LaMem.
In this model, the authors used the pre-trained VGG16 net-
work for their CNN feature and a pre-trained IC model as
an extractor for a high level visual semantic feature. Finally,
these two features are combined and MLP is used as clas-
sifier. For both models, the final VM score is then obtained
by averaging the 7 frame scores.

5.2. Image captioning-based model

As scene semantic features derived from an image cap-
tioning system [22] have been shown to well characterize
the memorability of images [31] and videos [8], we also
investigated the use of an IC system as feature extractor.
This system builds an encoder comprising a CNN and a long

short-term memory recurrent network (LSTM) for learning
a joint image-text embedding. We extracted the projected
CNN feature (of dimension 1024) in such joint 2D embed-
ding space, for each of the three (first, middle, last) frames
from each video. The 3 frame features are then concate-
nated and given as input to a MLP with mean square error
(MSE) measure as regression loss and trained to predict the
IM score. Final result is obtained with MLP parameters:
one hidden layer with 1500 neurons, optimizer=IBLGS, ac-
tivation=tanh, learning rate (lr)=1e-3.

5.3. Fine-tuned ResNet model

Instead of using a fix feature extractor as investigated
in the previous model, we also fine-tuned the state-of-the-
art ResNet models designed for the image recognition task
[15]. For this, we replaced the last fully connected layer of
ResNet by a new one dedicated to our considered regres-
sion task. This last layer was first trained alone for 5 epochs
(Adam optimizer, batchsize=32, lr=1e-3), then the whole
network was re-trained for more epochs (same parameters,
but lr=1e-5). Input data was once again all 7 frames of each
video (one per second, each frame being assigned the same
ground-truth score as the video) from VideoMem, mixed
with images from LaMem, to enlarge the size of the over-
all training dataset. For the latter images, we normalized
the ground-truth scores to be in the same range as those of
VideoMem. Some data augmentation was conducted: ran-
dom center cropping of 224x224 after resizing of the origi-
nal images and horizontal flip, followed by a mean normal-
ization computed on ImageNet. We fine-tuned two variants
of ResNet: ResNet18 and ResNet101 and found that the lat-
ter gave best performance on the validation set. Note that,
for ResNet101, the model was fine-tuned only to predict
short-term memorability as LaMem dataset contains only
short-term scores.

5.4. Semantic embedding based model

Following the idea of model fine-tuning and with an at-
tempt of benefiting from the performance of IC features, we
used a state-of-art visual semantic embedding pipeline used
for image captioning [1], on top of which a 2-layer MLP is
added, to regress the feature space to a single memorability
score. The overall architecture is shown in Fig. 7, in the
green pipeline. Similarly to the model described in section
5.3, this model first predicts memorability scores for 7 suc-
cessive frames (one per second), then the final prediction at
video level being computed by averaging those 7 values. It
is also fine tuned on VideoMem and LaMem data for short-
term only. The training is done using the Adam optimizer
and is divided in two steps: in the first 10 epochs only the
weights of the MLP are updated while those of the IC fea-
ture extractor remain frozen. Later the whole model is fine-
tuned. The learning rate is initialized to 0.001 and divided
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Models short-term memorability long-term memorability
validation test test (500) validation test test (500)

MemNet (Sec. 5.1) 0.397 0.385 0.426 0.195 0.168 0.213
Squalli et al. (Sec. 5.1) 0.401 0.398 0.424 0.201 0.182 0.232

IC-based model (Sec. 5.2) 0.492 0.442 0.514 0.22 0.201 0.188
ResNet101 (Sec. 5.3) 0.498 0.46 0.527 0.222 0.218 0.219

Semantic embedding model (Sec. 5.4) 0.503 0.494 0.565 0.26 0.256 0.275

Table 1: Results in terms of Spearman’s rank correlation between predicted and ground truth memorability scores, on the
validation and test sets, and on the 500 most annotated videos of the dataset (test (500)) that were placed in the test set.

in half every three epochs. It is important to note that the
original IC model was trained with a new ranking loss (i.e.,
Spearman surrogate) proposed in [1]. This new loss has
proved to be highly efficient for ranking tasks as claimed in
[1]. For the fine-tuning however, the training starts with a `1
loss as initialization step, before coming back to the rank-
ing loss. The original model was indeed trained for scores
in [-1;1], while our memorability scores are in [0;1]. The `1
loss forces the model to adapt to this new range.

Figure 8: Visualization of the attention mechanism’s output.
The model focuses either on close enough faces or main
objects when the image is mostly empty or black (row #1),
or it focuses on details outside the main objects (row #2).

5.5. Prediction results

From the results in Table 1, we may draw several con-
clusions. First, it is possible to achieve already quite good
results in VM prediction using models designed for IM pre-
diction. This means that the memorability of a video is
correlated to some extent with the memorability of its con-
stituent frames. In accordance with the literature, the model
of [31] performed a little better than the model of [20] again
for VM prediction. Also, all other models, dedicated to the
task, show significantly better performances than the base-
lines. Their ranking confirms what was expected: IC fea-
tures performed slightly worse than the two complete fine-
tuned models, but among those two, the fine-tuned IC model
is the best, as it leverages both the dedicated fine-tuning and
the use of high level semantic information. For all models,
we note that performances were lower for long-term mem-
orability. One interpretation might be that the memorability
scores for long-term are based on a smaller number of an-
notations than for short-term, so they probably capture a

smaller part of the intrinsic memorability. However, it may
also highlight the difference between short-term and long-
term memorability, the latter being more difficult to predict
as it is more subjective, while both being still – though not
perfectly – correlated. The performances of our models on
the 500 most annotated videos are better. This reveals that
our dataset might benefit from a larger number of annota-
tions. Last, compared to annotation consistency values, per-
formances remain lower, showing that there is still room for
improvement.

5.6. Intra-memorability visualization

To better understand what makes an image memorable,
we added an attention mechanism to our best model. It will
then learn what regions in each image contribute more to the
prediction. For this purpose, a convolutional layer is added
in parallel with the last convolutional layer of the feature
extractor part. It outputs a 2D attention map which goes
through a softmax layer and is multiplied with the last con-
volution map of the visual pipeline as shown in Fig. 7 (or-
ange branch). Note that for training we used only the `1
loss, and the other same parameters. An empirical study
of the resulting attention maps tends to separate them in
two categories. In the first one, when image frames contain
roughly one main object and no or rare information apart
from this main object (this might be because the background
is dark or uniform), it seems that the model focuses, as ex-
pected intuitively, on the main object and even, in the case
of large enough faces, on details of the faces, as if trying to
remember the specific features of faces. Example results for
images in the first category can be found in Fig. 8, first row.
In the second category that groups all other frames, with
several main and secondary objects, cluttered background,
etc., it seems on the contrary that the model focuses on all
but the main objects/subjects of the images, as if trying to
remember little details that will help it differentiate the im-
age from another similar one. Or said differently, the second
category shows results that might be interpreted as a second
memorization process, once the first one – focusing on the
main object – is already achieved. Examples for the second
category can be found in the second row of Fig. 8.
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6. Conclusions

In this work, we presented a novel memory game based
protocol to build VideoMem, a premier large-scale VM
dataset. Through an in-depth analysis of the dataset, we
highlighted several important factors concerning the under-
standing of VM: human vs. annotation consistency, mem-
orability over time, and memorability vs. response time.
We then investigated several baselines and advanced DNN
models for VM prediction. Our proposed model with spa-
tial attention mechanism allows to visualize, and thus better
understand what type of visual content is more memorable.
Future work would be devoted to improve results for both
short-term and long-term memorability with a focus on tem-
poral aspects of the video, e.g. by adding temporal attention
model and recurrent neural network blocks to the workflow.
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