A new location-scale model for conditional heavy-tailed distributions
Aboubacrine Ag Ahmad, Aliou Diop, El Hadji Deme, Stephane Girard

To cite this version:
Aboubacrine Ag Ahmad, Aliou Diop, El Hadji Deme, Stephane Girard. A new location-scale model for conditional heavy-tailed distributions. IFSS 2018 - 2nd Italian-French Statistics Seminar, Sep 2018, Grenoble, France. hal-01942204

HAL Id: hal-01942204
https://hal.archives-ouvertes.fr/hal-01942204
Submitted on 10 Feb 2020
A new location-scale model for conditional heavy-tailed distributions

Aboubacrine Ag Ahmad1, Aliou Diop1, El Hadji Deme2 & Stéphane Girard3

1 UGB - Université Gaston Berger de Saint-Louis, Sénégal.
3 Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France.

1. Abstract
We are interested in a location-scale model for heavy-tailed distributions where the covariate is deterministic. We first address the nonparametric estimation of the location and scale functions and derive an estimator of the conditional extreme-value index. Second, new estimators of the extreme conditional quantiles are introduced. The asymptotic properties of the estimators are established under mild assumptions.

2. Model
\[Y = a(x) + b(x)Z, \]
where \(x \in \mathbb{R} \) is a nonrandom covariate, \(Y \in \mathbb{R} \) a random variable that depends on \(x \) and \(Z \) an independent random variable of \(x \). The location function \(a(\cdot) \) and the scale function \(b(\cdot) \) are unknown. We assume that the survival function of \(Z \) denoted by \(F_Z \) belongs to the class of regualry varying functions at infinity
\[F_Z(z) = z^{-1/\gamma}(\gamma), \quad \gamma > 0, \]
where \(\gamma \) is a slowly-varying function at infinity and \(\gamma \) is the conditional extreme-value index.

3. Estimators

Let \(\{(x_i, y_i) : i = 1, \ldots, n\} \) be a \(n \)-sample of observations such that \(Y_i = a(x_i) + b(x_i)Z_i \), \(i = 1, \ldots, n \), where \(Z_i \) are independent and identically distributed. For simplicity, the design points are of the form \(x_i = i/n, i = 1, \ldots, n \) and \(x_0 = 0 \) by convention.

Notations
- \(\hat{F}_y(\cdot | x) \) : the conditional survival function of \(Y \) given \(x \).
- \(\hat{F}_y(\alpha | x) \) : the conditional \(\alpha \)-th quantile of \(Y \) given \(x \).

Kernel estimator of \(\hat{F}_y(\cdot | x) \):
\[\hat{F}_y(\cdot | x) = \frac{1}{n} \sum_{i=1}^{n} K_{\alpha}((x_i-x)/\hat{b}(x)) dt, \quad (x, y) \in [0, 1] \times \mathbb{R}, \]
where the bandwidth \(h = \hat{h}_n \) is a nonrandom sequence such that \(h \rightarrow 0 \) as \(n \rightarrow \infty \).

Kernel estimator of \(\hat{F}_y(\cdot | x) \):
\[\hat{a}(\cdot | x) = \frac{1}{n} \sum_{i=1}^{n} \alpha - \hat{a}(x), \quad \text{for all } (k, l) \in \{1, \ldots, J\} \text{ and } v (\text{resp. } \alpha), \]
denotes the maximum (resp. the minimum).

4. Asymptotic results
Assume \(n \) large enough so that \(h = h_n < 1/2 \), the following results are obtained under some regularity conditions on the probability density function of \(Z \) and \(F_Z \) and a lipschitzian condition on the kernel \(K \).

Proposition 1: Estimation of classical conditional quantiles
Let \((t_{ik})_i \) be a sequence in \([h_n, 1 - h_n] \) and \((\alpha_{ik})_i \) a strictly decreasing sequence in \((0, 1) \). If \(nh_n \rightarrow +\infty \) and \(nh_n^d \rightarrow 0 \) as \(n \rightarrow +\infty \), then
\[\sqrt{nh_n} \left(\frac{a(t_{ik})}{b(t_{ik})} - \hat{a}(t_{ik}) \right) \rightarrow \mathcal{N}(0, \alpha t_{ik}, 1_{1/\gamma} K^2(u)du A_i), \]
where \(A_i = \frac{\alpha}{f Z(a(t_{ik})) f Z(a(t_{ik}))} \) for all \((k, l) \in \{1, \ldots, J\}^2 \).

Proposition 2: Estimation of location and scale functions
If \(nh_n \rightarrow +\infty \) and \(nh_n^d \rightarrow 0 \) as \(n \rightarrow +\infty \), then for all sequence \((t_{ik})_i \) in \([h_n, 1 - h_n] \),
\[\sqrt{nh_n} \left(\frac{\hat{a}(t_{ik})}{b(t_{ik})} - a(t_{ik}) \right) \rightarrow \mathcal{N}(0, \alpha t_{ik}, 1_{1/\gamma} K^2(u)du B), \]
where \(B \) is a given symmetric matrix.

Proposition 3: Estimation of extreme conditional quantiles
Let \((t_{ik})_i \) be a sequence in \([h_n, 1 - h_n] \) positive and strictly decreasing sequence, \((\alpha_{ik})_i \) a sequence such that \(\alpha = 0, nh_n(\alpha) \rightarrow +\infty \) and \(nh_n^{\alpha_{ik}} \rightarrow 0 \) as \(n \rightarrow +\infty \). Then,
\[\sqrt{nh_n^{\alpha_{ik}}} \left(\frac{\hat{a}(t_{ik})}{b(t_{ik})} - a(t_{ik}) \right) \rightarrow \mathcal{N}(0, \alpha t_{ik}, 1_{1/\gamma} K^2(u)du C), \]
where \(C_i = \frac{1}{(\hat{a}(t_{ik}))^2} \) for all \((k, l) \in \{1, \ldots, J\}^2 \).

6. References

5. Conclusion
The study of the problem in fixed design, which we have made, reveals interesting theoretical results. As a perspective, we are considering the conditional extreme-value index estimation and a validation of our results on simulations. We also plan to extend these results to the random framework.

7. Acknowledgements
Aboubacrine would like to thank CEA-MITIC (www.ceamitic.sn) and Inria of Grenoble Rhône-Alpes project team Mistis (https://mistis.inrialpes.fr) which hosted him for several research stays as part of the SIMERGE project (http://mistis.inrialpes.fr/simerge/).