A new location-scale model for conditional heavy-tailed distributions
Aboubacrène Ag Ahmad, Aliou Diop, El Hadji Deme, Stéphane Girard

To cite this version:
Aboubacrène Ag Ahmad, Aliou Diop, El Hadji Deme, Stéphane Girard. A new location-scale model for conditional heavy-tailed distributions. IFSS 2018 - 2nd Italian-French Statistics Seminar, Sep 2018, Grenoble, France. hal-01942204
A new location-scale model for conditional heavy-tailed distributions
Aboubacrine Ag Ahmad1, Aliou Diop1, El Hadji Deme2 & Stéphane Girard3

1 UGB - Université Gaston Berger de Saint-Louis, Sénégal.
3 Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France.

1. Abstract
We are interested in a location-scale model for heavy-tailed distributions where the covariate is deterministic. We first address the nonparametric estimation of the location and scale functions and derive an estimator of the conditional extreme-value index.

Second, new estimators of the extreme conditional quantiles are introduced. The asymptotic properties of the estimators are established under mild assumptions.

2. Model
\[Y = a(x) + b(x)Z, \]
where \(x \in \mathbb{R} \) is a nonrandom covariate, \(Y \in \mathbb{R} \) a random variable that depends on \(x \) and \(Z \) an independent random variable of \(x \). The location function \(a(\cdot) \) and the scale function \(b(\cdot) \) are unknown. We assume that the survival function of \(Z \) denoted by \(F_Z \) belongs to the class of regular varying functions at infinity.

\[F_Z(z) = z^{-1/\gamma}(z), \quad \gamma > 0, \]
where \(\ell \) is a slowly-varying function at infinity and \(\gamma \) is the conditional extreme-value index.

3. Estimators
Let \(\{x_1, y_1\}, \ldots, \{x_n, y_n\} \) be a \(n \)-sample of observations such that \(Y_j = a(x_j) + b(x_j)Z_j \), \(j = 1, \ldots, n \), where \(Z_j \) are independent and identically distributed. For simplicity, the design points are of the form \(x_i = i/n, i = 1, \ldots, n \) and \(x_0 = 0 \) by convention.

Notations
- \(\hat{F}_Y(y | x) \): the conditional survival function of \(Y \) given \(x \).
- \(q_\alpha(\cdot) \): the \(\alpha \)-th quantile of \(Z \).
- \(q_\alpha(\cdot | x) \): the conditional \(\alpha \)-th quantile of \(Y \) given \(x \).

Kernel estimator of \(F_Y(y | x) \)
\[\hat{F}_Y(y | x) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(y_{i} - y, y_{i} + y) \]
where the bandwidth \(h \) is a nonrandom sequence such that \(h \to 0 \) as \(n \to \infty \).

Kernel estimator of \(q_\alpha(\cdot | x) \)
\[\hat{q}_\alpha(x | y) = \text{inf}\{ y | \hat{F}_Y(y | x) \leq \alpha \} \]
where \(\hat{F}_Y(\cdot | x) \) is the generalized inverse of \(F_Y(\cdot | x) \).

Estimators of \(\alpha \) and \(b(\cdot) \)
Under this assumption : \(\beta_1, \beta_2, \beta_3 \in (0, 1) \), \(\beta_1 > \beta_2 > \beta_3 \) such that \(q_\beta(x) = 0 \) and \(q_\beta(y) - q_\beta(z) = 1 \) we propose as :
- An estimator of \(a(\cdot) \):
 \[\hat{a}_n(x) = \hat{q}_\beta(x / x \mid \).
- An estimator of \(b(\cdot) \):
 \[\hat{b}_n(x) = \hat{q}_\beta(x / x \mid | x \mid \).

Estimator of \(\gamma \)
- **Pseudo-observations** \(\hat{Z}_i \), associated with \(Z_i \), \(|Z_i| \leq i \leq n - |nh| \) defined by :
 \[\hat{Z}_i = \frac{y_i - \hat{a}_n(x)}{b_n(x)} \]
- **Number of pseudo-observations** :
 \[m = \#(i/|nh| \leq i \leq n - |nh|) \]
- **Associated order-estimates** :
 \[\hat{Z}_{1,m} = \hat{Z}_{1,m} \]
- **Hill-type estimator** of \(\gamma \):
 \[\gamma_n = \frac{1}{k} \log \frac{\hat{Z}_{1,m}}{\hat{Z}_{1,m} - k} = \log \frac{\hat{Z}_{1,m} - k}{\hat{Z}_{1,m} - k} \]

where \(k \in \{1, \ldots, m\} \) is an intermediate sequence, i.e \(k \to +\infty \) as \(k \to 0 \).

5. Conclusion
The study of the problem in fixed design, which we have made, reveals interesting theoretical results. As a perspective, we are considering the conditional extreme-value index estimation and a validation of our results on simulations. We also plan to extend these results to the random framework.

6. References

7. Acknowledgements
Aboubacrine would like to thank CEA-MITIC (www.ceamitic.sen) and Inria of Grenoble Rhône-Alpes project team Mistis (http://mistis.inrialpes.fr) which hosted him for several research stays as part of the SIMERGE project (http://mistis.inrialpes.fr/simerge/).