A new location-scale model for conditional heavy-tailed distributions
Aboubacrine Ag Ahmad, Aliou Diop, El Hadji Deme, Stephane Girard

To cite this version:
Aboubacrine Ag Ahmad, Aliou Diop, El Hadji Deme, Stephane Girard. A new location-scale model for conditional heavy-tailed distributions. IFSS 2018 - 2nd Italian-French Statistics Seminar, Sep 2018, Grenoble, France. hal-01942204

HAL Id: hal-01942204
https://hal.archives-ouvertes.fr/hal-01942204
Submitted on 10 Feb 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A new location-scale model for conditional heavy-tailed distributions

Aboubacrine Ag Ahmad1, Aliou Diop3, El Hadji Deme2 & Stéphane Girard3

1 UGB - Université Gaston Berger de Saint-Louis, Sénégal.
2 LERSTAD - Laboratoire d’Études et de Recherche en Statistiques et Développement, UGB Saint-Louis, Sénégal.
3 Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France.

1. Abstract
We are interested in a location-scale model for heavy-tailed distributions where the covariate is deterministic. We first address the nonparametric estimation of the location and scale functions and derive an estimator of the conditional extreme-value index. Second, new estimators of the extreme conditional quantiles are introduced. The asymptotic properties of the estimators are established under mild assumptions.

2. Model
Let \(Y = a(x) + b(x)Z \),

where \(x \in \mathbb{R} \) is a nonrandom covariate, \(Y \in \mathbb{R} \) a random variable that depends on \(x \) and \(Z \) an independent random variable of \(x \). The location function \(a(\cdot) \) and the scale function \(b(\cdot) \) are unknown. We assume that the survival function of \(Z \) denoted by \(F_Z \) belongs to the class of regulary varying functions at infinity \(F_Z(z) = z^{-1/\gamma}(\gamma > 0) \), where \(\ell \) is a slowly-varying function at infinity and \(\gamma \) is the conditional extreme-value index.

4. Asymptotic results
Assume \(n \) large enough so that \(h = h_n < 1/2 \), the following results are obtained under some regularity conditions on the probability density function of \(Z (f_Z) \) and \(F_Z \) and a Lipschitz condition on the kernel \(K \).

Proposition 1 : Estimation of classical conditional quantiles
Let \((t_i) \) be a sequence in \([h_n, 1 - h_n]\) and \((\alpha_i)_{i \in \mathbb{Z}} \) a strictly decreasing sequence in \((0, 1)\). If \(n h_{\alpha_n} \to +\infty \) and \(n h_{\alpha_i} \to 0 \) as \(n \to +\infty \), then

\[
\frac{\sqrt{n h_{\alpha_n}}}{b(t_{\alpha_n})} q_{\alpha}(t_{\alpha_n}) - q_{\alpha}(t_{\alpha_n}) \to A_k \text{ with } (k, l) \in \{(1, \ldots, \ell)\}^2 \text{ and } \sqrt{\cdot} \text{ (resp. } A_k) \text{ denotes the maximum (resp. the minimum).}
\]

Proposition 2 : Estimation of location and scale functions
If \(n h_{\alpha_n} \to +\infty \) and \(n h_{\alpha_i} \to 0 \) as \(n \to +\infty \), then for all sequence \((t_i)\) in \([h_n, 1 - h_n]\),

\[
\frac{\sqrt{n h_{\alpha_n}}}{b(t_{\alpha_n})} \left[a(t_{\alpha_n}) - a(t_{\alpha_i}) \right] \to
\frac{d}{d\rho} \left[b(t_{\alpha_n}) - b(t_{\alpha_i}) \right] \text{ where } B \text{ is a given symmetric matrix.}
\]

Proposition 3 : Estimation of extreme conditional quantiles
Let \((t_i) \) be a sequence in \([h_n, 1 - h_n]\) and \((\alpha_i)_{i \in \mathbb{Z}} \) a positive and strictly decreasing sequence, \((t_{\alpha_i})\) a sequence such that \(t_{\alpha_i} \to 0 \), \(nh_{\alpha_i} \to +\infty \) and \(nh_{\alpha_i} \to 0 \) as \(n \to +\infty \). Then

\[
\frac{\sqrt{n h_{\alpha_n}}}{b(t_{\alpha_n})} q_{\alpha_n}(t_{\alpha_n}) - q_{\alpha_n}(t_{\alpha_n}) \to A_k \text{ with } (k, l) \in \{(1, \ldots, \ell)\}^2 \text{ and } \sqrt{\cdot} \text{ (resp. } A_k) \text{ denotes the maximum (resp. the minimum).}
\]

6. References

5. Conclusion
The study of the problem in fixed design, which we have made, reveals interesting theoretical results. As a perspective, we are considering the conditional extreme-value index estimation and a validation of our results on simulations. We also plan to extend these results to the random framework.

7. Acknowledgements
Aboubacrine would like to thank CEA-MITIC (www.ceamitic.sen) and Inria of Grenoble Rhône-Alpes project team Mista (https://mistis.inrialpes.fr) who hosted him for several research stays as part of the SIMERGE project (http://mistis.inrialpes.fr/simerge/).