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ABSTRACT
Smart contracts are programs that are stored and executed on the
Blockchain and can receive, manage and transfer money in the form
of cryptocurrency units. Two important problems regarding smart
contracts are formal analysis and compiler optimization. Formal
analysis is extremely important, because smart contracts hold funds
worth billions of dollars and their code is immutable after deploy-
ment. Hence, an undetected bug can potentially cause signi�cant
�nancial losses. Compiler optimization is also crucial, because every
action of a smart contract has to be executed and veri�ed by every
node in the Blockchain network. Hence, optimizations in compiling
smart contracts can lead to signi�cant savings of computation, time
and energy.

Two classical approaches in both program analysis and compiler
optimization are intraprocedural and interprocedural analysis. In in-
traprocedural analysis, each function is analyzed separately, while
interprocedural analysis considers the entire program. In both cases,
optimization and analysis problems are often reduced to graph prob-
lems over the control �ow graph (CFG) of the program. However,
the resulting graph problems are often computationally expensive.
Hence, there has been ample research on exploiting structural prop-
erties of CFGs to obtain e�cient algorithms for these problems.
One well-studied structural property is the treewidth. Treewidth
is a measure of tree-likeness of graphs and small treewidth can be
exploited for e�cient algorithms. It is known that intraprocedural
CFGs of structured programs have treewidth at most 6, whereas the
interprocedural treewidth cannot be bounded. Bounded treewidth
has been used as a basis for many e�cient intraprocedural analyses.

In this paper, we explore the idea of exploiting the treewidth
of smart contracts for formal analysis and compiler optimization.
First, similar to classical programs, we show that the intraprocedu-
ral treewidth of structured Solidity and Vyper smart contracts is
at most 9. Second, for global analysis, we prove that the interpro-
cedural treewidth of structured smart contracts is bounded by 10
and, in sharp contrast with classical programs, treewidth-based al-
gorithms can be easily applied for interprocedural analysis. Finally,
we supplement our theoretical results with experiments using a
tool we implemented for computing treewidth of smart contracts
and show that the treewidth is much lower in practice. We use
36,764 real-world Ethereum smart contracts as benchmarks and
�nd that they have an average treewidth of at most 3.35 for the
intraprocedural case and 3.65 for the interprocedural case.
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ware and its engineering � Formal software veri�cation;
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1 INTRODUCTION
In this paper, we study the possibility of exploiting the treewidth
property of (global) control �ow graphs of Ethereum smart contracts
for solving both intraprocedural and interprocedural static analysis
problems. We �rst obtain sharp theoretical constant bounds on the
treewidths, and then provide an extensive experimental evaluation,
showing that, in practice, the treewidth is always very small.
Blockchain and Bitcoin. Blockchain was �rst developed as a
tamper-proof decentralized ledger for enforcing consensus about
transactions in Bitcoin [39]. However, it was soon realized that
Blockchain (and its extensions) can have much wider use cases and
can enforce any kind of well-de�ned consensus [44]. This led to
hundreds of new Blockchains and cryptocurrencies, each with their
own unique attributes and advantages over the classical Bitcoin
Blockchain. However, Bitcoin remains the largest cryptocurrency,
with a market cap of just over 100 billion dollars [19].
Transaction Scripts. Bitcoin transactions can include simple
scripts that set the necessary conditions for a party to be able to
claim and use the funds in the transaction [5]. In the most basic case,
a transaction usually includes the public key of its recipient and the
transaction script asks for a valid signature corresponding to that
public key to allow access to the funds. However, one can set more
complicated conditions. For example, a transaction script might
ask for signatures from at least two of three prede�ned parties. A
notable use-case of these scripts is to enforce contract-like behavior.
For example, BitHalo is a protocol based on Bitcoin scripts that can
replace intermediaries and provide escrow services [51].
Smart Contracts. The idea of encoding semantics in cryptocur-
rency transactions can be extended to more complicated programs
than Bitcoin scripts, in order to handle more complex �nancial
agreements, such as credit reporting [30] or decentralized au-
tonomous organizations [18]. In general, a smart contract is a pro-
gram that is executed on the Blockchain. A contract has its own
dedicated memory and can be programmed to receive, manage and
transfer cryptocurrency units [38]. Users (and other contracts) can
interact with the contract by calling one of its functions. Each such
function call is handled in the same way as a cryptocurrency trans-
action. The Blockchain protocol provides a global consensus about
the state of each contract. This includes consensus about the code
of the contract, its semantics, the state of the contract’s memory,
and the results of interactions with the contract. Note that after a
contract’s code is stored on the Blockchain, it is immutable, and the
only way to interact with it is to call its functions, which behave as
programmed at the time of deployment.
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Ethereum. Ethereum is a cryptocurrency platform that allows
arbitrary Turing-complete smart contracts [9]. This is achieved
by means of a well-de�ned Virtual Machine and an Assembly-
like Bytecode format [49]. There are many languages for writing
Ethereum contracts. Contracts programmed in these languages
are compiled to Ethereum Bytecode before deployment on the
Blockchain. Ethereum has become the second-largest cryptocur-
rency platform in terms of market cap (more than 35 billion dollars
at the time of writing), and is the most popular platform for smart
contracts [19].
Example. Consider the contract shown in Figure 1. This contract
is written in Solidity, which is the most widely-used language in
Ethereum. The creator of the contract (the programmer), �rst puts
it on the Blockchain. The creation of this contract is recorded on the
Blockchain in the same manner as a transaction and is subject to
consensus. When the contract is added to the Blockchain, anyone
on the network can see it and interact with it by calling its functions.
Each function call is also treated as a transaction and its parameters
and the resulting changes to the smart contract are recorded on the
Blockchain. Note that in order to achieve a consensus, every node
of the Blockchain network has to execute the function (unless the
function only reads contract data, and does not make any changes).

The contract has two functions, deposit and submitSolution.
The contract also holds two variables in its dedicated memory,
namely balance and N. Anyone on the network can call the func-
tion deposit, providing a value for the parameter _N. The keyword
payable signi�es that one can pay an arbitrary amount of cryp-
tocurrency units to the contract at the time of calling this function.
The amount of received cryptocurrency units can be accessed using
msg.value. A call to this function sets the value of the variable
N and increases the balance of the contract, i.e. the amount of
cryptocurrency units under the contract’s control. These cryptocur-
rency units can only be redeemed if the contract code allows it.
The contract rewards anyone who can factor the given number N.
Anyone on the network can call the submitSolution function and
provide a candidate factorization. The contract checks the factor-
ization and rewards the caller i� it is correct. Note that the person
setting the reward, as well as everyone else, can see all the transac-
tions (function calls) on the Blockchain and can hence obtain the
factorization.
Value of Contracts. Smart Contracts hold and manage a consid-
erable amount of funds. At the time of writing, in Ethereum alone,
there are over a million instances of deployed smart contracts, hold-
ing billions of dollars of funds [46]. Speci�cally, there is a single
contract on the Ethereum Blockchain, that currently holds more
than 300 million dollars [46].
Importance of Formal Analysis. Given the unmalleability of data
stored on the Blockchain, a contract’s code cannot be amended after
its deployment. Similarly, all transactions stored in a Blockchain are
irreversible. On the other hand, contracts handle a huge amount of
funds. Therefore, to avoid signi�cant �nancial losses, bugs in smart
contracts must be detected before deployment [4, 12, 15, 40]. For
example, in one catastrophic case, called the DAO attack [18], an
attacker stole more than 50 million dollars from a contract. There
are also a variety of proposed best-practices and design patterns
for minimizing the damages when a contract fails (e.g. see [20]).

contract factor {

uint balance;
uint N = -1;

function deposit(uint _N) payable {
if(N == -1) { //Do nothing if N is already set

N = _N; // Set the value of N
balance += msg.value; // Update the balance

}
}

function submitSolution (uint p, uint q) {
if(p>1 && q>1 && p*q==N) { // Check correctness

msg.sender.send(balance ); // Pay reward
balance = 0; // Update the balance

}
}
}

Figure 1: A Smart Contract that rewards factoring a number.

Importance of Optimization. To achieve consensus, each time a
function is called, all nodes of the Ethereum network have to verify
the results by running the function [49]. This means that each
function call is executed and veri�ed by tens of thousands of nodes
in parallel [28]. Therefore, any optimization in the compilation
process can lead to a massive overall saving of time and energy.
Importance of �antitative Analysis. In many scenarios, quali-
tative analysis is not enough for smart contracts [15]. For example,
absolute safety against any attacks might be impossible or very
costly. In such scenarios, one would like to �nd a bound on the po-
tential or expected economic consequences of an attack. Moreover,
quantitative analysis approaches, such as [17], can be used to �nd
the expected execution costs of a contract.
Control Flow Graphs. Many problems in program analysis,
model checking and compiler optimization can be reformulated as
graph problems [37]. In such cases, the underlying graph is usually
the Control Flow Graph (CFG) of the program that is being ana-
lyzed or optimized [35, 37]. See Section 2.1 for a formal de�nition
of CFGs. In such analyses, one can either consider the problem
over individual functions and hence create a separate CFG for each
function, or attempt to solve the problem on a global control �ow
graph (GCFG) of the entire program. The former approach is called
intraprocedural analysis, and the latter is interprocedural analysis.
Exploiting Structural Properties. The graph problems arising
from formal program analysis and compiler optimization are often
computationally expensive and even NP-hard in many cases. Hence,
there has been ample research on exploiting the structural prop-
erties of the underlying CFGs to obtain faster algorithms [3]. An
extensively-studied parameter that has been applied successfully
to these problems is the treewidth [8, 13, 16, 32, 36, 41, 47]. See
section 2.3 for some motivating examples.
Treewidth. Treewidth [42] is a well-studied graph parameter that
provides a measure of tree-likeness of graphs [7]. Trees and forests
are the only graphs with a treewidth of 1 and, informally, a lower
treewidth means that the graph has more resemblance to trees. The
signi�cance of treewidth in the design of algorithms stems from
the fact that many NP-hard graph problems are �xed-parameter
tractable when parameterized by the treewidth, i.e. can be solved
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e�ciently on graphs that have small treewidth [6, 7, 11, 23, 24, 29,
31]. Speci�cally, one can apply a bottom-up dynamic programming
technique on such graphs in a manner very similar to trees [6]. For
the formal de�nition of treewidth, see Section 2.4.
Treewidth of Control Flow Graphs. In [47], it was established
that the intraprocedural CFGs of goto-free structured programs in
several languages, including C and Pascal, have a treewidth of at
most 6. This result provided a basis for the fast formal analysis and
compiler optimization algorithms mentioned earlier. While general
Java programs do not have constant treewidth, in [32], it was shown
that real-world Java programs have bounded treewidth and that, in
practice, they lead to an average treewidth of less than 3.
Treewidth of Interprocedural Control Flow Graphs. While
bounded treewidth has been successfully exploited to obtain faster
analysis and optimization algorithms, the boundedness results only
hold for the treewidth of intraprocedural CFGs, i.e. CFGs modeling
a single function or procedure. It is known that global (interpro-
cedural) treewidth boundedness can lead to many computational
advantages [29], but di�erent representations of global CFGs of
most real-world programs are either in�nite or do not have bounded
treewidth and hence, exploiting global treewidth boundedness is
not considered to be a realistic approach [29].
Our Contribution. We study the treewidth of structured, i.e.
goto-free, Ethereum smart contracts. We focus on two contract
programming languages, namely Solidity and Vyper. Solidity is cur-
rently the most widely-used language for writing smart contracts.
Vyper is the newest language developed by Ethereum foundation
and is expected to be widely adopted in near future. We obtain the
following results:

(i) Theoretical Results. First, for intraprocedural analysis, we
show that CFGs of smart contracts have a treewidth of at
most 9 (Theorem 3.1). This is similar to the result for classi-
cal programs. Second, in contrast to the results for classical
programs, for global (interprocedural) analysis, we show that
the global CFGs of Vyper smart contracts are �nite, have a
treewidth of at most 10 (Theorem 4.1), and their tree decom-
positions can be succinctly represented (Theorem 4.2). The
same result also holds for non-recursive Solidity smart con-
tracts. Hence, unlike classical programs, for smart contracts,
solving global variants of many important formal analysis and
compiler optimization problems is no harder than the local
(intraprocedural) variants.

(ii) Experimental Results. On the experimental side, we im-
plemented a tool for obtaining tree decompositions of CFGs
and GCFGs of Solidity smart contracts. We analyzed 36,764
real-world Solidity smart contracts currently deployed on the
Ethereum Blockchain. The results showed that (i) no real-
world Solidity smart contract used recursion, hence all of
our theoretical results for Vyper contracts carry on to real-
world Solidity contracts, (ii) in case of CFGs, the average
treewidth was 3.35 and the bound 9 was never met, (iii) in
case of GCFGs, all analyzed contracts were shown to have
�nite and succinctly-representable GCFGs. The average GCFG
treewidth was 3.65 and the bound 10 was never met in practice.

Significance of Our Results. There are two important takeaways
from our results. First, much like classical programs, the bounded

treewidth property of the CFGs of smart contracts can be exploited
for intraprocedural compiler optimization and program analysis
tasks. Second, unlike classical programs, smart contracts have suc-
cinctly representable GCFGs with small treewidth. This means that
treewidth can be exploited for the same optimization and formal
analysis problems in an interprocedural setting, rather than just
intraprocedural analysis. This can potentially lead to much more
powerful algorithms and tools for the analysis of smart contracts.
Note that, while exploiting treewidth in general programs is well-
studied and supported by tools such as [14], current approaches for
analyzing smart contracts, such as [15, 40, 48], do not exploit the
treewidth or any other structural property.

Organization. We provide our de�nitions, formalize our notation
and review some previously-known results in Section 2. Our theo-
retical results on CFGs are presented in Section 3, followed by our
theoretical results on GCFGs in Section 4. Finally, we report on our
tool and experimental results in Section 5.

2 PRELIMINARIES AND MODELING OF
PROGRAMS

In this section, we provide some basic de�nitions, de�ne an abstract
programming language that we are going to use in the rest of the
paper, and review previously-known results.

2.1 Programs and Graphs

Control Flow Graphs (CFGs). The Control Flow Graph (CFG) of a
program is a directed graph whose paths model the execution traces
of the program [1]. There are many slightly di�erent variations
of CFGs. The nodes of a CFG can correspond to statements in the
program, or basic blocks, or other subdivisions of the code. We will
follow the node structure used in [47] (explained below).

Abstract Programming Language. We de�ne an extension of the
STRUCTURED programming language [47] to capture the general
properties of goto-free programs, abstract away the details that
are not relevant to the treewidth of the CFG, and obtain general
results that will then be instantiated for speci�c programming
languages. We call this extension ES (Extended STRUCTURED).
The di�erences between ES and STRUCTURED are that (i) to enable
interprocedural analysis, ES does not abstract away function calls,
and (ii) ES allows several exit types for every function. Informally,
each function in ES is like a program in STRUCTURED.

ES. A program in ES is a set of functions. Each function starts
with the keyword function, followed by its name, followed by a
sequence of statements in the function, and �nally ends with the
keyword endfunction. The statements are of these types:
� Conditional statements, if-then-endif and

if-then-else-endif,
� A general loop structure loop-endloop that does not nor-

mally end on its own,
� A break statement, ending the innermost surrounding loop,
� A continue statement that goes to the next iteration of the

innermost surrounding loop,
� A return statement that terminates the current function

and returns control to the parent function,
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� Several types of exit statements, exit1; exit2; : : : ; exitk ,
each of which terminates the program,
� Function call statements call <function-name>, and
� Atomic statements shown by the keyword atomic. By an

atomic, we mean a statement that does not a�ect the �ow of
the program and can be abstracted away, e.g. an assignment.

All statements that lack an �end� in their structure must be followed
by a semicolon. Intuitively, the di�erent types of exit statements
correspond to the di�erent types of termination that can happen
in a smart contract (see Section 2.2). We assume that a break or
continue that is not surrounded by a loop acts as a return. As
in STRUCTURED, the conditions of if statements can be boolean
expressions consisting of atomic boolean variables a, b, . . . , and the
operators and and or. We also assume short-circuit evaluation.

function f1
if a or b then

atomic;
return;

else
call f2;

endif
endfunction

function f2
loop

if c then
break;

endif
atomic;
if d then

continue ;
endif
if e then

exit_1;
endif

endloop
endfunction

�I�X�Q�F�W�L�R�Q

�L�I �D

�D�W�R�P�L�F ��

��

�U�H�W�X�U�Q ��

�H�O�V�H �F�D�O�O �H�Q�G�L�I �H�Q�G�I�X�Q�F�W�L�R�Q

�R�U �E �W�K�H�Q

CFG(f1)
�I�X�Q�F�W�L�R�Q

�O�R�R�S

�E�U�H�D�N

�L�I

�H�Q�G�L�I

�H�[�L�W�B�� �� �H�Q�G�L�I �H�Q�G�O�R�R�S �H�Q�G�I�X�Q�F�W�L�R�Q

�L�I �H �W�K�H�Q

�G �W�K�H�Q �F�R�Q�W�L�Q�X�H ��

�� �H�Q�G�L�I �D�W�R�P�L�F ��

�L�I �F �W�K�H�Q

��

CFG(f2)

Figure 2: An ES program (top) consisting of two functions f1,
f2 and the CFG of f1 (middle) and that of f2 (bottom). Exit
nodes are shown using hexagons and nodes that correspond
to words in the ES program are shown by rectangles.

Nodes of a CFG. As in [47], we construct the control �ow graph
for each function separately. In the CFG, we put one vertex for each
exit type and one for every word of the ES code, except for function
names1. Note that this includes semicolons. In the CFG, there is an
edge between two vertices, if their corresponding words are in the
same function and can be visited consecutively in some execution
of the ES program, i.e. in CFGs we treat call statements in the
same manner as atomic statements2. Figure 2 shows an example
ES program together with its CFG. The nodes corresponding to exit
types are shown by hexagons. We will refer to them as hexagonal
nodes in the sequel.
Call Graphs and Recursive Functions. The call graph [43, 45]
of a program is a directed graph, in which there is one vertex
corresponding to each function, and there is a directed edge from a
vertex u to a vertex v , if the function corresponding to u, at some
point, calls the function corresponding to v . For example, the call
graph of the program in Figure 2 has a single edge f1! f2. If the
call graph contains a cycle, we say that the program is recursive [26].
Otherwise, the call graph is acyclic, and the program is said to be
nonrecursive or simple.

CFGs are usually su�cient for intraprocedural analysis. However,
in order to perform interprocedural analysis the data encoded by the
call graph becomes necessary, too. This complicates the situation,
given that the analysis problems are now reduced to graph problems
over two graphs with nontrivial interactions. We can mitigate this
problem by using a Global (interprocedural) CFG. Intuitively, the
process for obtaining the GCFG from the CFG and the call graph is
very similar to repeated inlining [10].
Global Control-Flow Graphs (GCFGs). The GCFG of a program
is obtained from its CFG by repeatedly expanding the function call
nodes with copies of the CFG of the function that is being called
at that point. This process is continued as long as there are unex-
panded function call nodes remaining in the graph. Concretely,
in case of ES programs, a function call call f; is expanded by
putting a copy of the CFG of f between the call node and its corre-
sponding semicolon. Speci�cally, the edge between the call node
and its semicolon node is removed, the call node is connected to
the function node of the copy and the endfunction node is con-
nected to the semicolon. This is illustrated in Figure 3. Intuitively,
each node of the GCFG encodes not only a point of the code, but
also the functions that are on the stack when reaching that point.
So, the GCFG of a program is �nite i� the program is simple.

2.2 Ethereum
Ethereum is a cryptocurrency platform that allows smart contracts
of arbitrary, i.e. Turing-complete, complexity. Smart contracts are
fundamental to Ethereum, to the extent that Ethereum creators of-
ten call it a distributed computing platform [9], considering smart
contracts as �decentralized applications� and the currency, Ether,
as a mechanism of payment in exchange for consensus and compu-
tation. Therefore, it is of paramount importance that every node in
the Ethereum network has the exact same understanding about the

1This de�nition of nodes is very �ne-grained. However, Lemma 2.2 shows that one
can contract any two vertices to get a coarser CFG, without increasing the treewidth.
2This is because, as in [47], the CFGs are meant to be used for intraprocedural analysis.
We use GCFGs for interprocedural tasks.
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�I�X�Q�F�W�L�R�Q

�L�I �D

�D�W�R�P�L�F ��

��

�U�H�W�X�U�Q ��

�H�O�V�H �F�D�O�O �H�Q�G�L�I �H�Q�G�I�X�Q�F�W�L�R�Q

�R�U �E �W�K�H�Q
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�H�Q�G�I�X�Q�F�W�L�R�Q
��

�I�X�Q�F�W�L�R�Q

�H�Q�G�I�X�Q�F�W�L�R�Q
��

Figure 3: The GCFG of the program in Figure 2.

meaning (semantics) of any piece of smart contract code. This is
achieved by means of a virtual machine.
Ethereum Virtual Machine (EVM). The EVM is the runtime en-
vironment for Ethereum programs (smart contracts). It is a Turing-
complete stack machine programmable with a formally de�ned
Bytecode format [49]. Every node in the Ethereum network runs an
instance of the EVM. This ensures that all nodes are in consensus
about the results of any transaction (function call). However, the
downside is that every function call has to be executed by every
node. Therefore, there are considerable costs associated with com-
putations in smart contracts and the network might be attacked by
spammers who intend to drain its computational power. Ethereum
addresses this problem using the concept of Gas.
Gas. Every operation in the EVM has an associated cost, in Ether,
which is roughly correlated with the amount of computational
power it uses [49]. This cost is called gas. When a user calls a func-
tion of a smart contract, she has to pay the total gas cost associated
with the operations executed by the contract. Similarly, when a
contract calls a function in another contract, it should use the gas
it has received from the original caller to pay for the operations
executed by the other contract. The user includes a prepayment
(deposit) of gas with her transaction. If the paid deposit is insuf-
�cient, the transaction will be rejected and the a�ected contracts
will be reverted to their original state [9, 49]. If the transaction uses
less gas than the deposit, the remaining gas is reimbursed.
Attacks on Ethereum Contracts. There are a variety of security
vulnerabilities and possible attacks on Ethereum contracts [2]. A
well-known family of these attacks are called gas limit attacks. Ev-
ery Ethereum block is limited to handling at most a speci�c amount
of computation, known as the gas limit. If a function call consumes
more gas than the gas limit, it will fail and the consequences are of-
ten mishandled by smart contract programs [21]. Hence, a common
best-practice is to avoid writing codes that can have an unbounded
runtime. In practice, given the cost of gas, one should aim to de-
velop smart contracts that execute as little computation as possible.
Many real-world smart contracts do not even have loops [21].

In this paper, we consider two smart contract programming
languages. We provide a short introduction to each of them.
Solidity. Solidity is a programming language for writing Ethereum
smart contracts [50]. It was developed by the Ethereum team in 2014
and is currently the most widely-used smart contract programming
language. Solidity aims to provide the programmer with all the
usual functionality of a general-purpose language like C++.
Vyper. Vyper is the newest language of the Ethereum founda-
tion [27]. It is a python-like scripting language whose goal is to
provide a simple way of writing secure real-world smart contracts,
by disallowing vulnerable functionality, and hence losing Turing-
completeness, in exchange for more security [27]. One of the deci-
sions by the designers of Vyper was to disallow the rarely-used func-
tionality of in�nite loops and recursion, in order to avoid gas limit
attacks. Hence, all Vyper smart contracts are simple programs [27].
Types of Termination. A function in a smart contract can termi-
nate in a number of ways. On Ethereum, the possibilities are [9, 49]:

(i) Return: As in classical programs, the function can terminate
by returning control to its parent function.

(ii) Revert: The function can terminate by canceling the entirety
of the current transaction, e.g. when an error occurs and the
whole transaction must be rolled back. In this case, all the
changes made by the current transaction, including those
made by other functions, possibly even by other contracts,
will be reverted. There are essentially two types of reversion:
the programmer can choose to either refund the remaining gas
after reversion or to burn it. These correspond to the require
and assert keywords in Solidity.

(iii) Self-destruct: Finally, a function can terminate by destructing
the current contract, making it unusable in the future, i.e. the
functions of the contract will no longer be callable by anyone.
Self-destruction is usually used when a contract reaches its
expiration and is no longer useful, or when serious errors
or security problems happen and it is necessary to stop any
further interaction with the contract. In this case, the balance
of the contract will be transferred to a prede�ned recipient.

Modeling Vyper and Solidity Contracts in ES. In our language,
ES, we use return to model termination by returning and exit1,
exit2 and exit3 to model the other types of termination. A Solidity
or Vyper while(�) loop can simply be modeled by an ES loop
whose body begins with if(!�) then break; endif. Other types
of loops, such as for can be modeled similarly. Hence, to prove
that Solidity and Vyper smart contracts have CFGs (or GCFGs) of
bounded treewidth, it su�ces to show the same fact for ES.
Remark. In this work, we are considering structured, i.e. goto-free,
programs. Therefore, we do not consider Solidity programs that in-
clude the so-called Solidity assembly code. It is well-known that one
can write assembly codes that have arbitrarily large treewidth [32].

2.3 Motivating Examples
Tree decompositions and treewidth are formally de�ned in the next
section. In this section, we provide some motivating examples to
illustrate the importance of treewidth boundedness.
Formal Analysis. Exploiting graph structures for obtaining faster
analysis algorithms is a well-studied �eld [3]. Bounded treewidth is
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one of the most widely-used structures and leads to e�cient algo-
rithms for many formal analysis problems [29]. The usual approach
to formal program analysis is to write the desired property of the
program in a speci�cation language or logic. For example, in case of
smart contracts, a desired property might be that one party cannot
cause a self-destruction of the contract if another party opposes it.
As another example, to avoid the DAO attack, we can specify the
property of avoiding the reentrancy vulnerability over all runs of
the contract. Two of the most commonly-used formal languages for
specifying desired properties are the �-calculus and the Monadic
Second Order Logic (MSO). There is no known polynomial-time
algorithm for the problem of �-calculus model checking, i.e. check-
ing whether a given program/contract satis�es a property speci�ed
in �-calculus, but the problem can be solved in linear time if the
CFG has constant treewidth [41]. Similarly, model checking MSO
properties is NP-hard in general, but can be done in linear time if
the underlying graph has constant treewidth [36].

Compiler Optimization. A classical and well-studied problem in
compiler optimization is that of register allocation [34], i.e. assign-
ing program variables to a limited number of registers in an optimal
manner. Register allocation is one of the most important stages for
optimizing several typical goals, such as energy e�ciency, code
size and execution speed [34]. This problem is usually reduced to
graph coloring, which is NP-hard even for 3 colors (equivalent to 3
registers) [47]. However, if the CFG has constant treewidth, then
register allocation can be solved in polynomial time [33, 47]. In
case of smart contracts, such optimizations at compile time can
signi�cantly reduce the gas costs and the overall energy that is
used by the network to run a contract.

�antitative Analysis. In contrast with classical veri�cation,
which classi�es a program as either correct or incorrect, quanti-
tative analysis assigns a value to every run of the program that
quanti�es the cost/revenue generated by that run [17]. In case of
smart contracts, this value can naturally model �nancial gains or
losses of a party in the contract, or the amount of gas/energy used
by the contract. Hence, quantitative analysis of smart contracts is
a natural and important problem [15]. In [17], it was shown that
treewidth can help signi�cantly in speeding up the computation of
several major notions of quantitative analysis. Therefore, treewidth
boundedness leads to much faster algorithms for analyzing the
economic e�ects of a smart contract.

2.4 Tree Decompositions and Treewidth
In this section, we provide a succinct review of the notions of
treewidth and tree decomposition. For a more in-depth treatment
see [23]. Treewidth is one of the most widely used parameterizations
for graph problems. Intuitively, the treewidth of a graph is a measure
of how �tree-like� the graph is. However, the formal de�nition of
treewidth is based on tree decompositions.

Tree Decompositions. Consider a graph G = „V ; E”. A tree decom-
position of G is a pair „T ; fXt jt 2 T g” where T is a tree and every
node t of T is labeled by a subset Xt � V of vertices of G , such that
the following conditions are satis�ed:
� Every vertex v 2 V must appear in at least one Xt ,

i.e. [t 2T Xt = V ;

a

b

c

d

e

f

fa;b; cg

fa;b; f gfb;d; eg

Figure 4: A graph G (left) and one of its optimal tree decom-
positions „T ; fXt g” (right).

� For every edge fu;vg 2 E, there must exist an Xt containing
both u and v , i.e. 8e 2 E 9t 2 T e � Xt ;
� For each vertex v 2 V , the set Tv = ft 2 T jt 2 Xt g must

be a connected subtree of T . Note that Tv is the set of all
nodes of T that contain v in their corresponding Xt . Hence,
this condition means that every vertex should appear in a
connected subtree of T .

To avoid confusion, we reserve the word �vertex� for vertices of G
and use the word �node� to refer to vertices of the tree T . Also, we
call each Xt a �bag�.
Treewidth. The width of a tree decomposition „T ; fXt g” is de-
�ned as the size of the largest bag minus 1, i.e. w„T ; fXt g” :=
maxt 2T jXt j � 1. The treewidth tw„G” of a graph G is de�ned as
the smallest width among all tree decompositions of G.
Example. Figure 4 shows a graph G and one of its tree decomposi-
tions. This decomposition has a width of 2. It is easy to verify that
G cannot have a tree decomposition of width 1. Hence, this tree
decomposition is optimal and the treewidth of G is 2.
Dynamic Programming Algorithms. The signi�cance of
treewidth and tree decompositions in algorithm design stems from
the fact that many hard graph problems can be solved in polynomial
(often linear) time by performing a bottom-up dynamic program-
ming on the tree decomposition, in essentially the same manner
that is employed for solving problem on trees [6, 7, 23, 24]. A main
concept in these algorithms is that one can associate a subgraph
of G to every node of T . To do so, we �x an arbitrary node r as
the root of T . Then, for each node t 2 T , we let its corresponding
subgraph Gt consist of all the vertices that appear in the bags of
the subtree of T rooted at t , i.e. either in Xt or in the bags of its
descendant nodes. Similarly, the edges of Gt are those edges of G
that have both their endpoints appearing together in some bag in
the subtree rooted at t . Hence, Gr = G and if a node t has children
t1; t2; : : : ; tk , then for all ti , we have Gti � Gt . The basic idea is
then to compute the answer(s) to the problem at Gt by means of
divide-and-conquer based on the answer(s) at Gti ’s.

We now provide a di�erent but equivalent formulation of the no-
tion of treewidth as in [47]. We will make use of both formulations
in our proofs in Sections 3 and 4.
Listings. Given a graph G = „V ; E”, a listing L is simply a permuta-
tion of the vertices of G, i.e. a sequence of elements of V in which
every v 2 V appears exactly once.
Separators. Given a graph G = „V ; E”, a listing L and a vertex
v 2 V , let l„v” be the set of all vertices that appear before v in the
listing L and r „v” be the set of all vertices that appear after v . Then
the separator ofv is the set of all vertices in l„v” that can be reached
from v using a path whose internal vertices are all in r „v”. We use
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the notation SL
v , or simply Sv when L is clear from the context, to

denote the separator of v .
Complexity of Listings and Graphs. The complexity of a listing L
is de�ned as the size of its largest separator, i.e. c„L” := maxv 2V jSL

v j.
The complexity c„G” of a graph G is de�ned as the minimum com-
plexity among all its listings.
Example. Consider the graph in Figure 4 together with the listing
L = ha;b; c;d; e; f i. We have the following separators: Sa = ;; Sb =
fag; Sc = fa;bg; Sd = fbg; Se = fb;dg; Sf = fa;bg. Hence, L has
complexity 2. One can also verify that G has no listing of a lower
complexity, hence c„G” = 2.

We now review some previous lemmas and results.

Lemma 2.1. For every graph G, we have c„G” = tw„G”, i.e. the
complexity of a graph is the same as its treewidth [25]. Moreover,
there is an algorithm to obtain a tree decomposition of width k from
a listing of complexity k in linear time [47].

Lemma 2.2. [Contraction Lemma] Consider a graph G = „V ; E”
of treewidth k and an edge fu;vg 2 E. Let G 0 be the graph obtained
by contracting fu;vg in G. Then tw„G 0” � tw„G”. Moreover, there is
a linear-time algorithm that given a listing of G with complexity k ,
produces a listing of G 0 with complexity at most k [47].

Treewidth of Control Flow Graphs. In [47], it was shown that
CFGs of goto-free Algol and Pascal programs have a treewidth of
at most 3, while C programs have a treewidth of at most 6. In [32] it
was shown that one can write Java programs with arbitrarily large
treewidth, but real-world Java programs typically have a treewidth
of 2 or 3. In [8] a similar result was obtained for Ada programs.
Remark. Note that CFGs are directed graphs, but the directions of
edges are unimportant when computing tree decompositions and
treewidth, and are therefore ignored in the rest of this paper.

3 INTRAPROCEDURAL TREEWIDTH OF
SMART CONTRACTS

In this section, we consider the CFGs of ES programs and show
that they always have bounded treewidth. As argued in Section 2.2,
Solidity and Vyper programs can be modeled in ES and hence a
treewidth boundedness result for ES naturally extends to contracts
written in these languages. We start by enumerating the possible
neighbors of every vertex in the CFG of an ES function. Then,
closely following the construction in [47], we provide a natural
way of obtaining a listing from an ES program. Finally, we compute
an upperbound for the complexity of this listing, hence bounding
the treewidth using Lemma 2.1.
Neighbors of a Vertex. Consider the CFG Gf of an ES function
f and let v be a vertex in Gf . We use v� (resp. v+) to denote the
predecessor (resp. successor) of v in Gf . If there are more than one
successor or predecessor, we will take the one that is not inside the
block ofv . So, a return+ is the semicolon following a return and a
loop� is the vertex before that loop (and not the last vertex inside
the block of the loop). Moreover, if v corresponds to an atomic
boolean variable, then we use Tv (resp. Fv ) to denote the vertex of
the CFG that will be visited after v if its value is True (resp. False).
Table 1 lists potential neighbors of a vertex based on its type.

Type of the
Vertex v Potential Neighbors in CFG

function v+

endfunction v�, return+ vertices
if v+, v�

then v+, atomic boolean variables in the
corresponding if condition

else v+, atomic boolean variables in the
corresponding if condition

endif
v+, last vertex in the corresponding then

block, last vertex in the corresponding
else block

loop v+, v�, continue+ vertices referring to v ,
last vertex in the block of v

endloop v+, break+ vertices referring to the
corresponding loop

break v+, v�

break+ v�, the corresponding endloop
continue v+, v�

continue+ v�, the corresponding loop
return v+, v�

return+ v�, endfunction
exiti v+, v�

exit+
i v�, hexagon node i

call v+, v�

call+ v+, v�

atomic v+, v�

atomic+ v+, v�

and v+, atomic boolean variables in v’s
left-hand-side expression

or v+, atomic boolean variables in v’s
left-hand-side expression

atomic boolean
variable v�, Tv , Fv

hexagon node i exit+
i vertices

Table 1: Potential neighbors of a vertex v in the CFG

Canonical Listing of an ES Function. Given an ES function f
and its CFG Gf , the canonical listing CL„f ” is a listing that visits
the vertices of Gf in the following recursive manner:
� If the function is of the form function f A endfunction, we

�rst visit endfunction, followed by function, the hexago-
nal nodes 1; : : : k , and �nally a recursive visiting of A.
� If A is of the form B ; C , we �rst visit the semicolon, followed

by a recursive visit of B and then a recursive visit of C .
� If A is of the form B C , where B is a statement that has an

�end� vertex, i.e. if B is either an if-then(-else)-endif
statement or a loop-endloop statement, we �rst visit B and
then C , both recursively3.
� If A is of the form if B then C else D endif, we visit it in

this order: endif, if, then, else, B, C , D. Where the visits
to B, C and D are recursive. Similarly, if A is of the form
if B then C endif, the visiting order would be endif, if,
then, B, C .
� If A is of the form loop B endloop, we �rst visit endloop,

followed by loop and a recursive visit of B.
� If A is a boolean expression of the form B or C , we �rst visit

or and then visit B and C recursively. We do the same for
B and C .
� If A is an atomic boolean variable or statement, we just visit

it, i.e. add it to the listing.

3There might be several ways of writing A as B ; C or B C . In such cases, we take
the one that leads to the shortest B .
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Intuitively, we visit the parts of the program in a top-down fashion.

Separators. We now �nd the separators of every vertex in the
CFG Gf with respect to the canonial listing CL„f ”. The ver-
tex endfunction appears in the beginning of the listing, so
Sendfunction = ;. Given that endfunction is the only vertex ap-
pearing before function, we have Sfunction � fendfunctiong.
For a word (vertex) v , we use v (resp. v) to denote the word preced-
ing (resp. succeeding) v in the ES program4. Similarly, if X is a set
of words that appear consecutively in the program, we use X (resp.
X ) to denote the word exactly before (resp. after) X . Now consider
a vertex v ,
� Ifv is an if, then the separator ofv can includev and endif

because they are connected tov in the CFG and appear before
v in the listing. However, if v is inside a loop, the separator
can also contain loop and endloop due to the possibility of
existence of continue and break statements in the blocks
ofv . Similarly, exit and return statements make it possible
for the separator to contain the hexagonal nodes 1; 2; : : : ;k
and the vertex endfunction. Hence we have jSv j � k + 5.
Recall that k is the number of di�erent exit types.
� The words then, else and endif have al-

most the same situation. If v is a vertex cor-
responding to the word then, we have Sv �
fif; endif; loop; endloop; endfunction; 1; : : : ;kg. Also, if
v is a vertex corresponding to the word else, then Sv �
fif; then; endif; loop; endloop; endfunction; 1; : : : ;kg.
For the case of endif, we have Sv �
fif; loop; endloop; endfunction; 1; : : : ;kg.
� If v is a loop, then v = v�, hence v is a neighbor of v in the

CFG and appears beforev in the listing. Thereforev is in the
separator. So Sv � fv; endloop; endfunction; 1; : : : ;kg.
� If v is an endloop and u is the corresponding loop,

then u 2 Su and hence u 2 Sv . So we have
Sv � fu; loop’; endloop’; endfunction; 1; : : : ;kg. Here,
loop’-endloop’ is the higher level loop containing u and
v (if such a loop exists).
� Ifv corresponds to either of atomic, break, continue, call

or return, it is easy to see that v+ = v and v� = v and they
are both visited before v . Hence, Sv = fv+;v�g.
� If v is a break+, i.e. the semicolon after a break ver-

tex v�, then v�� appears before v in the listing and the
path v ! v� ! v�� exists in the CFG. So if v��
exists, then v�� 2 Sv . Hence, Sv � fv��; endloopg,
because in the CFG we jump straight to endloop after
v . Similarly, we have Sv � fv��; loopg (resp. Sv �
fv��; endfunctiong) if v is a continue+ (resp return+).
However, if v is atomic+ or call+, then the execution
of the function continues as usual after v , so Sv �
fv��; loop; endloop; endfunction; 1; : : : ;kg.
� If v is an and vertex in A and B, then it is easy to check that

Sv � fif; then; else; endif;A; Bg. The same holds if v is
an or vertex. Similarly, if v is an atomic boolean variable,
then Sv � fTv ; Fv ;v;vg.

4Note that these are not necessarily the same as v� and v+ which are de�ned using
the CFG, not the order of the words in the ES program

� Finally, if i is a hexagonal exit node, then Si �
ffunction; endfunction; 1; 2; : : : ;kg.

Hence, we have the following lemma:

Lemma 3.1. For every ES function f with k exit types, the canonical
listing CL„f ” of the CFG Gf has a complexity of at most k + 6.

Proof. The cases above show that every vertex has a separator
of size at most k + 6. The complexity of a listing is the size of the
largest separator. Hence the desired result is obtained. �

Corollary 3.1. The CFG of any ES function f with k exit types
has a treewidth of at most k + 6.

Proof. By applying Lemmas 3.1 and 2.1. �

Remark 1 (Sharpness). The bound obtained in Corollary 3.1 is
sharp, i.e. for every k , one can obtain an ES programs with k exit
types and a treewidth of exactly k + 6, by ensuring that for any vertex
type, there is a vertex v in the CFG whose separator Sv includes all
the possible cases enumerated above.

We are now ready for the main theorem of this section.

Theorem 3.1. The CFG of every Solidity or Vyper smart contract
has a treewidth of at most 9.

Proof. As shown in Section 2.2, Solidity and Vyper smart con-
tracts can be modeled by ES programs with k = 3 exit types, i.e. re-
vert with gas refund, revert without gas refund and self-destruct.
Note that returning control to the parent function is already mod-
eled in ES and does not need a new exit type. Hence, the desired
result is obtained by applying Corollary 3.1. Also note that, unlike
ES, the conditional and loop structures in Solidity and Vyper need
not have endif or endloop speci�ers, e.g. a Solidity if block that
contains a single statement does not need to be enclosed in braces.
However, this is not an issue, given that one can simply contract
the endloop and endif nodes without increasing the treewidth
(Lemma 2.2). The same point is also applicable to then. �

Remark. Note that our approach is constructive and we provided
a linear-time algorithm for obtaining a 9-complex listing by one
pass over the code of the smart contract. This, together with the
algorithm of Lemma 2.1, ensure that one can obtain a tree decom-
position of width 9 from the contract code in linear time.

4 INTERPROCEDURAL TREEWIDTH OF
SMART CONTRACTS

In this section, we consider the treewidth of GCFGs of smart con-
tracts. If we are given a constant-width tree decomposition of the
GCFG of a contract, then we can naturally apply dynamic program-
ming algorithms for solving interprocedural (global) problems. Intu-
itively, given that CFGs of smart contracts have constant treewidth
and GCFGs are obtained by piecing copies of CFGs together in a
structured manner, it should come as no surprise that GCFGs have
constant treewidth, too. We formally prove this in Theorem 4.1.

Given this treewidth boundedness result, the only remaining
challenge for applying dynamic programming algorithms is the
size of the GCFG and the resulting tree decomposition. For recur-
sive programs, the GCFG is in�nite. Fortunately, as mentioned in
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Section 2.2, all Vyper smart contracts are simple programs. On the
other hand, while recursion is possible in Solidity, our experimental
results (Section 5) show that real-world Solidity contracts are sim-
ple programs as well. Unfortunately, even for simple programs, the
GCFG, and hence its tree decompositions, can have exponential size
with respect to the length of the program. We overcome this di�-
culty by designing a succinct representation of tree decompositions
that (i) can be directly computed from the program code in linear
time, and (ii) is compatible with bottom-up dynamic programming
algorithms, allowing them to run in polynomial time (with respect
to the length of the program, rather than the size of the GCFG) by
eliminating unnecessary repeated computations. We now prove
interprocedural treewidth boundedness.

Theorem 4.1. The GCFG of every Solidity or Vyper smart contract
has a treewidth of at most 10.

Proof. Let C be a Solidity or Vyper smart contract with func-
tions f1; f2; : : : ; fn . Also, let G be the GCFG of C and Gi be the
CFG of the function fi . Theorem 3.1 guarantees that every Gi has
a treewidth of at most 9. Let �i = „Ti ; fXt jt 2 Ti g” be a tree decom-
position of Gi with width at most 9 and �+

i be a tree decomposition
of Gi , obtained by adding the endfunction vertex to every bag,
i.e. �+

i = „Ti ; fYt jt 2 T g” where Yt = Xt [ fendfunctiong. We
show how to create a tree decomposition � = „T ; fXt jt 2 T g” of
width at most 10 of G using the �i ’s and �+

i ’s. The process mim-
ics the procedure for creating G using the Gi ’s. We start with an
unexpanded graph G0 and a tree decomposition � 0 of G0. In each
step, we expand the call vertices in Gk to obtain Gk+1. We also
create a new tree decomposition �k+1. The invariant satis�ed by
the algorithm is that for every k , the obtained �k is always a tree
decomposition of Gk of width at most 10.

(1) Let G0 =
—n

i=1 Gi and � 0 =
—n

i=1 �i . Also, set an arbitrary
node in every connected component of � 0 as the root.

(2) While there is an unexpanded call vertex in Gk :
� Let Gk+1 = Gk .
� For every unexpanded call vertex of Gk of the form

call fi ; appearing in the function fj :
� Expand the call in Gk+1.
� Let t be a node in �k such that the bag Xt contains both

the call and the semicolon following it. Note that such
a node must exist because the call and the semicolon
are neighbors in Gk and �k is a tree decomposition of
Gk . Also, Let s be a node in �+

i whose bag Xs contains
the vertex function.

� Create a new node t 0 in �k+1, connect it to t as a child,
and let Xt 0 = fcall; ;; function; endfunctiong. This
bag contains two elements from Xt and two from Xs .
We call t 0 an intermediary node.

� Add a copy of �+
i (rooted at s) to �k+1, i.e. let �k+1 =

�k+1t�+
i , and connect t 0 to the node s in this copy such

that t 0 is the parent and s is the child.
It is easy to check that the procedure above satis�es the invariant.
Clearly, � 0 is a tree decomposition of G0 with width at most 9. In the
process of expanding a function call in Gk+1, all the new vertices
and edges between them are covered in �k+1 by the new copy of �+

i ,

which has a width of at most 10. The edges from call to function
and from endfunction to the semicolon appear in Xt 0 .

Finally, in case of simple programs, the process ends at some
point. Hence there is a Gk such that Gk = G . So �k is the desired � .
In case of recursive programs, we have G =

—1
i=0 Gi and can hence

de�ne � :=
—1

i=0 �
i . This completes the proof. �

Succinct Representation of Interprocedural Tree Decompo-
sitions. We now consider simple programs only. Note that the tree
decomposition � created in the process above has a lot of redun-
dancy. Basically, � is obtained by piecing together the �i ’s, which
are tree decompositions of the CFGs of the functions fi , with many
copies of the �+

i ’s and intermediary nodes (the t 0 nodes in the
proof above). We can eliminate this redundant copying without
a�ecting the results of dynamic programming algorithms. Formally,
let t be a node in �+

i (or an intermediary node), then it is easy
to verify that, by construction, every copy of t in � has the same
associated subgraph Gt � G (up to the natural isomorphism) and
the same bag Xt . Therefore, in a dynamic programming scheme,
we can only compute the answers in one of the copies of Gt , and
reuse them for all other copies. Equivalently, we can represent the
rooted tree decomposition � = „T ; fXt jt 2 T g” in a succinct manner
� � = „T �; fXt � jt� 2 T �g” by merging all copies of the same �+

i (or
intermediary node) into one. This of course means that the same
node can now have several parents and T � is a DAG, i.e. directed
acyclic graph, instead of a rooted tree. However, the dynamic pro-
gramming algorithms can be applied to � � in the same manner as in
� , i.e. in bottom-up order5. This automatically avoids the redundant
and repetitive computations at every copy of �+

i .

Theorem 4.2. The GCFG of every simple Vyper or Solidity smart
contract has a tree decomposition of width at most 10 that is compat-
ible with bottom-up dynamic programming algorithms and can be
succinctly represented in linear size, with respect to the length of the
contract. Moreover, this succinct representation can be obtained from
the contract code in linear time.

Proof. We take the tree decomposition � and its succinct repre-
sentation � � as described above. We have already shown the width
and compatibility with bottom-up dynamic programming. We just
need to prove that � � has linear size and can be obtained in linear
time. Each of the one-function tree decompositions �i and �+

i ap-
pear exactly once in � � and there are at most as many intermediary
nodes as the number of call operations in the code. Hence, � � has
linear size. Also, the same process that was used for obtaining � in
the proof of Theorem 4.1 can be applied to obtain � �, except that
every call site should be expanded only once. Hence, � � can be
computed in linear time. �

5 EXPERIMENTAL RESULTS
Our Tool. We implemented a tool in Python/C++ that gets a Solid-
ity smart contract as input and outputs its canonical listing, tree
decompositions of its intraprocedural CFGs (with width at most 9)
and the succinctly-represented tree decomposition � � of its inter-
procedural GCFG (with width at most 10). Our tool works in linear
5Note that the simplicity assumption is indeed necessary. If the program is recursive,
then T � contains a cycle and is no longer a DAG. Hence, there is no bottom-up ordering
of the nodes and dynamic programming algorithms cannot be applied.
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time and is very e�cient in practice. We use the ConsenSys Solidity
parser [22] to obtain the CFGs.

Benchmarks. We used the contracts listed in the Etherscan data-
base of veri�ed Solidity source codes [46] as our benchmarks.
Ethereum contracts are saved on the Blockchain in Bytecode format,
but many users like to see the actual Solidity code of the contract.
Hence, Etherscan allows programmers to publish the original So-
lidity code, then compiles it and veri�es that the resulting bytecode
is the same as the one published on the Blockchain. Hence, all of
our benchmarks are real-world smart contracts that are currently
deployed on the Ethereum Blockchain.

Number of Benchmarks. At the time of writing, there are just
below 40,000 smart contracts listed in the Etherscan database. Of
these, we ignored contracts that include assembly code and hence
can have arbitrarily large treewidth, and the ones that produced
compilation errors6. This left us with 36,764 benchmarks.

Runtime and Machine. We used an Intel Core i5-7200U 2.5GHz
Processor running Ubuntu 18.04. We ran our approach on all 36,764
benchmarks. In all cases, our runtime was less than 0.1 seconds.

Intraprocedural Results. We found that for CFGs of real-world
smart contracts, the treewidth bound 9 is never met. The highest
width among the obtained tree decompositions was 6 and the av-
erage was 3:35. Figure 5 shows the number of contracts with each
width and Figure 6 shows the distribution of contracts based on
their size and width. Note that the vast majority of obtained tree
decompositions have a width of 3 or 4.

Interprocedural Results. We found that all our benchmarks are
simple programs and recursion is not used in real-world Solidity
smart contracts. Similar to the previous case, the bound 10 was
never met in practice. The highest width of a GCFG tree decompo-
sition in our benchmarks was 7 and the average width was 3:65.
Figure 7 shows the number of contracts with each interprocedural
width and Figure 8 shows their distribution based on contract size
and width. The vast majority of contracts have an interprocedural
tree decomposition of width 3 or 4. However, note that in our con-
struction of � (Theorem 4.1), the intermediary nodes have a bag of
size 4, so the tree decompositions have a width of at least 3.
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Figure 5: The number of benchmark contracts (y axis, log
scale) for which the intraprocedural CFG tree decomposi-
tions obtained by our tool have a given width (x axis).

6This is possible because Solidity is not backwards-compatible and the codes could
have been written in an earlier version of the language.

Figure 6: Distribution of benchmark contracts based on the
width of the obtained tree decompositions of their intrapro-
cedural CFGs (x axis) and size of the contract code in bytes
(y axis, log scale).

Figure 7: The number of benchmark contracts (y axis, log
scale) for which the interprocedural GCFG tree decomposi-
tions obtained by our tool have a given width (x axis).

Figure 8: Distribution of benchmark contracts based on the
width of the obtained tree decompositions of their interpro-
cedural GCFGs (x axis) and size of the contract code in bytes
(y axis, log scale).
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6 CONCLUSION
In this paper, we showed that Ethereum smart contracts written in
Solidity and Vyper have small treewidth. We obtained a sharp the-
oretical bound of 9 for the intraprocedural treewidth and 10 for the
interprocedural case. We also reported on a tool we implemented for
computing treewidth of Solidity contracts and provided experimen-
tal results that showed the treewidth of real-world contracts is often
much smaller. We argued that the treewidth boundedness result can
be exploited to obtain much faster algorithms for program analysis,
model checking, compiler optimization and quantitative analysis
of contracts. A natural next step would be to develop analysis and
optimization tools for smart contracts using the currently-known
faster algorithms that exploit treewidth, and also developing tools
for obtaining treewidth of contracts written in other languages,
especially Vyper.
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