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CYCLICITY IN DIRICHLET TYPE SPACES

K. KELLAY, F. LE MANACH & M. ZARRABI

Dedicated to Thomas Ransford on the occasion of his 60th birthday.

Abstract. We study cyclicity in the Dirichlet type spaces for outer functions whose zero
set is countable.

1. Introduction and main result

Let X be a Banach space of functions holomorphic in the open unit disk D, such that
the shift operator S : f(z) → zf(z) is a continuous map from X into itself. Given f ∈ X ,
we denote by [f ]X the smallest closed S–invariant subspace of X containing f , namely

[f ]X = {pf : p is a polynomial}.

We say that f is cyclic in X if [f ]X = X .

The problem of cyclic vectors in the Dirichlet spaces goes back to the work of Beurling
and Carleson (see [B, C]). The classical Dirichlet space D consists of holomorphic functions
on the unit disc whose derivatives are square integrable. While Beurling characterizes
cyclic vectors in the Hardy space H2, the problem of characterizing the cyclic vectors in
the Dirichlet space D is much more difficult. Beurling’s theorem says that the cyclic vectors
in H2 are the outer functions. On the other hand we know that there are outer functions
in the Dirichlet space which are not cyclic in D. In fact, the cyclicity of such a function
depends on the distribution of the zeros of the radial limit f ∗ of f on the unit circle. The
Brown–Shields conjecture [HS] claims that f ∈ D is cyclic iff f is an outer function and
the set of all zeros of f ∗ is a set of logarithmic capacity zero. A partial (positive) answer
to this conjecture was given in [EKR2, EKR1]. We mention the results of Beurling [B]
about the boundary behavior for the functions of the Dirichlet spaces: if f ∈ D we write
f ∗(ζ) = limr→1− f(rζ), then the radial limit f ∗ exists –q.e on T, that is f ∗ exists outside a
set of capacity logarithmic zero. As a consequence of a weak-type inequality the invariant
subspace DE defined by

DE = {f ∈ D, f ∗|E = 0 q.e.}

2000 Mathematics Subject Classification. Primary 46E22; Secondary 31A05, 31A15, 31A20, 47B32.
Key words and phrases. Dirichlet spaces, Bergman spaces, Smirnov space, cyclic vectors.
The research of the first author is partially supported by by the project ANR-18-CE40-0035 and by the

Joint French-Russian Research Project PRC CNRS/RFBR,2017-2019.
1



2 K. KELLAY, F. LE MANACH & M. ZARRABI

is closed in D. Carleson in [C] proved that for every closed subset E of the unit circle
which has zero logarithmic capacity, there exists a cyclic function in D which vanishes on
E.

We denote by A(D) the disc algebra. Hedenmalm and Shields showed in [HS] that if
f ∈ D ∩A(D) is an outer function and Z(f ∗) = {ζ ∈ T : f ∗(ζ) = 0}, the zero set of f ∗, is
countable then f is cyclic in D. Richter and Sundberg in [RS1] improve this result by show-
ing that if f ∈ D is outer and Z(f) = {ζ ∈ T : lim infz→ζ |f(z)| = 0} is countable then f
is cyclic in D. When the set of zeros of f ∗ is not countable, see [EKMR, EKR1, EKR2] in
the case of the classical Dirichlet space D2

0 and [EKR3] in the case of D2
α, 0 < α < 1 for

further results on cyclicity in that context.

In this paper we are interested in cyclicity, in more general Dirichlet spaces, of outer
functions such that the zero set is countable. We now introduce some notations. The
Dirichlet/Besov space Dp

α with p ≥ 1 and α > −1 is given by

Dp
α =

{
f ∈ Hol(D) : ‖f‖p

Dp
α
= |f(0)|p +

∫

D

|f ′(z)|pdAα(z) <∞

}
.

where dAα denotes the finite measure on the unit disc D given by

dAα(z) := (1 + α)(1− |z|2)αdA(z),

and dA(z) = dxdy/π stands for the normalized area measure on D. If p = 2 and α = 1,
then D2

1 is the Hardy space H2 and the classical Dirichlet space corresponds to p = 2 and
α = 0, D2

0 = D. The following theorem is the main result of this paper.

Theorem. Let p > 1 be such that α+ 1 < p ≤ α+ 2 and let f ∈ Dp
α ∩A(D). If f is outer

and Z(f) is countable, then f is cyclic in Dp
α.

Notice that when 1 < p < α+1, Hp(D) is continuously embedded in Dp
α and every outer

function f ∈ Hp(D) is cyclic for Dp
α (Proposition 3.1). On the other hand when p > α+ 2

then every function which vanishes at least at one point is not cyclic in Dp
α.

The method used for the proof of Theorem 3.10 is inspired by that of the Hedenmalm
and Shields [HS] in the case of the classical Dirichlet space and the paper [EKR2] .

Throughout the paper, we use the following notations:

• A . B means that there is an absolute constant C such that A ≤ CB.
• A ≍ B if both A . B and B . A hold.

2. Dirichlet space and duality

The Bergman spaces Ap
α with p ≥ 1, α > −1 are given by

Ap
α(D) =

{
f ∈ Hol(D), ‖f‖p

Ap
α
=

∫

D

|f(z)|pdAα(z) <∞

}
.
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We define the Bergman spaces Ap
α(De) on the exterior disk De = (C∪{∞}) \D with p ≥ 1

and α > −1 by

Ap
α(De) =

{
g ∈ Hol(De), g(∞) = 0 and ‖g‖p

Ap
α
=

∫

De

|g(z)|p
(|z|2 − 1)α

|z|4−p+2α
dA(z) <∞

}
.

Note that Ap
α(D) and Ap

α(De) are isometrically isomorphic via the isometry R : f 7→ Rf
defined on Ap

α(D) by

(2.1) Rf(z) =
1

z
f

(
1

z

)
, z ∈ De.

Indeed, by the variable change z 7→ 1/z,
∫

D

|f(z)|pdAα(z) =

∫

De

|f(1/z)/z|p
(|z|2 − 1)α

|z|4−p+2α
dA(z)

Futhermore if f =
∑

n≥0 anz
n ∈ Ap

α(D) then by (2.1)

(2.2) Rf(z) =

∞∑

n=0

an
zn+1

, z ∈ De.

Denote by S the shift operator on Ap
α(D) for p ≥ 1 and α > −1, that is the multiplication

by z on Ap
α(D). Let S

∗ denote the backward shift, that is

S∗f(z) =
f(z)− f(0)

z
.

Notice that S∗ is continuous on Ap
α(D) for p ≥ 1 and α > −1. Indeed, for f ∈ Ap

α(D) we
get by subharmonicity ([HKZ, proposition 1.1]) that

∣∣∣∣
f(z)− f(0)

z

∣∣∣∣ ≤ sup
|w|≤1/2

|f ′(w)| . ‖f‖Ap
α(D), |z| < 1/2.

Since f 7→ f(0) is continuous on Ap
α(D) ([HKZ, proposition 1.1]), we have

‖S∗f‖p
Ap

α
≤

∫

|z|≤1/2

‖f‖p
Ap

α
dAα(z) + 2p

∫

1/2<|z|<1

|f(z)− f(0)|pdAα(z)

. ‖f‖p
Ap

α(D)
+ ‖f − f(0)‖p

Ap
α(D)

. ‖f‖p
Ap

α(D)
.

From now, we suppose that p > 1 and we denote by q = p
p−1

.

Lemma 2.1. Suppose that −1 < α < p− 1. Then 〈·, ·〉 defined on Dp
α ×Aq

−αq/p(D) by

(2.3) 〈f, g〉 =

∫

D

f ′(z)S∗g(z)dA(z) + f(0)g(0), f ∈ Dp
α, g ∈ Aq

−αq/p(D),

is linear on the left, anti-linear on the right and

|〈f, g〉| . ‖f‖Dp
α
‖g‖Aq

−αq/p
(D).



4 K. KELLAY, F. LE MANACH & M. ZARRABI

Proof. Since −αq/p > −1, (f, g) → 〈f, g〉 is well defined. Clearly this map is linear on the
left and antilinear on the right. It is therefore sufficient to show that

|〈f, g〉| . ‖f‖Dp
α
‖g‖Aq

−αq/p
(D).

Using Hölder’s inequality and the fact that the maps S∗ and f 7→ f(0) are continuous
on the space Aq

−αq/p(D), we get

|〈f, g〉| ≤

∫

D

|f ′(z)|
(1− |z|2)α/p

(1− |z|2)α/p
|S∗g(z)|dA(z) + |f(0)g(0)|

≤

(∫

D

|f ′(z)|pdAα(z)

)1/p (∫

D

|S∗g(z)|qdA−αq/p

)1/q

+ |f(0)||g(0)|

≤ ‖f‖Dp
α
‖S∗g‖Aq

−αq/p
(D) + |f(0)||g(0)|

. ‖f‖Dp
α
‖g‖Aq

−αq/p
(D).

�

The previous lemma shows that 〈·, ·〉 defines a duality between Dp
α and Aq

−αq/p(D). The

following result shows that Aq
−αq/p(D) can be identified as the dual of Dp

α.

Proposition 2.2. Let p > 1 and −1 < α < p − 1. The dual of Dp
α, noted by Dp

α
′, is

isomorphic to Aq
−αq/p(D).

Proof. We will show that the mapping g 7→ 〈·, g〉 is an isomorphism of Aq
−αq/p(D) in Dp

α
′,

the dual of Dp
α. This mapping is well defined, antilinear, continuous and injective. Let’s

show that it’s surjective. Take L in Dp
α
′. For all f ∈ Ap

α(D), we consider F the primitive
of f on D such that F (0) = 0. It’s easy to see that F ∈ Dp

α. We define the mapping L0 on
Ap

α(D) by L0(f) = L(F ). Thus L0 belong to the dual of Ap
α(D), since

|L0(f)| = |L(F )| ≤ ‖L‖‖F‖Dp
α
= ‖L‖‖f‖Ap

α
.

By the Hahn-Banach theorem, L0 extends to Lp
α(D) = Lp(D, dAα) in a continuous linear

form L̃0. By the Riesz representation theorem, there exists ψ0 ∈ Lp
−αq/p(D) = Lp

α(D)
′ such

that for any g ∈ Lp
α(D),

L̃0(g) =

∫

D

g(z)ψ0(z)dA(z).

Let P be the linear map defined by

P : f 7→

(
z 7→

∫

D

f(w)

(1− zw)2
dA(w)

)
.

According to [HKZ, Theorem 1.10], P is a bounded projection from Ls
γ(D) onto As

γ(D) for
γ < s− 1 which is the case when (s, γ) = (p, α) and (s, γ) = (q,−αq/p). Set ψ = P (ψ0) ∈
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Aq
−αq/p(D). So for f ∈ Ap

α(D), we get

L0(f) = L̃0(f) =

∫

D

f(z)ψ0(z)dA(z)

=

∫

D

∫

D

f(w)

(1− zw)2
ψ0(z)dA(w)dA(z)

=

∫

D

f(w)

∫

D

ψ0(z)

(1− wz)2
dA(z)dA(w)

=

∫

D

f(w)ψ(w)dA(w).

Thus we showed that there is ψ ∈ Aq
−αq/p(D) such that for any F ∈ Dp

α with F (0) = 0, we

have

L(F ) =

∫

D

F ′(z)ψ(z)dA(z).

Set ϕ(z) = zψ(z) + L(1) ∈ Aq
−αq/p(D). We have S∗ϕ = ψ. Hence for h ∈ Dp

α

L(h) = L(h− h(0)) + L(h(0))

=

∫

D

h′(z)ψ(z)dA(z) + h(0)L(1)

=

∫

D

h′(z)S∗ϕ(z)dA(z) + h(0)ϕ(0) = 〈h, ϕ〉.

This shows that the mapping g 7→ 〈·, g〉 is surjective and defines an isomorphism from
Aq

−αq/p(D) onto Dp
α
′. �

Remarks. If p > 1 and α < p − 1, the dual of Dp
α is identified as Aq

−αq/p(D). Also the

spaces Aq
−αq/p(D) and Aq

−αq/p(De) are isomorphic, so we can identify the dual of Dp
α with

Aq
−αq/p(De) by the duality

〈f, g〉e = 〈f, R−1g〉, f ∈ Dp
α, g ∈ Aq

−αq/p(De).

In the following we will introduce the tools to use the Hedenmalm and Shields Theorem
[HS, Theorem 1]. For all ϕ ∈ Dp

α
′, we set

ϕ̃(λ) = 〈fλ, ϕ〉, λ ∈ De

where fλ is given by
fλ(z) = (λ− z)−1, z ∈ D.

We define then as in [HS]

Dp
α
∗ =

{
ϕ̃, ϕ ∈ Dp

α
′
}
.

Let ϕ ∈ Dp
α
′, we have

ϕ̃(λ) =

〈
∞∑

n=0

zn

λn+1
, ϕ

〉
=

∞∑

n=0

〈zn, ϕ〉

λn+1
.
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We identify ϕ as an element of Aq
−αq/p(D) that we write

ϕ(z) =
∑

n≥0

anz
n, z ∈ D.

So if n = 0, 〈zn, ϕ〉 = ϕ(0) = a0 and if n ≥ 1,

〈zn, ϕ〉 =

∫

D

nzn−1S∗ϕ(z)dA(z)

=

∫

D

nzn−1
∞∑

m=1

am zm−1dA(z)

=
∞∑

m=1

nam

∫ 1

0

∫ 2π

0

rn+m−2eiθ(n−m)dθ/π rdr

= an

∫ 1

0

2nr2n−1dr = an.(2.4)

Thus for λ ∈ De,

ϕ̃(λ) =
∞∑

n=0

an
λn+1

.

Moreover, according to (2.2), we also have

Rϕ(λ) =

∞∑

n=0

an
λn+1

, λ ∈ De.

So

Dp
α
∗ = Aq

−αq/p(De).

The following lemma will be useful for expressing duality (see [HS, Lemma 3]).

Lemma 2.3. Let p > 1 and −1 < α < p − 1. Let f ∈ Dp
α and g ∈ Aq

−αq/p(De). For
0 ≤ r < 1, we set

fr(z) = f(rz), z ∈ D and g1/r(z) = g(z/r), z ∈ De,

Then

〈f, g〉e = lim
r→1−

〈fr, g1/r〉e = lim
r→1−

∞∑

n=0

anbnr
n = lim

r→1−

1

2π

∫ 2π

0

f(reiθ)g(eiθ/r)eiθdθ,

where f(z) =
∑∞

n=0 anz
n and g(1/z) =

∑∞
n=0 bnz

n+1, z ∈ D.
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3. Cyclicity in Dp
α

We start this section by comparing the spaces Dp
α and the Hardy spaces Hp(D). We

suppose p ≥ 1 and α > −1. Let H∞(D) be the algebra of bounded analytic functions on
the open unit disc D and let Hp(D) be the Hardy space of analytic functions f on D such
that

‖f‖Hp = sup
r<1

Mp(f, r) <∞,

where

Mp(f, r) =

(
1

2π

∫ 2π

0

|f(reiθ)|pdθ

)1/p

.

Let N be the Nevanlinna class of analytic functions f on D for which

sup
r<1

∫

T

ln+ |f(rζ)||dζ | <∞.

By Fatou’s Theorem, the radial limit f ∗(ζ) = limr→1− f(rζ) exists a.e on T and ln |f ∗| ∈
L1(T). Recall that f ∈ N if and only if f = ϕ/ψ, where ϕ, ψ ∈ H∞(D).

Let N + be the Smirnov class of analytic functions f ∈ N such that

sup
r<1

∫

T

ln+ |f(rζ)||dζ | =

∫

T

ln+ |f ∗(ζ)||dζ |.

The function f ∈ N + if and only if f = ϕ/ψ where ϕ, ψ ∈ H∞(D) and ψ is an outer
function, that is, ψ has the form

ψ(z) = exp

∫

T

ζ + z

ζ − z
logψ∗(ζ)

|dζ |

2π
, z ∈ D.

A function f ∈ Hp(D) is cyclic for Hp(D) if and only if f is outer [N, 4.8.4]. We then
study the different possible inclusions between the spaces Dp

α and Hp(D) to obtain first
conditions on the cyclicity in the Dirichlet spaces.

Proposition 3.1. Let p ≥ 1 and α > −1. If p < α + 1 then Hp(D) is continuously
embedded in Dp

α. Consequently, if f ∈ Hp(D) is outer then f is cyclic for Dp
α.

Proof. Let f ∈ Hp(D), z = reit ∈ D and r < ρ < 1. By Cauchy’s formula,

f ′(z) =
1

2π

∫ 2π

0

f(ρei(θ+t))

(ρeiθ − r)2
ρei(θ−t)dθ.
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Now, by Minkowski’s inequality,

Mp(f
′, r) =

(
1

2π

∫ 2π

0

∣∣∣∣
1

2π

∫ 2π

0

f(ρei(θ+t))

(ρeiθ − r)2
ρei(θ−t)dθ

∣∣∣∣
p

dt

)1/p

≤
ρ

2π

∫ 2π

0

(
1

2π

∫ 2π

0

|f(ρei(θ+t))|p

|ρeiθ − r|2p
dt

)1/p

dθ

≤
1

2π

∫ 2π

0

ρ

|ρeiθ − r|2
dθ Mp(f, ρ)

=
ρ

ρ2 − r2
Mp(f, ρ) ≤

1

ρ− r
Mp(f, ρ).

Now letting ρ→ 1, we get

1

2π

∫ 2π

0

|f ′(reiθ)|pdθ ≤
1

(1− r)p
‖f‖pHp,

Since p < α + 1,
∫

D

|f ′(z)|pdAα(z) =

∫ 1

0

∫ 2π

0

|f ′(reiθ)|pdθ(1− r2)αrdr/π

≤ 2α+1

∫ 1

0

(1− r)α

(1− r)p
dr‖f‖pHp

=
2α+1

α + 1− p
‖f‖pHp.

So Hp(D) is continuously embedded in Dp
α. Now the result follows from the fact that an

outer function is cyclic in Hp(D). �

Remark. If p < α + 1, the Dirichlet space Dp
α = Ap

α−p(D), see [Wu]. Therefore, in this
case, there exists an inner function which is cyclic in Dp

α, see [Ro]. If p > α + 1 we have
the following result.

Proposition 3.2. Let p > 1 and p > α + 1. The Dirichlet space Dp
α is continuously

embedded in Hp(D). Therefore if f ∈ Dp
α is cyclic in Dp

α then f is an outer function.

Proof. Let f ∈ Dp
α and r ∈ [1/2, 1[. We have

f(reiθ) =

∫ r

0

f ′(seiθ)eiθds+ f(0).

Note that |f(0)| ≤ ‖f‖Dp
α
and by subharmonicity, there exists C > 0 such that |f ′(seiθ)| ≤

C‖f‖Dp
α
, 0 ≤ s ≤ 1/2. So

|f(reiθ)| ≤

∫ r

1/2

|f ′(seiθ)|ds+ (C/2 + 1)‖f‖Dp
α
.
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By Hölder’s inequality, and since αq/p = α/(p− 1) < 1,

(∫ 2π

0

|f(reiθ)|pdθ
)1/p

.

[∫ 2π

0

(∫ r

1/2

|f ′(seiθ)|ds
)p

dθ

]1/p
+ ‖f‖Dp

α

.

[∫ 2π

0

(∫ r

1/2

|f ′(seiθ)|p(1− s2)αds
)(∫ r

1/2

(1− s2)−αq/pds
)p/q

dθ

]1/p
+ ‖f‖Dp

α

.

[∫ 2π

0

∫ 1

1/2

|f ′(seiθ)|p(1− s2)α2sdsdθ

]1/p [∫ 1

1/2

(1− s2)−αq/pds

]1/q
+ ‖f‖Dp

α

.
(
1−

αq

p

)
‖f‖Dp

α
+ ‖f‖Dp

α
.

So ‖f‖Hp . ‖f‖Dp
α
. Hence if f is cyclic for Dp

α then f is also cyclic for Hp(D) and f is
then an outer function. �

Remark. We have D2
1 (D) = H2(D) and D2

0 (D) = D. So if 1 ≤ p ≤ 2 and p = α + 1, we
obtain by interpolation theorem [Wu, (3.8)]), that Dp

α is continuously embedded in Hp(D).
Futhermore if p > α + 2, then Dp

α is continuously embedded in H∞(D) (see the proof of
[Wu, Theorem 4.2]).

We can summarize here all the inclusions obtained:

p < α + 1 =⇒ Hp(D) ⊂ Dp
α = Ap

α−p(D)

1 ≤ p ≤ 2 and p = α + 1 =⇒ Dp
α ⊂ Hp(D)

p > α + 1 =⇒ Dp
α ⊂ Hp(D)

p > α + 2 =⇒ Dp
α ⊂ H∞(D).

We assume in the following that p > α + 1. We will prove that any outer function of
A(D) ∩ Dp

α whose set of zeros is reduced to a single point is cyclic in Dp
α. For that we will

use a Hedenmalm-Shields Theorem [HS, Theorem 1]. We first need to define the following
notions. Let X ⊂ Hol(D) be a Banach space. The multiplier set of X , noted M(X), is
defined by

M(X) = {ϕ ∈ Hol(D), ϕf ∈ X, ∀f ∈ X}.

If X ⊂ Hol(De) we define in a similar way M(X).
As in [HS] we identify the dual X ′ of X with a space X∗ of holomorphic functions on De.
Finally for E ⊂ T a closed set of zero Lebesgue measure, we set

HE(N
+, X∗) =

{
ϕ ∈ Hol(C ∪ {∞} \ E), ϕ|D ∈ N

+(D), ϕ|De ∈ X∗
}
.

We denote by Hol(D), respectively Hol(De), the space of all holomorphic functions in a
neighborhood of D, respectively De.
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Theorem 3.3 (Hedenmalm-Shields [HS]). Let X ⊂ Hol(D) be a Banach space. Assume
that

(1) The embedding map of X into Hol(D) is continuous and X contains Hol(D) as a
dense subspace

(2) X ∩ A(D) is a Banach algebra, containing Hol(D) as a dense algebra.
(3) Hol(D) ⊂M(X).
(4) Hol(De) ⊂M(X∗) = H∞(De).

If f ∈ X ∩A(D) is an outer function and if

HZ(f)(N
+, X∗) = {0}

then f is cyclic in X.

Hedenmalm and Shields show that iff ∈ A(D)∩D2
0 (D) is an outer function and Z(f) =

{1} then HZ(f)(N
+,D2

0 (D)
∗) = {0} and so f is cyclic (see also [EKR2, EKMR]). We will

prove a similar result for Dp
α where α+ 1 < p ≤ α + 2.

Theorem 3.4. Let p > 1 and p > α + 1. If f ∈ A(D) ∩ Dp
α is outer and if

HZ(f)(N
+,Dp

α
∗) = {0}

then f is cyclic on Dp
α.

To prove this result, we will use Theorem 3.3. For that we need only to show the following
lemma (see the proof of [DRS, lemma 11]).

Lemma 3.5. Let p > 1 and α > −1. Then M(Ap
α(De)) = H∞(De).

Proof. Let f ∈ Ap
α(De) and g ∈ H∞(De). We have

∫

De

|f(z)g(z)|p
(|z|2 − 1)α

|z|4−p+2α
dA(z) ≤ ‖g‖p∞‖f‖p

Ap
α
.

So fg ∈ Ap
α(De) and H

∞(De) ⊂M(Ap
α(De)).

Now let g ∈ M(Ap
α(De)) and let Mg : Ap

α(De) → Ap
α(De) be the operator given by

Mg(f) = fg. By the closed graph theorem, Mg is bounded. For z ∈ De, the linear
functional Λz : Ap

α(De) → C defined by Λz(f) = f(z), is continuous ([HKZ, proposition
1.1]). So for f ∈ Ap

α(De) and z ∈ De,

|f(z)g(z)| = |Λz(Mgf)| ≤ ‖Λz‖‖Mg‖‖f‖Ap
α
.

Hence
‖Λz‖|g(z)| ≤ ‖Λz‖‖Mg‖

and g ∈ H∞(De). So M(Ap
α(De)) ⊂ H∞(De). On the other hand the inclusion H∞(De) ⊂

M(Ap
α(De)) is obvious. �

By identifying the dual of Dp
α with Aq

−αq/p(De), we have for f ∈ Dp
α and ϕ ∈ Aq

−αq/p(De),

ϕ ∈
(
[f ]D

p
α

N

)⊥

⇐⇒ 〈znf, ϕ〉e = 0, ∀n ∈ N.
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Lemma 3.6. Let p > 1and p > α + 1. Let E ⊂ T a closed set of Lebesgue measure,
ϕ ∈ HE(N

+,Dp
α
∗) and f ∈ Dp

α. If the family of functions

z ∈ T 7→ f(rz)ϕ(z/r), 1/2 < r < 1,

is uniformly integrable on T, then ϕ ∈
(
[f ]D

p
α

N

)⊥

.

Proof. This result holds by using the analogue arguments like those in [EKR2, Lemma
3.4] for the classical Dirichlet space. For the sake of completeness, we include it here. Let
f ∈ Dp

α and ϕ|De ∈ Dp
α
∗ = Aq

−αq/p(De). By Proposition 2.3, we have

〈f, ϕ〉 = lim
r→1−

1

2π

∫ 2π

0

f(reiθ)ϕ(eiθ/r)eiθdθ.

By Proposition 3.2, Dp
α ⊂ Hp(D) and so f ∗, the radial limit of f , exists a.e. on T. Since

ϕ ∈ Hol(C \E) and E is a closed set of Lebesgue measure zero, ϕ(z/r) −→ ϕ(z) exists a.e
on T when r → 1−. So the family of the functions z 7→ f(rz)ϕ(z/r) converges a.e to f ∗ϕ
when r → 1−. By uniform integrability, this family of functions converges in L1(T). Then

〈f, ϕ〉 =
1

2π

∫ 2π

0

f ∗(eiθ)ϕ(eiθ)eiθdθ.

Futhermore ϕ ∈ N + and f ∈ Hp(D) ⊂ N +, so then fϕ ∈ N +. Since the radial limit
(fϕ)∗ = f ∗ϕ ∈ L1(T), by Smirnov’s generalized maximum principal [D, Theorem 2.11],

fφ ∈ H1(D) and so f̂ ∗ϕ(n) = 0 :

f̂ ∗ϕ(n) = 〈f, ϕ〉 =
1

2π

∫ 2π

0

f ∗(eiθ)ϕ(eiθ)eiθdθ = 0.

Repeating the same argument with f replaced by znf , we get 〈znf, ϕ〉 = 0 for all n ∈ N. �

We have the following classical Lemma

Lemma 3.7. Let p > 1 and p > α + 1. Let E ⊂ T be a closed set of Lebesgue measure
zero and ϕ ∈ HE(N

+,Dp
α
∗). Then there exists a constant C > 0 such that

|ϕ(z)| ≤
C

dist(z, E)4
, 1 < |z| < 2.

Proof. Let ϕ ∈ HE(N
+,Dp

α
∗). Since ϕ|D ∈ N +, ϕ|D = ϕiϕo, where ϕi is an inner

function and ϕo is an outer function in N (see [D, p. 25]). Futhermore, since E has
Lebesgue measure zero , ϕ(z) = ϕ∗(z) = limr→1− ϕ(rz) exists a.e on T. The function
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log |ϕ| being in L1(T), we get

|ϕ(z)| ≤ |ϕo(z)| =

∣∣∣∣exp
(

1

2π

∫ 2π

0

eit + z

eit − z
log |ϕ(eit)|dt

)∣∣∣∣

≤ exp

(
1

2π

∫ 2π

0

1− |z|2

|eit − z|2
log |ϕ(eit)|dt

)

≤ exp

(
1− |z|2

(1− |z|)2

∫ 2π

0

∣∣log |ϕ(eit)|
∣∣ dt

)

≤ exp

(
2

1− |z|
‖ log |ϕ|‖L1(T)

)
.

≤ exp

(
C1

1− |z|

)
,

for some constant C1 > 0. Let z ∈ De with |z| ≤ 2. The disc of radius (|z| − 1)/2 centered
at z, D(z, (|z| − 1)/2) is contained in De. Since ϕ|De ∈ Aq

−αq/p(De), by subharmonicity of

|ϕ| and for q = p/(p− 1) ≥ 1, we obtain

(|z| − 1)2

4
|ϕ(z)|q ≤

1

π

∫

D(z,(|z|−1)/2)

|ϕ(w)|qdA(w)

≤
1

π

∫

D(z,(|z|−1)/2)

|ϕ(w)|q
(|w|2 − 1)−αq/p

|w|4−q−2αq/p

|w|4−q−2αq/p

(|w|2 − 1)−αq/p
dA(w)

≤ max(22αq/p, 24−q)

∫

De

|ϕ(w)|q
(|w|2 − 1)−αq/p

|w|4−q−2αq/p
dA(w)

≤ max(22αq/p, 24−q)‖ϕ|De‖Bq
−αq/p

.

So

|ϕ(z)| ≤
C2

(|z| − 1)2
, 1 < |z| ≤ 2,

for some constant C2 > 0. Since log |ϕ| is subharmonic function, by Taylor-Williams
estimates [RW, lemma 5.8 and 5.9] and [EKMR, Lemma 9.6.5], we get the lemma. �

The following result allows us to reduce the study of cyclic vectors vanishing on a closed
set E to the study of cyclicity of particular functions. More precisely we have

Theorem 3.8. Let p > 1 and p > α+1. Let f ∈ Dp
α and E ⊂ T be a closed set of Lebesgue

measure zero. If there exists a constant C1 > 0 such that,

|f(z)| ≤ C1 dist(z, E)
4, z ∈ D,

then

HE(N
+,Dp

α
∗) ⊂

(
[f ]D

p
α

N

)⊥

.
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This means that for all g ∈ HE(N
+,Dp

α
∗), g|De ∈

(
[f ]D

p
α

N

)⊥

i.e.

〈znf, g|De〉e = 0, ∀n ∈ N.

Proof. Let ϕ ∈ HE(N
+,Dp

α
∗). By Lemma 3.7, there exists a constant C2 > 0 such that

|ϕ(z)| ≤
C2

dist(z, E)4
, 1 < |z| < 2.

So for 1/2 < r < 1 and z ∈ T, we have

|f(rz)ϕ(z/r)| ≤ C1C2
dist(rz, E)4

dist(z/r, E)4
≤ C1C2.

The family of the functions z 7→ f(rz)ϕ(z/r) is uniformly integrable on T for 1/2 < r < 1,

thus by Lemma 3.6, ϕ ∈
(
[f ]D

p
α

N

)⊥

, which finishes the proof. �

Corollary 3.9. Let p > 1 such that α + 1 < p ≤ α + 2. We have

H{1}(N
+,Dp

α
∗) = {0}.

Proof. Let f(z) := (z − 1)4. We have f ∈ Dp
α and |f(z)| ≤ |z − 1|4. By Theorem 3.8 ,

H{1}(N
+,Dp

α
∗) ⊂

(
[f ]D

p
α

N

)⊥

.

It suffices to prove that f is cyclic. Let ϕ ∈ Aq
−αq/p(D) such that

〈zn(z − 1), ϕ〉 = 0, ∀n ∈ N.

Write ϕ(z) =
∑

n≥0 anz
n, we get by (2.4),

an = 〈zn, ϕ〉 = 〈zn+1, ϕ〉 = an+1.

Then

ϕ(z) =

∞∑

n=0

anz
n =

a0
1− z

, z ∈ D.

Suppose that ϕ 6= 0. Since ϕ ∈ Aq
−αq/p(D), we have

(3.1)

∫

D

(1− |z|2)−αq/p

|1− z|q
dA(z) <∞,

and so q + αq/p < 2 (see [HKZ, Theorem 1.7]), which contradicts the assumptions on p

and α. So ϕ = 0 and [z − 1]D
p
α

N
= Dp

α. In particular z − 1 ∈ [(z − 1)2]D
p
α

N
and then

[(z − 1)2]D
p
α

N
= [z − 1]D

p
α

N
= Dp

α.

With the same argument we obtain

[(z − 1)4]D
p
α

N
= Dp

α,

and f(z) = (z − 1)4 is cyclic in Dp
α. �
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Remark. The proof of the previous result also gives us that for p > α + 2, the function
f(z) = z − 1 is not cyclic in Dp

α. Indeed by (3.1), ϕ(z) = 1/(1 − z) ∈ Aq
−αq/p(D) and

ϕ ⊥ znf , n ∈ N. More generally if f ∈ A(D) ∩ Dp
α with f(1) = 0, then f is not cyclic in

Dp
α. Indeed for p > α + 2, we have Dp

α ⊂ H∞(D) with ‖ · ‖H∞ . ‖ · ‖Dp
α
which implies

[f ]D
p
α

N
⊂ {g ∈ A(D), g(1) = 0}.

Theorem 3.10. Let p > 1 such that α+ 1 < p ≤ α+ 2 and let f ∈ A(D) ∩Dp
α. If f is an

outer function and Z(f) is countable then f is cyclic in Dp
α.

Proof. Since Z(f) is countable, by [BS, Theorem 3] it suffices to prove the theorem when
the zero set is reduced to a single point. The result now follows by Theorem 3.4 and
Corollary 3.9. �
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