
Fast Bayesian Network Structure Learning using

Quasi-Determinism Screening

Thibaud Rahier, Sylvain Marie, Stephane Girard, Florence Forbes
Univ. Grenoble Alpes, Inria, CNRS, G-INP and Schneider Electric

January 4, 2019

1 Introduction

Bayesian networks are probabilistic graphical models that present interest both
in terms of knowledge discovery and density estimation. Learning Bayesian
networks from data has been however proven to be NP-Hard by Chickering
[1996].
There has been extensive work on tackling the ambitious problem of Bayesian
network structure learning from observational data. In this paper, we focus
on score-based structure learning: these algorithms rely on the definition of
a network score, then on the search for the best-scoring structure among all
possible directed acyclic graphs (DAGs).

Meanwhile, data itself may contain determinism, for example in the fields of
cancer risk identification (de Morais et al. [2008]) or nuclear safety (Mabrouk
et al. [2014]). Moreover, data is increasingly collected and generated by software
systems whether in social networks, smart buildings, smart grid, smart cities or
the internet of things (IoT) in general (Koo et al. [2016]). These systems in
their vast majority rely on relational data models or lately on semantic data
models (El Kaed et al. [2016]) which cause deterministic relationships between
variables to be more and more common in datasets.

After reminding the background of Bayesian network structure learning (sec-
tion 2), we propose the quasi deterministic screening algorithm (section 3). We
then illustrate, using a benchmark dataset, that this algorithm is quicker and
learns sparser structures than state of the art methods, for only a small decrease
in performance score (section 4).
A more detailed version of this work, including theoretical results and proofs,
as well as experiments on a wider range of datasets, is available in Rahier et al.
[2018].
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2 Bayesian network structure learning

2.1 Bayesian networks

Let X = (X1, . . . , Xn) be a n-tuple of categorical random variables with re-
spective value sets V al(X1), . . . , V al(Xn). The distribution of X is denoted by,
∀ x = (x1, . . . , xn) ∈ V al(X),

p(x) = P (X1 = x1, . . . , Xn = xn).

For I ⊂ J1, nK, we define XI = {Xi}i∈I , and the notation p(·) and p(·|·) is ex-
tended to the marginals and conditionals of any subset of variables: ∀(xI ,xJ) ∈
V al(XI∪J), p(xI |xJ) = P (XI = xI |XJ = xJ).
Moreover, we suppose that D is a dataset containing M i.i.d. instances of
(X1, . . . , Xn). All quantities empirically computed from D will be written with
a .D exponent (e.g. pD refers to the empirical distribution with respect to D).
Finally, DI refers to the restriction of D to the obsevations of XI .

A Bayesian network is an object B = (G, θ) where

• G = (V,A) is a directed acyclic graph (DAG) structure with V the set of
nodes and A ⊂ V × V the set of arcs. We suppose V = J1, nK where each
node i ∈ V is associated with the random variable Xi, and πG(i) = {j ∈
V s.t. (j, i) ∈ A} is the set of i’s parents in G.

• θ = {θi}i∈V is a set of parameters. Each θi defines the local conditional
distribution P (Xi|Xπ(i)).
More precisely, θi = {θxi|xπ(i)

} where for i ∈ V, xi ∈ V al(Xi) and xπ(i) ∈
V al(Xπ(i)),

θxi|xπ(i)
= p(xi|xπ(i)).

A Bayesian network B = (G, θ) encodes the following factorization of the dis-
tribution of X: for x = (x1, . . . , xn) ∈ V al(X),

p(x) =

n∏
i=1

p(xi|xπG(i)) =

n∏
i=1

θxi|xπG(i)
.

Such a factorization notably implies that each variable is independent of its
non-descendents given its parents.

2.2 Score-based approach to Bayesian network structure
learning

Suppose we have a scoring function s : DAGV → R, where DAGV is the set
of all possible DAG structures with node set V . Score-based Bayesian network
structure learning comes down to solving the following combinatorial optimiza-
tion problem:

G∗ ∈ argmax
G∈DAGV

s(G). (1)
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It can be shown that 2
n(n−1)

2 ≤ |DAGV | ≤ 2n(n−1) where |V | = n. There are

therefore 2O(n2) possible DAG structures containing n nodes: the size of DAGV
is said to be super-exponential in |V |.

The Max Log-Likelihood score
Most scoring functions used in practice are based on the likelihood function.
The most straightforward being the Max log-likelihood (MLL) sore: for a given
DAG structure G ∈ DAGV , we define the MLL score of G wrt D as:

sMLL(G : D) = max
θ∈ΘG

l(θ : D).

where l(θ : D) = log(pθ(D)) is the log-likelihood of θ given D and where ΘG is
the set of all θ’s such that B = (G, θ) is a Bayesian network.

The MLL score is straightforward and intuitive, but is maximized by com-
plete DAGs. To solve this problem, one can either constrain the structure space
(e.g. simply by restricting the maximum number of parents per nodes, or using
more advanced methods as the MMHC algorithm introduced by Tsamardinos
et al. [2006]), or use a score that expresses a goodness-of-fit vs complexity trade-
off, such as BIC (Schwarz et al. [1978]) or BDe (Heckerman et al. [1995]).

3 Structure learning with quasi-determinism screen-
ing

3.1 Quasi-determinism

Our idea is to narrow the structure learning problem down to a subset of the orig-
inal variables: the roots of a (quasi-)deterministic forest, in order to significantly
decrease the overall computation time. This is what we call (quasi-)determinism
screening.

Definition 1 ε−quasi-determinism (ε−qd) Given a dataset D containing
observations of variables Xi and Xj, the relationship Xi → Xj is ε−qd wrt D
iff HD(Xj |Xi) ≤ ε.

where HD(Xi|Xj) = −
∑
xi,xj

pD(xi, xj) log(pD(xi|xj)) is the empirical Shannon

entropy. In the particular case where ε = 0, we talk about determinism instead
of quasi-determinism

We then define (quasi-)deterministic DAGs and forests as follows (the pa-
rameter ε is implicitly fixed in these two definitions).

Definition 2 (Quasi-)Deterministic DAG wrt D
G ∈ DAGV is said to be (quasi)-deterministic with respect to D iff ∀i ∈
V s.t. πG(i) 6= ∅, XπG(i) → Xi is (quasi-)deterministic wrt D.
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Definition 3 (Quasi-)Deterministic forest wrt D
F ∈ DAGV is said to be a (quasi-)deterministic forest with respect to D iff

F =
p⋃
k=1

Tk, where T1, . . . , Tp are p disjoint (quasi-)deterministic trees wrt

DVT1
, . . . , DVTp

respectively and s.t.
p⋃
k=1

VTk = V .

where ∪ is the canonical union for graphs: G ∪G′ = (VG ∪ VG′ , AG ∪AG′).
We show in Rahier et al. [2018] that a deterministic forest is the subgraph of

an optimal DAG with respect to the MLL score, as stated in the following propo-
sition. For a given forest F , we define the notation R(F ) = {i ∈ V | πF (i) = ∅}
to designate the set of F ’s roots (the union of the roots of each of its trees).

Proposition 1 Suppose F is a deterministic forest wrt D. Let G∗R(F ) be a

solution of the structure learning optimization problem (1) for XR(F ) and the
MLL score i.e.

sMLL(G∗R(F ) : DR(F )) = max
G∈DAGR(F )

sMLL(G : DR(F )).

Then, G∗ = F ∪G∗R(F ) is a solution of (1) for X, i.e.

sMLL(G∗ : D) = max
G∈DAGV

sMLL(G : D).

Assumptions of Proposition 4 are always formally verified: if there is no deter-
minism in the dataset D, then R(F ) = V , and every tree Tk is formed of a single
root node. In that case, solving problem (1) for G∗R(F ) is the same as solving

it for G∗. We are obviously interested in the case where |R(F )| < n, as this
enables us to focus on a smaller structure learning problem while still having
the guarantee to learn the optimal Bayesian network with regards to the MLL
score.

Proposition 4, associated with the fact that forests are sparse DAGs, shows
that deterministic forests are very promising with regards to the fit-complexity
tradeoff (typically evaluated by scores such as BDe or BIC). Extending this in-
tuition to ε−quasi-determinism (presented in Definition 1), we now propose the
quasi-determinism screening approach to Bayesian network structure learning.

3.2 Quasi-determinism screening algorithm

Algorithm 1 details how to find the simplest ε−qd forest Fε from a dataset D
and a threshold ε. Here simplest refers to the complexity in terms of number of
parameters.

This algorithm takes for input:

• D: a dataset containing M observations of X,

• ε: a threshold for quasi-determinism.
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Algorithm 1 Quasi-determinism screening (qds)

Input: D , ε
1: Compute empirical conditional entropy matrix HD =

(
HD(Xi|Xj)

)
1≤i,j≤n

2: for i = 1 to n do #identify the set of potential ε−qd parents for each i
3: compute πε(i) = {j ∈ J1, nK \ {i} | HDij ≤ ε}
4: for i = 1 to n do #check for cycles in ε−qd relations
5: if ∃j ∈ πε(i) s.t. i ∈ πε(j) then
6: if HDij ≤ HDji then
7: πε(j)← πε(j) \ {i}
8: else
9: πε(i)← πε(i) \ {j}

10: for i = 1 to n do #choose the simplest among all potential parents
11: π∗ε (i)← argmin

j∈πε(i)
|V al(Xj)|

12: Compute forest Fε = (VFε , AFε) where VFε = J1, nK and AFε =
{(π∗ε (i), i) | i ∈ J1, nK s.t. π∗ε (i) 6= ∅}
Output: Fε

3.3 Learning Bayesian networks using quasi-determinism
screening

We now present Algorithm 2 (qds-BNSL), which uses quasi-determinism screen-
ing to accelerate Bayesian network structure learning. This algorithm takes as
input:

• D: a dataset containing M observations of X,

• ε: a threshold for quasi-determinism,

• sota-BNSL: a state of the art structure learning algorithm, taking for input
a dataset, and returning a Bayesian network structure.

Algorithm 2 Bayesian network structure learning with quasi deter-
ministic screening (qds-BNSL)

Input: D, ε, sota-BNSL
1: Compute Fε by running Algorithm 1 with input D and ε
2: Identify R(Fε) = {i ∈ J1, nK | πFε(i) = ∅}, the set of Fε’s roots.
3: Compute G∗R(Fε)

by running sota-BNSL on DR(Fε)

4: G∗ε ← Fε ∪G∗R(Fε)

Output: G∗ε
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3.4 Complexity analysis

Let sota-BNSL be a state of the art Bayesian network structure learning algo-
rithm and Csota(M,n) be its complexity. The screening phase of Algorithm 2
implies O(Mn2) operations. We can therefore write:

CAlg2(M,n) = O(Mn2) + Csota(M,nr(ε))

where ∀ε ≥ 0, nr(ε) = |R(Fε)| is the number of roots of the forest Fε.
Csota(M,n) is known to be typically exponential in n for the best exact

structure learning algorithms, as those presented by Silander and Myllymäki
[2006] or Bartlett and Cussens [2015], and it is expected to be significantly
larger than O(Mn2) for high-performing heuristics. We therefore expect an
important decrease in computational time for Algorithm 2 compared to a state
of the art algorithm, as long as nr(ε) is sufficiently smaller than n.
We now present the experiments we conducted to confirm this intuition.

4 Experiments

4.1 Experimental setup

Data: In this paper we considered the msnbc dataset as preprocessed by Davis
and Domingos [2010] and available on the UCI repository (Dheeru and Karra Taniski-
dou [2017]). It is the largest opensource categorical dataset with a small enough
number of variables (17), allowing it to be displayed. Results on more than 15
other datasets are available in Rahier et al. [2018].
Programmation details and choice of sota-BNSL: After carefully eval-
uating several algorithms implemented in the bnlearn R package, we chose to
use Greedy Hill Climbing with 10 random restarts and a 10−state long tabu list
as our state-of-the-art algorithm, as it consistently outperformed other built-in
algorithms both in time and performance, in addition to being also used as a
benchmark algorithm in the literature, notably by Teyssier and Koller [2005].
We now refer to this algorithm as sota-BNSL.
Evaluation of algorithms: We evaluated the algorithms using several quan-
titative measures on the learnt Bayesian networks: BDeu score, CV LL (Cross-
Validated Log-Likelihood score, accounting for the graph’s generalization per-
formance), number of arcs and computation time.
Choice of ε for qds-BNSL: An approach for choosing ε in the case of the qds-
BNSL algorithm is to pick values for nr(ε), and manually find the corresponding
values for ε: for a given dataset and x ∈ [0, 1], we define εx = n−1

r (bxnc),
the value of ε for which the number of roots of the qd forest Fε represents a
proportion x of the total number of variables.

Figure 1, Figure 2 and Table 1 present the obtained Bayesian networks
and associated evaluation criteria for sota-BNSL and qds-BNSL with ε = ε0.5
(corresponding to a elimination by the screening phase of 50% of the original
variables) on the msnbc dataset. Quantities displayed in Table 1 are the means
of 20 runs with different seeds (all standard deviations are smaller than 0.05).
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Choosing ε as explained previously is time-efficient but quite ad-hoc. In
order to better grasp how the different evaluation criteria depend on ε, we
display their evolution for different ε, ranging from 0 to max

i
HD(Xi) ≈ 0.6 in

Figures 3 to 6.
In Figure 7, we compare the ‘generalization performance vs number of arcs’

tradeoff of the qds-BNSL algorithm to two other methods for learning sparse
Bayesian networks: restricting the maximum number of parents allowed in sota-
BNSL (range: 1 to 20), and decreasing the equivalent sample size (ESS) of the
BDeu score used in sota-BNSL, inspired by Silander et al. [2007] (range: 10−10

to 5).

Figure 1: BN returned by sota-BNSL
BN learnt on dataset 'msnbc' with sota−BNSL
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Figure 2: BN returned by
qds-BNSL(ε0.5)

BN learnt on dataset 'msnbc' with qds−BNSL (eps_0.5)
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Comparison of computation time, BDeu (normalized), CVLL (normalized), and
number of arcs for the displayed Bayesian networks

Figure 1 (sota) Figure 2 (qdsε0.5)
trun (sec) 252 36
BDe score −6.2 −6.5
CVLL score −6.1 −6.4
Nb arcs 102 37

Looking at Figure 1, Figure 2 and Table 1, we see how after the qdε0.5 -
screening phase, half of the variables (corresponding to the nodes in white) are
considered to be sufficiently explained by V 1. They are therefore not taken into
account by sota-BNSL, which is run only on the variables corresponding to the
nodes in gray.
In the case of msnbc, this restriction of the learning problem implies only a small
decrease in the final graph’s performance (whether it is measured by the BDeu
score or the CVLL score), while being 7 times faster to compute and enabling
a significantly better readability (3 times as less arcs in the network).
As we can see on Figures 3 to 6, we could also use a smaller values of ε (e.g.
smaller than 0.2) to obtain still interesting decreases in computation time with
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Figure 3: CVLL score vs ε
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Figure 4: BDeu(4ESS = 5) score vs ε
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Figure 5: Computation time vs ε
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Computation time for different values of the epsilon parameter in the qds−BNSL algorithm

Figure 6: Number of arcs vs ε
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close to no effect on the performance scores.
Results displayed in Figure 7 confirm that the qds-BNSL algorithm provides

a very good tradeoff between readability (low number of arcs) and generaliza-
tion performance (high CVLL score) as long as ε stays in a reasonable range
(corresponding to the upper-right part of the plot).

5 Discussion

As it was expected from a theoretical point of view, the quasi-determinism
screening approach to Bayesian network structure learning enables a significant
decrease in computational time for a small decrease in graph scores. Moreover,
this method provides an interesting tradeoff between readability (number of
arcs) and generalization performance (CVLL) compared to other sparsity in-
ducing structure learning algorithms, as long as ε is reasonably small compared
to the variables’ entropies.

The results are all the more promising that exact empirical determinism is
barely present in the datasets used in this paper and its extended version (most
of the time, nr(ε = 0) = n). We have also tested our algorithm on industrial
descriptive metadatasets from the IoT domain, for which many variables possess
(empirically) deterministic parents because of the underlying relational data
schemas. In this context, qds-BNSL is up to 20 times faster than sota-BNSL,
with often better learned graphs in terms of CVLL score. These results are
dependent on very specific assumptions, which are however more and more
often met by data accessible today, as previously noted.
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Figure 7: CVLL score vs number of arcs for 3 approaches to
learning sparse Bayesian networks

−6.6

−6.4

−6.2

25 50 75 100

NbArcs

V
LL

S
co

re

SparsityInductionMethod

EquivalentSampleSizeDecreasing

NbParentsRestriction

QuasiDeterminismScreening

CVLogLikelihood score VS NbArcs for different sparsity induction methods

Our main research perspective is to find a principled way to choose ε without
running the algorithm several times all the way through. This would save us
important amounts of time, and prevent us from trying qds-BNSL on datasets
that do not contain any strong pairwise relationships. Obtaining a bound such as
the one presented in Proposition 4 of Rahier et al. [2018] seems like a promising
way to achieve this goal. However, this bound concerns the MLL score and is
far from tight in practice: we are currently searching for tighter bounds on the
BDe or the BIC score of the graphs generated by qds-BNSL.

Finally, we could generalize our algorithm by making use of the fact that
Proposition 4 holds when considering any deterministic DAGs (and not only
forests), or by changing our definition of quasi determinism: one could choose

the quantity HD(X|Y )
HD(X)

to describe the strength of the relationship Y → X, which

represents the proportion of X’s entropy that is explained by Y . Moreover,
HD(X|Y )
HD(X)

≤ ε can be rewritten as MID(X,Y )
H(X) ≥ 1− ε, which gives another insight

to quasi-determinism screening: for a given variable X, this comes down to
finding a variable Y such that MID(X,Y ) is high. This is connected to the
idea of Chow and Liu [1968], and later Cheng et al. [1997], for whom pairwise
empirical mutual information is central.
In fact, it is quite straightforward to show that under the assumption of the
existence of a deterministic tree T , both the algorithm by Chow and Liu [1968]
and qds-BNSL(ε = 0) return trees that has the exact same MLL score as T .
Further investigation of connections between these algorithms is part of our
ongoing work.
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