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Unsupervised image segmentation

Challenges for mixture models (clustering)

inhomogeneities, noise

How many segments?
T1 gado 2 classes 4 classes

Extensions of Dirichlet Process mixture model with spatial regularization
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Dirichlet process (DP)

Dirichlet process (DP)

The DP is a central Bayesian nonparametric (BNP) prior1.

Definition (Dirichlet process)

A Dirichlet process on the space Y is a random process G such that there
exist α (concentration parameter) and G0 (base distribution) such that for any
finite partition {A1, . . . , Ap} of Y, the random vector (P (A1), . . . , P (Ap)) will be
Dirichlet distributed:

(P (A1), . . . , P (Ap)) ∼ Dir(αG0(A1), . . . , αG0(Ap))

Notation: G ∼ DP(α,G0)

The DP is the infinite-dimensional generalization of the Dirichlet distribution.

1Ferguson, T. (1973). A Bayesian analysis of some nonparametric problems. The Annals of Statistics,
1(2):209–230.
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Dirichlet process (DP)

Dirichlet process (DP) construction

A DP prior G can be constructed using three methods:

The Blackwell-MacQueen urn scheme
The Chinese Restaurant Process
The Stick-Breaking construction

The DP has almost surely discrete realizations2:

G =

∞∑
k=1

πkδθ∗k

where θ∗k
iid∼ G0 and πk = π̃k

∏
l<k(1− π̃l) with π̃k

iid∼ Beta(1, α).

2Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica, 4:639-650.
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Spatially-constrained mixture model: DP-Potts mixture model Finite mixture model

Spatially-constrained mixture model: DP-Potts mixture

Clustering/segmentation: Finite mixture models assume data are generated by
a finite sum of probability distributions:

y = (y1, ...,yN) with yi = (yi1, ..., yiD) ∈ RD i.i.d

p(yi|θ∗, π) =
K∑
k=1

πkF (yi|θ∗k)

where
θ∗ = (θ∗1 , ..., θ

∗
K) and π = (π1, ..., πK) with θ∗ class parameters and π

mixture weights with
∑K
i=1 πi = 1.

θ∗ and π can be estimated using EM algorithm.

Equivalently
G =

∑K
k=1 πkδθ∗k non random

θi ∼ G and yi|θi ∼ F (yi|θi).
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Spatially-constrained mixture model: DP-Potts mixture model Bayesian finite mixture model

Bayesian finite mixture model

In a Bayesian setting, a prior distribution is placed over θ∗ and π.

Thus, the posterior distribution of parameters given the observations is

p(θ∗, π|y) ∝ p(y|θ∗, π)p(θ∗, π)

To generate a data point within a Bayesian finite mixture model:
θ∗k ∼ G0

π1, ..., πK ∼ Dir(α/K, ..., α/K)

G =
∑K
k=1 πkδθ∗k is a random measure

θi|G ∼ G, which means θi = θ∗k with probability πk
yi|θi ∼ F (yi|θi)

Limitation:
Require specifying the number of
components K beforehand.

Solution:
Assume an infinite number of compo-
nents using BNP priors.
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Spatially-constrained mixture model: DP-Potts mixture model DP mixture model

DP mixture model

From a Bayesian finite mixture model to a DP mixture model

To establish a DP mixture model, let G be a DP prior (K →∞), namely

G ∼ DP(α,G0)

and complement it with a likelihood associated to each θi

To generate a data point within a DP mixture model:
G ∼ DP(α,G0)

θi|G ∼ G
yi|θi ∼ F (yi|θi)
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Spatially-constrained mixture model: DP-Potts mixture model DP mixture model

DP mixture model
2D point clustering (unsupervised learning) based on the DP mixture model:

Let the data speak for themselves!

H. Lü et al. JSM 2018 July 2018 9 / 35



Spatially-constrained mixture model: DP-Potts mixture model DP mixture model

DP mixture model
Application to image segmentation:
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Segmentation by DP

Drawback:
Spatial constraints and dependencies
are not considered.

Solution:
Combine the DP prior with a hidden
Markov random field (HMRF).

H. Lü et al. JSM 2018 July 2018 10 / 35



Spatially-constrained mixture model: DP-Potts mixture model DP-Potts mixture model

DP-Potts mixture model

To solve the issue, we introduce a spatial Potts model component:

M(θ) ∝ exp

β∑
i∼j

δz(θi)=z(θj)


with θ = (θ1, ..., θN ) and β the interaction parameter.

The DP mixture model is thus extended:
G ∼ DP(α,G0)

θ|M,G ∼M(θ)×
∏
iG(θi)

yi|θi ∼ F (yi|θi)

H. Lü et al. JSM 2018 July 2018 11 / 35



Spatially-constrained mixture model: DP-Potts mixture model DP-Potts mixture model

DP-Potts mixture model

Other spatially-constrained BNP mixture models + inference algorithms:
DP or PYP-Potts partition model + MCMC3

Hemodynamic brain parcellation (DP-Potts) + PARTIAL VB4

DP or PYP-Potts + Iterated Conditional Mode (ICM)5

Markov chain Monte Carlo (MCMC):

Advantage: asymptotically exact
Drawback: computationally
expensive

Variational Bayes (VB):

Advantage: much faster
Drawback: less accurate, no
theoretical guarantee

We propose a DP-Potts mixture model based on a general stick-breaking
construction that allows a natural Full VB algorithm enabling scalable

inference for large datasets and straightforward generalization to other priors.

3Orbanz & Buhmann (2008); Xu, Caron & Doucet (2016); Sodjo, Giremus, Dobigeon & Giovannelli (2017)
4Albughdadi, Chaari, Tourneret, Forbes, Ciuciu (2017)
5Chatzis & Tsechpenakis (2010); Chatzis (2013)
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Spatially-constrained mixture model: DP-Potts mixture model DP-Potts mixture model

DP-Potts: Stick breaking construction

Stick breaking construction of DP: G ∼ DP (α,G0)

θ∗k|G0 ∼ G0

τk|α ∼ B(1, α), k = 1, 2, . . .

πk(τ) = τk
∏k−1
l=1 (1− τl), k = 1, 2, . . .

G =
∑∞
k=1 πk(τ)δθ∗k

+

θi|G ∼ G
yi|θi ∼ F (yi|θi)

= Dirichlet Process Mixture Model (DPMM)
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Spatially-constrained mixture model: DP-Potts mixture model DP-Potts mixture model

DP-Potts: Stick breaking construction

Stick breaking construction of DPMM

θ∗k|G0 ∼ G0

τk|α ∼ B(1, α), k = 1, 2, . . .

πk(τ) = τk
k−1∏
l=1

(1− τl), k = 1, . . .

G =
∑∞
k=1 πk(τ)δθ∗k =⇒

θi|G ∼ G
yi|θi ∼ F (yi|θi)

Stick breaking construction of DPMM

θ∗k|G0 ∼ G0

τk|α ∼ B(1, α), k = 1, 2, . . .

πk(τ) = τk
k−1∏
l=1

(1− τl), k = 1, . . .

θi = θ∗k with probability πk(τ)

yi|θi ∼ F (yi|θi)
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Spatially-constrained mixture model: DP-Potts mixture model DP-Potts mixture model

DP-Potts: Stick breaking construction

Using assignment variables zi

DPMM view
θ∗k|G0 ∼ G0

τk|α ∼ B(1, α), k = 1, 2, . . .

πk(τ) = τk
k−1∏
l=1

(1− τl), k = 1, . . .

θi = θ∗k with probability πk(τ)

yi|θi ∼ F (yi|θi) =⇒

Mixture/Clustering view
θ∗k|G0 ∼ G0

τk|α ∼ B(1, α), k = 1, 2, . . .

πk(τ) = τk
k−1∏
l=1

(1− τl), k = 1, . . .

p(zi = k|τ) = πk(τ)

with zi = z(θi) = k when θi = θ∗k
yi|zi, θ∗ ∼ F (yi|θ∗zi)
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Spatially-constrained mixture model: DP-Potts mixture model DP-Potts mixture model

DP-Potts: Stick breaking construction
Using assignment variables zi

Stick breaking of DPMM
θ∗k|G0 ∼ G0

τk|α ∼ B(1, α), k = 1, 2, . . .

πk(τ) = τk
k−1∏
l=1

(1− τl)

p(zi = k|τ) = πk(τ)

yi|zi, θ∗ ∼ F (yi|θ∗zi)

Stick breaking of DP-Potts
θ∗k|G0 ∼ G0

τk|α ∼ B(1, α), k = 1, 2, . . .

πk(τ) = τk
k−1∏
l=1

(1− τl)

p(z|τ, β) ∝
∏
i

πzi(τ) exp(β
∑
i∼j

δzi=zj )

z = {z1, . . . , zN}

yi|zi, θ∗ ∼ F (yi|θ∗zi)

NB: Well defined for every stick breaking construction (
∞∑
k=1

πk = 1) :

e.g. Pitman-Yor (τk|α, σ) ∼ B(1− σ, α+ kσ)
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Inference using variational approximation

Inference using variational approximation

Clustering/ segmentation task:
Estimating Z

while parameters Θ unknown , eg. Θ = {τ , α,θ∗}

Bayesian setting

Access the intractable p(Z,Θ|y,Φ) approximate as q(z,Θ) = qz(z)qθ(Θ)

Variational Expectation-Maximization

Alternate maximization in qz and qθ (φ are hyperparameters) of the
Free Energy:

F(qz, qθ,φ) = Eqzqθ

[
log

p(y,Z,Θ|φ)
qz(z)qθ(Θ)

]
= log p(y|φ)−KL(qzqθ, p(Z,Θ|y,φ))
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Inference using variational approximation

DP-Potts Variational EM procedure

Joint DP-Potts (Gaussian) Mixture distribution

p(y,z, τ , α,θ∗|φ) =
N∏
j=1

p(yj |zj ,θ∗) p(z|τ , β)

∞∏
k=1

p(τk|α)

∞∏
k=1

p(θ∗k|ρk) p(α|s1, s2)

p(yj |zj , θ∗) = N (yj |µzj ,Σzj ) is Gaussian

p(z|τ , β) is a DP-Potts model

p(τk|α) is Beta B(1, α)

p(θ∗k|ρk) = NIW(µk,Σk|mk, λk,Ψk, νk) is Normal-inverse-Wishart

p(α|s1, s2) = G(α|s1, s2) is Gamma

Usual truncated variational posterior, qτk = δ1 for k ≥ K (eg. K = 40)

q(z,Θ) =
N∏
j=1

qzj (zj) qα(α)

K−1∏
k=1

qτk (τk)
K∏
k=1

qθ∗
k
(µk,Σk)

E-steps: VE-Z, VE-α, VE-τ and VE-θ∗

M-step: φ updating straightforward except for β
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Some image segmentation results

Some image segmentation results
Model validation and verification:

0 50 100 150 200 250

0

50

100

150

200

250

Original image

0 50 100 150 200 250

0

50

100

150

200

250

Segmentation by DP-Potts

Segmented image using DP-Potts model with β = 2.5.
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Some image segmentation results

Some image segmentation results

Convergence of the VB algorithm initialized by the k-means++ clustering:
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Some image segmentation results

Some image segmentation results
Segmentation results for Berkeley Segmentation Dataset:

Original image Segmentation by DP-Potts (K=40, β=0)

Segmentation by DP-Potts (K=40, β=2) Segmentation by DP-Potts (K=40, β=10)

The segmentation results obtained by DP-Potts model with β = 0, 1, 5.
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Some image segmentation results

Some image segmentation results
Segmentation with estimated β = 1.66
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Some image segmentation results

Quantitative evaluation of the segmentations
Probabilistic Rand Index on 154 color (RGB) images with ground truth (several) from
Berkeley dataset (1000 superpixels). But Manual ground truth segmentations are
subjective !

PRI results with DP-Potts model
Mean Median St.D.

K=10 71.48 72.54 0.1040
K=20 73.64 73.42 0.0935
K=40 75.33 76.47 0.0853
K=50 75.81 76.31 0.0873
K=60 76.55 77.12 0.0848
K=80 77.06 78.30 0.0835

PRI results from Chatzis 2013

Computation time : Berkeley 321x481 image reduced to 1000 superpixels takes 10-30 s on a PC with CPU
Intel(R) Core(TM) i7-5500U CPU 2.40GHz and 8GB RAM
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Conclusion and future work

Conclusion and future work

A general DP-Potts model and the associated VB algorithm were built.
The DP-Potts model was applied to image segmentation and tested on
different types of datasets.
Impact of the interaction parameter β on the final results is significant.
An estimation procedure was proposed for β

How does β influence the number of components?
Extend the model with other priors (Pitman-Yor process, Gibbs-type priors,
etc.).
Try other variational approximations (truncation-free)
Investigate theoretical properties of BNP priors under structural con-
straints (time, spatial) ....
... for other applications, such as discovery probabilities, etc.

H. Lü et al. JSM 2018 July 2018 24 / 35



Conclusion and future work

Conclusion and future work

A general DP-Potts model and the associated VB algorithm were built.
The DP-Potts model was applied to image segmentation and tested on
different types of datasets.
Impact of the interaction parameter β on the final results is significant.
An estimation procedure was proposed for β

How does β influence the number of components?
Extend the model with other priors (Pitman-Yor process, Gibbs-type priors,
etc.).
Try other variational approximations (truncation-free)
Investigate theoretical properties of BNP priors under structural con-
straints (time, spatial) ....
... for other applications, such as discovery probabilities, etc.

H. Lü et al. JSM 2018 July 2018 24 / 35



References

1 M. Albughdadi, L. Chaari, J.-Y. Tourneret, F. Forbes, and P. Ciuciu. A Bayesian non-parametric
hidden Markov random model for hemodynamic brain parcellation. Signal Processing, 135:132-
146, 2017.

2 S. P. Chatzis. A Markov random field-regulated Pitman-Yor process prior for spatially con-
strained data clustering. Pattern Recognition, 46(6): 1595-1603, 2013.

3 S. P. Chatzis and G. Tsechpenakis. The infinite hidden Markov random field model. IEEE
Trans. Neural Networks, 21(6):1004-1014, 2010.

4 F. Forbes and N. Peyrard. Hidden Markov Random Field Selection Criteria based on Mean
Field-like approximations. IEEE PAMI, 25(9):1089-1101, 2003

5 P. Orbanz and J. M. Buhmann. Nonparametric Bayesian image segmentation. International
Journal of Computer Vision, 77(1-3):25-45, 2008.

6 J. Sodjo, A. Giremus, N. Dobigeon, J.F. Giovannelli, A generalized Swendsen-Wang algo-
rithm for Bayesian nonparametric joint segmentation of multiple images, ICASSP, 2017.

7 R. Xu, F. Caron, and A. Doucet. Bayesian nonparametric image segmentation using a gen-
eralized Swendsen-Wang algorithm. ArXiv e-prints, February 2016.

Thank you for your attention!
contact: florence.forbes@inria.fr
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Job opportunity

Université Grenoble Alpes invites applications for a 2-year junior research
chair (post-doc) in Data Science for Life Sciences and Health

Starting in October 2018
Data science methodology and machine learning to Life Sciences and
Health
Application deadline: August, 31 2018
Website: https://data-institute.univ-grenoble-alpes.fr/
Contact: florence.forbes@inria.fr
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Stick breaking construction
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DP simulations with G0 being a standard normal distribution N (0, 1) and α = 1, 10
using the Stick-Breaking representation.
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Variational EM

General formulation, at iteration (r)

E-Z q
(r)
z (z) ∝ exp

(
E
q
(r−1)
θ

[log p(y, z,Θ|φ(r−1))]
)

E-Θ q
(r)
θ (Θ) ∝ exp

(
E
q
(r)
z

[log p(y,Z,Θ|φ(r−1))]
)

M-φ φ(r) = argmaxφEq(r)z q
(r)
θ

[log p(y,Z,Θ|φ)]

VE-Z, VE-α, VE-τ , and VE-θ∗

e.g. VE-Z step divides into N VE-Zj steps (qzj (zj) = 0 for zj > K)

qzj (zj) ∝ exp

(
Eqθ∗zj

[
log p(yj |θ∗zj )

]
+ Eqτ

[
log πzj (τ )

]
+ β

∑
i∼j

qzi(zj)

)
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Estimation of β

M-β step: involves p(z|τ , β) = K(β, τ )−1 exp(V (z; τ , β))

with V (z; τ , β) =
∑
i log πzi(τ ) + β

∑
i∼j δ(zi=zj)

β̂ = arg max
β

Eqzqτ
[
log p(z|τ ;β)

]
= arg max

β
Eqzqτ

[
V (z; τ , β)

]
− Eqτ

[
logK(β, τ )

]
Two difficulties

(1) p(z|τ , β) is intractable (normalizing constant K(β, τ ), typical of MRF)
(2) it depends on τ (typical of DP)

Two approximations

(1) "standard" Mean Field like approximationa

(2) Replace the random τ by a fixed τ̃ = Eqτ [τ ]

aForbes & Peyrard 2003
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Approximation of p(z|τ ; β)

p(z|τ , β) ≈ q̃z(z|β) =
N∏
j=1

q̃zj (zj |β)

q̃zj (zj = k|β) =
exp(log πk(τ̃ ) + β

∑
i∈N(j) qzi(k))

∞∑
l=1

exp(log πl(τ̃ ) + β
∑
i∈N(j) qzi(l))

and τ̃ = Eqτ [τ ]

β is estimated at each iteration by setting the approximate gradient to 0

Eqzqτ
[
∇βV (z; τ , β)

]
=

K∑
k=1

∑
i∼j

qzj (k) qzi(k)

∇βEqτ
[
logK(β, τ )

]
= Ep(z|τ ,β)qτ

[
∇βV (z; τ , β)

]
≈

K∑
k=1

∑
i∼j

q̃zj (k|β) q̃zi(k|β)
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Some image segmentation results
Segmentation results for medical images: all hyperparameters fixed

Original image Segmentation by DP-Potts (K=40, β=0)

Segmentation by DP-Potts (K=40, β=2) Segmentation by DP-Potts (K=40, β=10)

The segmentation results obtained by DP-Potts model with β = 0, 1, 5.
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Some image segmentation results
Segmentation with estimated hyperparameters (β = 0.75)
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Some image segmentation results
Segmentation with estimated β = 0.96 (pixels with partial volume)
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Some image segmentation results
Segmentation results for SAR images:

Original image Segmentation by DP-Potts (K=40, β=0) Segmentation by DP-Potts (K=40, β=2) Segmentation by DP-Potts (K=40, β=10)

Original image Segmentation by DP-Potts (K=40, β=0) Segmentation by DP-Potts (K=40, β=2) Segmentation by DP-Potts (K=40, β=10)

The segmentation results obtained by DP-Potts model with β = 0, 1, 5.
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Some image segmentation results

Segmentation results with estimated β

β = 1.11 β = 1.02
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