
HAL Id: hal-01941486
https://hal.science/hal-01941486

Submitted on 1 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Null Controllability of the Lotka-Mckendrick
System

Debayan Maity

To cite this version:
Debayan Maity. On the Null Controllability of the Lotka-Mckendrick System. Mathematical Control
and Related Fields, 2019, �10.3934/mcrf.2019048�. �hal-01941486�

https://hal.science/hal-01941486
https://hal.archives-ouvertes.fr


ON THE NULL CONTROLLABILITY OF THE LOTKA-MCKENDRICK
SYSTEM

DEBAYAN MAITY

Abstract. In this work, we study null-controllability of the Lotka-McKendrick system of
population dynamics. The control is acting on the individuals in a given age range. The main
novelty we bring in this work is that the age interval in which the control is active does not
necessarily contain a neighbourhood of 0. The main result asserts the whole population can be
steered into zero in large time. The proof is based on final-state observability estimates of the
adjoint system with the use of characteristics.
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1. Introduction

In this article, we study the null-controllability of an infinite dimensional linear system de-
scribing the dynamics of an age-structured single species population. To be specific, we study
null-controllability of the classical Lotka-McKendrick system. Let, p(t, a) be the distribution of
individuals at age a > 0 and t > 0. Let a† denotes the highest age attained by the individuals
in the population and T be a positive constant. Let β(a) > 0 be the natural fertility rate
and µ(a) > 0 denotes the natural death-rate of the individuals at age a > 0. The system in
consideration, already studied in [4] and [5], is described by the system

∂p

∂t
(t, a) +

∂p

∂a
(t, a) + µ(a)p(t, a) = m(a)u(t, a), (t, a) ∈ (0, T )× (0, a†),

p(t, 0) =

∫ a†

0

β(a)p(t, a) da, t ∈ (0, T )

p(0, a) = p0(a), a ∈ (0, a†),

(1.1)

where u is the control function, m = χ(a1,a2) is the characteristic function of the interval (a1, a2)
(0 6 a1 < a2 6 a†) and p0 is the initial population density.

We assume that the fertility rate β and the mortality rate µ satisfy the following conditions:

(H1) β ∈ L∞(0, a†), β > 0 for almost every a ∈ (0, a†).
(H2) µ ∈ L1[0, a∗] for every a∗ ∈ (0, a†), µ > 0 for almost every a ∈ (0, a†).

(H3)

∫ a†

0

µ(a) da = +∞.

These conditions have already been used in [4, 5]. For the biological significance of the hy-
potheses, we refer to [11].
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Our main result regarding the null controllability of the system (1.1) is the following

Theorem 1.1. Assume that β and µ satisfy the the conditions (H1) − (H3). Furthermore,
suppose that the fertility rate β is such that

β(a) = 0 for all a ∈ (0, ab). (1.2)

for some ab ∈ (0, a†) and that ab > a1. Let us recall that m is a characteristic function of the
interval (a1, a2) with 0 6 a1 < a2 6 a†. Then for every T > a1 + max{a1, a† − a2} and for
every p0 ∈ L2(0, a†) there exists a control u ∈ L2((0, T )× (0, a†)) such that the solution p of the
system (1.1) satisfies

p(T, a) = 0 for all a ∈ (0, a†). (1.3)

Remark 1.2. If a1 = 0 and a2 < a†, then from Theorem 1.1 we obtain (1.3) holds for T >
a† − a2. This result was obtained in [5, Theorem 1.1].

Let us now mention some related works from the literature. The null controllability results
of the system (1.1) were first obtained by Barbu, Iannelli and Martcheva [4]. They considered
the case when the control is supported in the interval (0, a2), i.e when a1 = 0. The main result
of [4] asserts that the system can be steered to any steady state, in large time except for a
small interval of ages near zero. Recently, Hegoburu, Magal and Tucsnak [5] considered the
system (1.1) with distributed control supported in (0, a2). They proved that the restriction of
[4] is unnecessary, i.e., the whole population can be steered into a steady state, provided the
individuals do not reproduce at the age near zero. Moreover, they also showed that if initial
and final states are positive then the control can be chosen such that the positivity of the state
trajectory is preserved.

The main novelty we bring in this work, in contrast to the results of [4, 5], is that we do not
need to apply control for arbitrary low ages. More precisely, in our case the control is active for
ages a ∈ (a1, a2), with arbitrary a1 ∈ [0, a†) and a2 ∈ (a1, a†], provided that supp β∩ [0, a1] = ∅.
In other words, we control before the individuals start to reproduce. Moreover, we show our
controllability result applies to individuals of all ages, without needing to exclude ages in a
neighbourhood of zero. The methodology we employ in proving this result is quite classical.
We exploit the fact that null controllability of a linear system is equivalent to the final-state
observability inequality of the adjoint system.

Before ending this introduction let us mention some controllability results regarding popu-
lation dynamics model (Lotka-McKendrik type) with spatial diffusion. Ainseba and Aniţa [2]
considered the case when the control acts in a spatial subdomain ω and for all ages and initial
data close to the target trajectory. In [3], they proved a similar result when the control acts in
a spatial subdomain and only for small ages. In [1], Ainseba proved null controllability except
for a small interval of ages near zero, with control acting everywhere in the ages but localized
in a spatial subdomain. Hegoburu and Tucsnak [6] proved that this restriction is not necessary,
i.e, the whole population can be driven to zero. In their case, the control is localized in space
variable but active for all ages. Recently, Maity, Tucsnak and Zuazua showed [8] that the same
result can be achieved by means of control localized in space variable as well as with respect to
age, not necessarily containing a neighbourhood of zero.

The outline of the paper is as follows. In Section 2 we first recall some basic facts about
Lotka-McKendrick semigroup. Next, we define the adjoint of the associated semigroup. In
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Section 3, we prove the final-state observability for the adjoint system. As a consequence we
get the proof of the main result.

2. Lotka-McKendrick Semigroup and its Adjoint.

In this section, with no claim of originality, we recall some existing results on the Lotka-
McKendrick Semigroup and its adjoint. We define the operator A : D(A) 7→ L2(0, a†) defined
by

D(A) =
{
ϕ ∈ L2(0, a†) | ϕ is locally absolutely continuous on [0, a†),

ϕ(0) =

∫ a†

0

β(a)ϕ(a) da, −dϕ
da
− µϕ ∈ L2(0, a†)

}
,

Aϕ = −dϕ
da
− µϕ. (2.1)

We introduce the control operator B ∈ L(L2(0, a†)) defined by

Bu(t, ·) = mu(t, ·).
With the above notation, the system (1.1) can be rewritten as

d

dt
p(t) = Ap(t) +Bu(t), t ∈ [0, T ], p(0) = p0. (2.2)

Let us first recall some well posedness result of the above system.

Lemma 2.1. The operator (A,D(A)) is the infinitesimal generator of a strongly continuous
semigroup (etA)t>0 on L2(0, a†).

Proof. For a proof of this lemma we refer to Kappel and Zhang [7, Theorem 2.1] or Song et. al
[9, Theorem 4]. �

As already mentioned in the introduction, we are going to use the duality between null
controllability of a linear system and final-time observability of the associated adjoint system.
Thus it is important to determine the adjoint of the linear operator A. To this aim, we first
consider the unbounded operator (A0,D(A0)) defined by

D(A0) =
{
ϕ ∈ L2(0, a†) | ϕ is locally absolutely continuous on [0, a†),

lim
a→a−†

ϕ(a) = 0,
dϕ

da
− µϕ ∈ L2(0, a†)

}
,

A0ϕ =
dϕ

da
− µϕ. (2.3)

We prove the following lemma

Lemma 2.2. The operator (A0, D(A0)) is the infinitesimal generator of a strongly continuous
semigroup

(
etA0

)
t>0

on L2(0, a†).
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Proof. We first verify A0 is dissipative. For ϕ ∈ D(A0), we have

(A0ϕ, ϕ) = lim
a→a−†

∫ a

0

(
dϕ

da
− µϕ

)
ϕ = lim

a→a−†

ϕ2(a)

2
− ϕ2(0)

2
− lim

a→a−†

∫ a

0

µϕ2 6 0.

Next, for any f ∈ L2(0, a†) we consider the following problem

ϕ− dϕ

da
+ µϕ = f, lim

a→a−†
ϕ(a) = 0.

Then ϕ solves the above equation if and only if

ϕ(a) = exp

(
a+

∫ a

0

µ(τ) dτ

)(∫ a†

a

e−sf(s)exp

(
−
∫ s

0

µ(τ) dτ

)
ds

)
.

We can easily verify that ϕ ∈ D(A0) and hence A0 generates a C0-semigroup on L2(0, a†). �

We now define the adjoint of the unbounded operator A

Proposition 2.3. The adjoint of (A,D(A)) in L2(0, a†) is defined by

D(A∗) = D(A0), A∗ψ =
dψ

da
− µψ + βψ(0). (2.4)

Proof. For any ϕ ∈ D(A) and ψ ∈ D(A0) we have

〈Aϕ,ψ〉L2(0,a†)
= lim

a→a−†

∫ a

0

− (ϕ′(s) + µ(s)ϕ(s))ψ(s) ds

= lim
a→a−†

∫ a

0

(ψ′(s)− µ(s))ϕ(s) ds+ ϕ(0)ψ(0)− lim
a→a−†

ϕ(a)ψ(a)

= lim
a→a−†

∫ a

0

(ψ′(s)− µ(s))ϕ(s) ds+

∫ a†

0

β(s)ψ(0)ϕ(s).

This yields,

| 〈Aϕ,ψ〉L2(0,a†)
| 6 C‖ϕ‖X and 〈Aϕ,ψ〉X = 〈ϕ,A∗ψ〉X for all ϕ ∈ D(A), ψ ∈ D(A0).

Therefore D(A0) ⊂ D(A∗). Now we prove the reverse inclusion. Let λ > 0 be such that

F (λ) =

∫ a†

0

e−λaβ(a)exp

(
−
∫ a

0

µ(τ) dτ

)
da 6= 1.

Define G : L2(0, a†) 7→ L2(0, a†) by ϕ = Gf where ϕ solves

λϕ− dϕ

da
+ µϕ− βϕ(0) = f, lim

a→a−†
ϕ(a) = 0. (2.5)

ϕ solves the above equation if and only if

ϕ(a) = exp

(
λa+

∫ a

0

µ(τ) dτ

)
× (∫ a†

a

e−λs
(
f(s) + Vλ,fβ(s)

)
exp

(
−
∫ s

0

µ(τ) dτ

)
ds

)
,
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where

Vλ,f = (1− F (λ))−1
(∫ a†

0

e−λsf(s)exp

(
−
∫ s

0

µ(τ) dτ

)
ds

)
.

We can easily check that ϕ ∈ D(A0).
Let us assume that ψ ∈ D((λI − A)∗). Then there exists f ∈ L2(0, a†) such that∫ a†

0

ψ(λI − A)ϕ =

∫ a†

0

fϕ for all ϕ ∈ D(A).

Let η = Gf. Then∫ a†

0

fϕ = lim
a→a−†

∫ a

0

(
λη − dη

da
+ µη − βη(0)

)
ϕ = lim

a→a−†

∫ a

0

η

(
λϕ+

dϕ

da
+ µϕ

)
=

∫ a†

0

η(λI − A)ϕ.

Therefore ∫ a†

0

(ψ − η)(λI − A)ϕ = 0, for all ϕ ∈ D(A).

In particular, if we choose ϕ = (λI − A)−1(ψ − η) we obtain∫ a†

0

|ψ − η|2 = 0.

The invertibility of the operator (λI −A) follows from Song et. al [9, Theorem 1(i)]. Since η ∈
D(A0), we get ψ ∈ D(A0) and ψ solves (2.5). This completes the proof of the proposition. �

3. Observability inequality.

In this section we prove Theorem 1.1. With the notation introduced in Section 2, Theorem 1.1
can be stated as : the pair (A,B) is null controllable in time T > a1 + max{a1, a† − a2}. By
classical duality argument, the null controllability of the pair (A,B) in time T is equivalent
to the final-state observability of the pair (A∗, B∗) in time T (see for instance [10, Theorem
11.2.1]). In the remaining part of this section, we show that the pair (A∗, B∗) is final-state
observable in time T > a1 + max{a1, a† − a2}.

For t > 0 and q0 ∈ L2(0, a†), we set

q(t) =
(
etA
)∗
q0, (3.1)

where A is defined in (2.1). According to Proposition 2.3, q satisfies the following system:
∂q

∂t
− ∂q

∂a
+ µ(a)q(t, a)− β(a)q(t, 0) = 0, (t, a) ∈ (0, T )× (0, a†),

q(t, a†) = 0, t ∈ (0, T ),

q(0, a) = q0(a), a ∈ (0, a†).

(3.2)

In view of [10, Theorem 11.2.1], to prove Theorem 1.1 it is enough to prove the following
theorem:
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Theorem 3.1. Under the assumptions of Theorem 1.1, for every T > a1 + max{a1, a† − a2}
and for every q0 ∈ D(A∗) the solution q of the system (3.2), satisfies∫ a†

0

q2(T, a) da 6 C

∫ T

0

∫ a2

a1

q2(t, a) dadt. (3.3)

Before we start the proof of the above theorem, let us briefly describe the essential steps. We
rewrite the system (3.2) as follows:

d

dt
q(t) = A0q(t) + V (t), q(0) = q0, (3.4)

where A0 is defined in (2.3) and

V (t, a) = β(a)q(t, 0), (t, a) ∈ (0, T )× (0, a†). (3.5)

With Duhamel’s formula, it is easy to see that

‖q(T, ·)‖2L2(0,a†)
6 C

(
‖eTA0q0‖2L2(0,a†)

+

∫ T

0

q2(t, 0) dt

)
, (3.6)

with some constant C depending only on T. Thus to prove (3.3), we derive appropriate upper
bounds for each of the terms in the right hand side of the above estimate.

Estimate of ‖eTA0q0‖2L2(0,a†)
: Recall that the operator A0 is defined in (2.3). For q0 ∈

L2(0, a†), let us set

z(t) = etA0q0, t > 0. (3.7)

Then z solves the following system:
∂z

∂t
− ∂z

∂a
+ µ(a)z(t, a) = 0, (t, a) ∈ (0, T )× (0, a†)

z(t, a†) = 0, t ∈ (0, T ),

z(0, a) = q0(a), a ∈ (0, a†).

(3.8)

We prove the following proposition:

Proposition 3.2. Let us assume that 0 6 a1 < a2 6 a†. Then for every T > max {a1, a† − a2} ,
there exits C > 0 such that, for every q0 ∈ D(A0), the solution z of the system (3.20), satisfies∫ a†

0

z2(T, a) da 6 C

∫ T

0

∫ a2

a1

z2(t, a) dadt. (3.9)

Proof. We set

z̃(t, a) = e
−
∫ a

0

µ(τ) dτ
z(t, a), (t, a) ∈ (0, T )× (0, a†).

Then z̃ satisfies the adjoint of a transport equation:
∂z̃

∂t
− ∂z̃

∂a
= 0, (t, a) ∈ (0, T )× (0, a†)

z̃(t, a†) = 0, t ∈ (0, T ),

z̃(0, a) := z̃0(a), a ∈ (0, a†),

(3.10)
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with z̃0(a) = e−
∫ a
0 µ(τ) dτq0. Therefore z̃ is given by

z̃(t, a) =

{
z̃0(a+ t) if t 6 a† − a,
0 if t > a† − a.

(3.11)

With the above explicit expression, for T > max {a1, a† − a2}, we have

a†0 a1 a2

a1

a† − a2

T

a1 a2 a†

a1

T

a1 < a† − a2 a1 > a† − a2

Figure 1. Minimal time required for observability inequality to hold for the
transport equation. For both cases, q̃(T, ·) = 0 on the purple region.

∫ a†

0

z̃2(T, a) da 6 C

∫ T

0

∫ a2

a1

z̃2(t, a) dadt. (3.12)

which is the standard observability estimate for the one dimensional transport equation. Let
us briefly explain how one can obtain the estimate (3.12).

• First of all, since T > max {a1, a† − a2} , we can always find a∗ < a2 such that z̃(T, a) = 0

for all a ∈ (a∗, a2). Thus we need to estimate

∫ ã

0

z̃2(T, a) da.

• Next, for a ∈ (0, a∗) we note that the trajectory γ(s) = (T − s, a + s), s ∈ [0, T ]
(or equivalently the backward characteristics starting from (T, a)) always enters the
observation region (a1, a2)× (0, T ) (see Fig. 1). Since z̃ is constant along the trajectory

γ, one can easily estimate

∫ ã

0

z̃2(T, a) da by the right hand side of (3.12).

Finally (3.9) follows from (3.12). Indeed using the characteristics, we also have

z(T, a) = 0 for all a ∈ (a∗, a†).

Therefore, using (3.12) we obtain

∫ a†

0

z2(T, a) da =

∫ a∗

0

z2(T, a) da 6

e2
∫ a∗

0

µ(τ) dτ

∫ a∗

0

z̃2(T, a) da
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6 C

∫ a†

0

z̃2(T, a) da 6 C

∫ T

0

∫ a2

a1

z̃2(t, a) dadt 6 C

∫ T

0

∫ a2

a1

z2(t, a) dadt. (3.13)

This completes the proof of the proposition. �

Estimate of q(t, 0) : In the following proposition, we provide an estimate of q(t, 0) :

Proposition 3.3. Let us assume the hypothesis of Theorem 1.1, T > a1 and η ∈ (a1, T ). Then
there exists a constant C > 0 such that for every q0 ∈ D(A∗) the solution q of the system (3.2),
satisfies ∫ T

η

q2(t, 0) dt 6 C

∫ T

0

∫ a2

a1

q2(t, a) dadt. (3.14)

Proof. We set

q̃(t, a) = e
−
∫ a

0

µ(τ) dτ
q(t, a). (3.15)

Since β(a) = 0 for all a ∈ (0, ab), q̃ satisfies

∂q̃

∂t
− ∂q̃

∂a
= 0 for all (t, a) ∈ (0, T )× (0, ab). (3.16)

We are going to estimate q̃(t, 0). We exploit the fact that for (t, a) ∈ (0, T )× (0, ab), q̃ remains
constant along the characteristics γ(s) = (t − s, s), s 6 t 6 T (or equivalently the backward
characteristic starting from (t, 0)). If T > a1, the trajectory γ(s) always reaches the observation
region (0, T )× (a1, a2) (see the green region in Fig. 2). Without loss of generality, let us assume
that T > ab, η < ab and a2 6 ab.

a1 ab

η
a1

a†

T

Figure 2. An illustration of estimate of q(t, 0) with a2 = ab.

Case 1: Let us fix t ∈ [ab, T ]. We define

w(s) = q̃(s, t− s), s ∈ (t− ab, t). (3.17)
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Then
∂w

∂s
= 0 for all s ∈ (t − ab, t). In particular, w(s) = constant for all s ∈ (t − ab, t). Since

a1 < ab we have

w(t) =
1

ab − a1

∫ t−a1

t−ab
w(s) ds.

Therefore,

q̃(t, 0) =
1

ab − a1

∫ t−a1

t−ab
q̃(s, t− s) ds =

1

ab − a1

∫ ab

a1

q̃(t− s, s) ds.

Integrating with respect to t over [ab, T ] we obtain∫ T

ab

q̃2(t, 0) dt 6 C

∫ T

ab

∫ ab

a1

q̃2(t− s, s) dsdt = C

∫ ab

a1

∫ T

ab

q̃2(t− s, s) dtds

= C

∫ ab

a1

∫ T−s

ab−s
q̃2(τ, s) dτds 6 C

∫ T

0

∫ ab

a1

q̃2(t, a) dadt. (3.18)

Case 2: Let us fix t ∈ (η, ab). We define

w1(s) = q̃(s, t− s), s ∈ (0, t).

Then
∂w1

∂s
= 0 for all s ∈ (0, t). In particular, w(s) = constant for all s ∈ (0, t). Since t > a1

we obtain

w(t) =
1

t− a1

∫ t−a1

0

w(s) ds.

Therefore,

q̃(t, 0) =
1

t− a1

∫ t−a1

0

q̃(s, t− s) ds =
1

t− a1

∫ t

a1

q̃(t− s, s) ds.

Integrating with respect to t over [η, ab] we get∫ ab

η

q̃2(t, 0) dt 6
1

(η − a1)2
∫ ab

η

∫ t

a1

q̃2(t− s, s) dsdt 6 C

∫ ab

0

∫ t

a1

q̃2(t− s, s) dsdt

= C

∫ ab

a1

∫ ab

s

q̃2(t− s, s) dtds = C

∫ ab

a1

∫ ab−s

0

q̃2(τ, s) dτds 6 C

∫ T

0

∫ ab

a1

q̃2(t, a) dadt. (3.19)

Combining, (3.18) and (3.19) we obtain∫ T

η

q̃2(t, 0) dt 6 C

∫ T

0

∫ a2

a1

q̃2(t, a) dadt.

Note that, q̃(t, 0) = q(t, 0). Thus from the above estimate we clearly get (3.14).
�

Now, we are in a position to prove Theorem 3.1 and consequently our main result in Theo-
rem 1.1.
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Proof of Theorem 3.1. Since T > a1 + max{a1, a† − a2}, we can choose η > a1 such that
T − η > max {a1, a† − a2}. For t ∈ (η, T ) and a ∈ (0, a†), we define

V (t, a) = β(a)q(t, 0).

Since q(·, 0) ∈ L2(0, T ), we have that V ∈ L2(η, T ;L2(0, a†)). Then q satisfies
∂q

∂t
(t, a)− ∂q

∂a
(t, a) + µ(a)q(t, a) = V (t, a), (t, a) ∈ (η, T )× (0, a†),

q(t, a†) = 0, t ∈ (0, T ).
(3.20)

Therefore

q(t, a) = e(t−η)A0qη(a) +

∫ t

η

e(t−s)A0V (s) ds, (3.21)

where qη = q(η, ·) and A0 is the unbounded operator defined as in (2.3). The above represen-
tation formula for q yields∫ a†

0

q2(T, a) da 6 C

(∥∥e(T−η)Aqη∥∥2L2(0,a†)
+

∫ T

η

q2(t, 0) dt

)
. (3.22)

Since T − η > max {a1, a† − a2} , using Proposition 3.2 we have∥∥e(T−η)Aqη∥∥2L2(0,a†)
6 C

∫ T

η

∫ a2

a1

q2(t, a) dadt 6 C

∫ T

0

∫ a2

a1

q2(t, a) dadt.

On the other hand, since T > a1, applying Proposition 3.3 we get∫ T

η

q2(t, 0) dt 6 C

∫ T

0

∫ a2

a1

q2(t, a) dadt.

Finally combining the above two estimates together with (3.22), we obtain∫ a†

0

q2(T, a) 6 C

∫ T

0

∫ a2

a1

q2(t, a) dadt. (3.23)

This completes the proof of the theorem. �
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Institut de Mathématiques, Université de Bordeaux, Bordeaux INP, CNRS F-33400 Talence,
France

E-mail address: debayan.maity@u-bordeaux.fr


	1. Introduction
	2. Lotka-McKendrick Semigroup and its Adjoint.
	3. Observability inequality.
	References

