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ABSTRACT
In today’s cryptocurrencies, Hashcash proof of work is the most

commonly-adopted approach to mining. In Hashcash, when a miner

decides to add a block to the chain, she has to solve the difficult

computational puzzle of inverting a hash function. While Hashcash

has been successfully adopted in both Bitcoin and Ethereum, it

has attracted significant and harsh criticism due to its massive

waste of electricity, its carbon footprint and environmental effects,

and the inherent lack of usefulness in inverting a hash function.

Various other mining protocols have been suggested, including

proof of stake, in which a miner’s chance of adding the next block

is proportional to her current balance. However, such protocols

lead to a higher entry cost for new miners who might not still have

any stake in the cryptocurrency, and can in the worst case lead to

an oligopoly, where the rich have complete control over mining.

In this paper, we propose Hybrid Mining: a new mining protocol

that combines solving real-world useful problems with Hashcash.

Our protocol allows new miners to join the network by taking part

in Hashcash mining without having to own an initial stake. It also

allows nodes of the network to submit hard computational prob-

lems whose solutions are of interest in the real world, e.g. protein

folding problems. Then, miners can choose to compete in solving

these problems, in lieu of Hashcash, for adding a new block. Hence,

Hybrid Mining incentivizes miners to solve useful problems, such

as hard computational problems arising in biology, in a distributed

manner. It also gives researchers in other areas an easy-to-use tool

to outsource their hard computations to the blockchain network,

which has enormous computational power, by paying a reward to

the miner who solves the problem for them. Moreover, our protocol

provides strong security guarantees and is at least as resilient to

double spending as Bitcoin.
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transactions; •Computingmethodologies→Distributed com-
puting methodologies;
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1 INTRODUCTION AND PRELIMINARIES
The aim of this paper is to develop a blockchain mining protocol

that can be exploited for distributed problem solving. In this section,

we review basics of blockchain, mining, and distributed problem

solving.

1.1 Blockchain and Mining
Bitcoin. Bitcoin was the first cryptocurrency that provided a pro-

tocol to achieve consensus about the ownership of funds, without

a need for relying on a central governing authority or bank [29].

This decentralization was very well-received and, at the time of

writing, Bitcoin is the largest cryptocurrency in the world with a

market cap of more than 100 billion dollars [10].

Double Spending. The most basic attack in every electronic mon-

etary system is that of double spending. In the real world, units of

currency cannot be duplicated and hence one can pay for goods and

services by simply transferring a banknote or coin to the recipient.

However, in a digital setting, a coin is just a file or a collection of

data and one can copy it and send each copy to a different recipi-

ent, effectively creating money out of thin air. A solution to avoid

this problem, as employed by Bitcoin, is to have every transaction

broadcast to the entire currency network [29]. This way, every par-

ticipant in the network would reject a transaction that is spending

the same coin for a second time. However, the problem of double

spending is still not solved entirely. If one creates two transactions,

sending the same coin to different recipients, and publishes both

at the same time in different parts of the world, then due to net-

work latency, some nodes of the network would receive the first

transaction and reject the second one as double spending, while

other nodes might do the opposite. Bitcoin has an elegant way of

ensuring that the entire network reaches a consensus about the

results of transactions. This protocol is called the Blockchain [29].

Blockchain. In a cryptocurrency, a blockchain is a distributed

ledger of transactions. The transactions are grouped into fixed-

size blocks. The chain starts with a predefined block and each

block has a pointer to its preceding block. Hence, a blockchain is

effectively a singly-linked list of blocks [37]. Every node of the

network keeps a local copy of the blockchain. To ensure that all

local copies eventually agree on the contents of the blockchain, one

cannot simply add new blocks as she wishes. Instead, adding blocks

is regulated by a process called mining [29, 37].

Mining. Mining is the process by which a node of the network is

selected and permitted to add a new block to the blockchain [19, 37].

The selected node forms a block using the valid transactions she has

received. She then broadcasts the block to the entire network. Every

other node of the network checks two conditions: (i) whether all

the transactions in the broadcast block are valid, and (ii) whether

the broadcaster had the right to add a new block according to

the mining protocol. If both checks pass, then the node adds this

block to the end of her local copy of the blockchain. If the mining

protocol always chooses exactly one node for adding the new block,

then there will be no conflicts and the entire network would be in

consensus about the contents of the blockchain. However, in Bitcoin

and other cryptocurrencies, the participants are anonymous, hence
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Figure 1: A Fork in the Blockchain: The two blocks B and C
are both announced as valid successors to A. However, the
chain containing B has become longer and is now the con-
sensus chain. Hence,C and its successors will be dropped by
the network nodes.

a protocol cannot simply point to the next person who is allowed

to add a block.

Proof of Work. Bitcoin’s solution to the problem above is to use a

Proof of Work (PoW) protocol. In a PoW, a hard computational prob-

lem is chosen and one can add a new block as soon as she succeeds

in solving the problem [4]. In case of Bitcoin, the used protocol

is Hashcash [3], i.e. one has to find a nonce value, such that the

result of applying the SHA256 hash function to a tuple consisting

of her public key, the hash of the previous block, the hash of the

current block that is being added, and this nonce value, is at most a

predefined amount
1
. Given the one-way property of hash functions,

the only strategy for finding a nonce, and hence getting the right to

add a new block, is to repeatedly try randomly-generated nonces

until one of them solves the problem. This process is called Proof

of Work mining and the nodes taking part in finding nonces are

called miners. When a miner finds the right nonce, she broadcasts

the new block, together with the nonce. Then, every other node

of the network can perform the two previously-mentioned checks

and add the block to her local copy of the blockchain [29].

Ensuring Consensus. It is possible that two miners succeed in

solving the Hashcash problem at approximately the same time. If

this happens, then two new blocks would be broadcast, and network

latency leads to a fork in the blockchain, i.e. a situation in which

some of the nodes have added the first new block to their local copy,

and others have added the second one. In such cases, the blockchain

protocol considers both chains to be valid and miners can choose

the chain they want to extend. However, as soon as one of the

chains becomes longer than the other ones, the protocol dictates

that the longest chain is the consensus chain and all other chains

will be dropped by everyone in the network [29] (See Figure 1).

The probabilistic nature of the mining process guarantees that one

of the chains would eventually get longer [18], and therefore the

whole network would reach consensus after a few blocks
2
.

Incentives for Mining. PoW mining requires considerable com-

putational power and electricity usage. Hence, the process is not

free for the miners. Therefore, there should be compensations in

place to ensure that network participants are incentivized to mine.

Bitcoin uses two incentives for the miners [29]:

• Block reward.Anyminer who successfully adds a block to the

blockchain gets a predefined reward. The reward is currently

1
In Bitcoin, this predefined amount is set in a manner that ensures a new block is

added roughly every 10 minutes.

2
In Bitcoin, and consequently in our approach, the length of a chain is not the number

of blocks in that chain, but the sum of the hardnesses of the PoW problems that have

been solved in that chain.
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Figure 2: Bitcoin network’s estimated hash rate (in trillions
of hashes per second). The data is provided in [34, 36]. Note
that the graph is in logarithmic scale.

set at 12.5 bitcoins, which is roughly equal to 75000 dollars at

the time of writing. Hence, in Bitcoin, block rewards are also

used as the mechanism for creating new units of currency.

• Transaction Fees. While block rewards incentivize miners to

add new blocks to the blockchain, the miners might choose

to add empty blocks, i.e. blocks that contain no transactions.

There should be an additional incentive for the miners in

order to ensure that a transaction is eventually picked up

by the miners and added to the blockchain. Bitcoin achieves

this using transaction fees. Each transaction in Bitcoin can

set a reward, or transaction fee, that is paid to the miner who

puts the transaction in a block and adds it to the blockchain.

Computational Power of the Bitcoin Network. The rising price

and popularity of Bitcoin has turned mining into a lucrative and

highly-specialized industry. The computational (mining) power

of the Bitcoin network has been increasing exponentially since

its inception. Figure 2 shows the growth in the overall hashrate

of the Bitcoin network, i.e. the estimated number of hashes that

are computed every second. Note that this figure is in logarithmic

scale. Already in 2013, Bitcoin network’s computational power was

reported to be more than 250 times the computational power of the

world’s 500 fastest supercomputers combined [9].

Specialized Mining Hardware. While anyone can take part in

mining using their personal computer, the overall computational

power of the bitcoin network is vast and the chances of finding a

new block using everyday hardware are slim. Therefore, many spe-

cialized hardware modules have been designed for mining. These

hardware modules are optimized for the single task of inverting

SHA256 hash functions and are extremely efficient [35].

Pool Mining. Given the hardness of mining, and in order to de-

crease the variance in their revenue, miners often collaborate in

pools [7, 33]. A pool is basically a group of miners who solve PoW

problems using the same public key and share the rewards among

themselves. Usually, each pool has a manager who receives all the

rewards and divides them among the miners based on their overall

contribution. The contribution of a miner is often assessed by par-

tial proofs of work, i.e. proofs of work on the same problem, but

with a lower difficulty.
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Figure 3: The growing energy consumption of Bitcoin min-
ing. The solid line shows the estimated energy consumption
and the dotted line is the minimum possible consumption.
The graph above is adapted from [12, 13].

Criticisms and Alternatives. There are reports that the Bitcoin
PoW mining uses more electricity than the entire country of Ire-

land [30]. Moreover, Bitcoin mining’s energy consumption has

been steadily increasing [12]. See Figure 3. On the other hand, the

task of inverting a hash function is inherently useless, and there

is no justification for it other than the incentives given by the

Bitcoin protocol. Moreover, PoW has considerable environmental

consequences and a huge carbon footprint [17] and has been called

an environmental disaster by the Bank for International Settle-

ments [6]. Therefore, the process of mining in Bitcoin has been

harshly criticized andmany other alternative mining protocols have

been suggested in order to reduce the energy usage and carbon

footprint of blockchains [16, 39]. Two of the most notable examples

are proof of stake [21] and proof of space [14]. In proof of stake,

one’s chance of getting selected as the miner to add the next block

is proportional to the number of cryptocurrency units in her posses-

sion, and proof of space replaces energy-consuming computations

in PoW with memory-consuming computations.

Obstacles to Adoption. There has been significant resistance against
adoption of new mining protocols, especially in Bitcoin [15]. There

are two major reasons for this: (i) some protocols, such as proof

of stake, favor the richer members of the network [32] and are

considered to be more prone to becoming centralized, i.e. leading to

a situation in which a few members of the network have complete

control over mining, and (ii) many miners have already invested

significant amounts of funds into acquiring specialized PoWmining

hardware [35] and are not willing to suddenly switch away from it

to other specialized hardware, e.g. for proof of space.

1.2 Distributed Problem Solving
In this section, we provide a short review of distributed problem

solving approaches.

Distributed Problem Solving. There are many intractable prob-

lems in various fields of science, for example computational biol-

ogy [11], that lack efficient algorithms and finding their solutions

takes decades of time on a normal computer. A very costly and

non-scalable approach to solving such problems is to use supercom-

puters with more computing resources. However, many of these

problems can also be solved using a new paradigm, which is called

Distributed Problem Solving (DPS). In DPS, many computers on

a network attempt to solve a single problem. Hence, the compu-

tational power that might otherwise be dormant in machines all

around the world is effectively used to solve an important real-

world problem.

Examples. One of the most well-known examples of DPS is the

Great Internet Mersenne Prime Search project [40], in which the

problem of finding huge prime numbers of the form 2
p − 1 is solved

in a distributed manner. Another example is folding@home [25], in

which the computationally hard problem of protein folding, which

is of great interest to biologists, is tackled by DPS. However, these

projects do not provide incentives for contributors and most of

the computation is carried out by volunteers, hence the overall

computational power of the their networks is far less than that

of blockchains. Another notable project is Foldit [11], in which

the problem of finding protein structures is translated to a game,

hence using the enjoyment of gaming as an incentive for solv-

ing a real-world scientific problem. For more examples of DPS

see [1, 24]. In this paper, we propose a new mining protocol that

provides Bitcoin-like incentives for solving such real-world prob-

lems, thereby allowing the DPS networks to grow beyond their

volunteer community.

Relationship to Pool Mining. Note that pool mining can itself be

considered a special case of DPS, given that miners in the pool are

trying to solve an instance of the Hashcash problem in a distributed

manner. This observation directly leads to the main goal of this

paper, i.e. using the same mechanisms and incentives as mining for

distributed solution of real-world practical problems.

NP Problems. The real-world problems mentioned above, that

are solved by DPS, belong to the class NP. The class NP represents

problems that can be solved in non-deterministic polynomial time,

which means that if a correct answer is guessed/provided, it can be

verified in polynomial time. However, finding the answer might be

a much more challenging problem. The class of problems that can

be solved in polynomial time is called P. It is a major open question

whether P=NP, and it is widely believed that P, NP [2].

NP-completeness. The class of NP-complete problems represents

the core difficult problems of NP. Informally, NP-complete problems

(i) belong to the class NP and (ii) are as hard as any other problem

in NP. The notion of as hard as any other problem is captured by

showing that there is a polynomial-time reduction from any other

NP problem to an NP-complete problem [20]. This implies that an

efficient (polynomial-time) algorithm for an NP-complete problem

would imply P=NP, which is unlikely, and these NP-complete prob-

lems are considered computationally intractable [2]. Many of the

DPS problems above are known to be NP-complete.

Choosing a Representative Problem. Given an NP-complete prob-

lem A, any other problem in NP, including other NP-complete

problems, can be reduced to A in polynomial time. Hence, instead

of creating distinct DPS networks for each problem, we can simply

choose a representative problem A that the whole network tries

to solve, and ask owners of real-world problems, such as computa-

tional biologists, to translate (reduce) their problem into A before

submitting it to the network for solution.

Satisfiability. Any NP-complete problem can be used as a repre-

sentative for DPS. In this paper, we use the boolean satisfiability

(SAT) problem as the representative. However, our approach is

not dependent on this and SAT can be replaced by any other NP-

complete problem. We chose SAT because there has been ample

research into solving real-world instances of this problem [8]. An
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instance of SAT is a propositional logic formula φ in conjunctive

normal form, consisting of boolean variables x1,x2, . . . ,xn . The
SAT problem asks whether one can find true/false assignments to

the variables such that the formula φ is satisfied. The size |φ | of the
formula is called the length of the SAT instance, and n is its order.

1.3 Our Contribution
In this paper, we present HybridMining: a newmining protocol that

combines solving real-world instances of NP-complete problems

with Hashcashmining. In our protocol, any node in the network can

submit a problem, together with a reward for its solution. Then, ev-

ery other node of the network can add a new block to the blockchain

by either solving a submitted problem or taking part in Hashcash

PoW. Our approach has the following benefits:

(i) It provides an easy-to-use protocol for DPS, where people can

outsource their problems to be solved using the enormous

computational power of the blockchain.

(ii) It gives miners a strong incentive to solve useful real-world

problems, hence decreasing the waste in energy usage and

carbon footprint of PoW.

(iii) It gives current Bitcoin miners the choice of reverting back to

PoW in case they cannot solve any of the submitted problems,

hence making use of the already purchased resources and

specialized hardware.

(iv) On the other hand, new miners who have not invested in such

hardware can join by using software and hardware technolo-

gies for solving NP-hard problems, especially SAT. This can in

turn lead to financial incentives for research and development

in solving such problems and gaining new insights to them.

(v) It is at least as secure, and resilient to centralization, as PoW

mining.

To the best of our knowledge, this is the first mining protocol that

incentivizes solving real-world hard problems that are of immediate

practical interest to researchers in various fields.

1.4 Related Work
There has been ample research in finding alternative mining proto-

cols, or as they are commonly called, proofs of useful work. We list

some of these approaches below.

• Number Theoretic Approaches. Primecoin [22] andGapcoin [23]

are two approaches to mining that use alternative number-

theoretic problems, instead of hash inversion, for PoW. Prime-

coin PoW asks for chains of prime numbers with a specific

property, and Gapcoin PoW searches for large prime gaps.

• Approaches using NP-completeness. Using NP-complete prob-

lems for mining has been studied extensively and there are

a variety of mining protocols using different NP-complete

problem instances as their PoW. For example, see [5, 28, 31].

Note that the approaches mentioned above have some important

limitations, which are not present in Hybrid Mining. Here are some

examples:

• Most of these approaches are limited to finding solutions for

a specific problem, such as prime gap search. These prob-

lems are not necessarily NP-complete. Our approach allows

practical scientists to post any problem by simply translating

it to SAT.

• These approaches are often referred to as proofs of useful
work. However, the word “useful” should be taken with a

grain of salt. While the problems solved for mining new

blocks are indeed useful, the instances that are being solved

are not real-world instances. Instead, they are artificially

generated, either randomly or by a process that ensures they

have a certain difficulty. This means that the resulting solu-

tions are useful in the sense that they provide new insights

into the hardness of the problem at hand, but they do not

solve a real-world problem. On the other hand, our approach

uses real-world instances that are submitted by and of imme-

diate practical value to their owners, who can be scientists

in other fields, including computational biology.

• Following the previous point, these approaches cannot be

used for DPS, because the instances that are being solved

are not proposed by an external entity, but generated by

the protocol itself. A major novelty of our work is that we

combine DPS with mining, hence creating new incentives

for taking part in DPS.

• Virtually all of these approaches, with the exception of [28],

are incompatible with currently-used PoW hardware and

therefore alienate a majority of miners. In contrast, our Hy-

brid Mining protocol welcomes current miners and provides

an easy way for them to use their current hardware, while

also creating incentives for new types of mining.

2 PROBLEM STATEMENT AND
REQUIREMENTS

We now define the problem we are aiming to solve and the re-

quirements we expect of the final solution. We are aiming for

a blockchain mining protocol that combines Hashcash with Dis-

tributed Problem Solving (DPS). In order to be useful, such a proto-

col must meet the following criteria:

(1) Functional Reqirements:

(1.a) Owners of real-world problems should be able to pub-

lish their problems for distributed solution by the net-

work, i.e. the computing power of the network should

be usable for DPS.

(1.b) Conversely, miners should be able to add new blocks

to the blockchain by solving the problems published by

others. Hence, creating an incentive for them to solve

real-world useful problems.

(1.c) Miners should have the option to use Hashcash for

adding a new block, e.g. in cases when they are not

able to solve any of the published real-world problems.

This condition also ensures that current miners who

have invested in dedicated Hashcash PoW hardware

can continue to mine in the new protocol, and that new

blocks will be added even if there are no remaining

problems to solve.

(2) Security Reqirements:

(2.a) The protocol must remain resilient to double spending.

(2.b) The protocol must ensure that a miner is rewarded for

solving a published problem, and that no miner can

steal solutions found by another miner.

(2.c) The protocol must be resilient to spamming and publi-

cation of fake or long problems that aim to thwart the

network.

(2.d) The protocol must ensure that no party, neither a prob-

lem proposer, nor a miner, can benefit from dishonest

behavior that is detrimental to any other party.
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3 HYBRID MINING
In this section, we propose a new mining protocol, called Hybrid

Mining, and show the details of its operation. In the next section,

we will show that Hybrid Mining satisfies all the required criteria

mentioned above. As expected, in our approach, anyone can propose

a new problem in the form of a SAT instance, and one can add a new

block to the blockchain by either solving Hashcash or a previously-

unsolved problem on the blockchain. We now provide detailed

protocols for each of these actions.

3.1 Problem Proposal Protocol
In our system, proposing a problem is considered as a special type

of transaction. Consider a problem owner Owen, who likes to broad-

cast his problem to the network, so that miners solve it for him. To

do so, he creates a transaction consisting of the following parts and

broadcasts it to the network:

• Owen’s public key,

• The problem instance φ,
• An expiration date, setting the maximum amount of time

Owen is willing to wait for the problem to be solved by the

network
3
,

• Four distinct payments as follows:

– A constant problem proposal fee of f1 units,
– A problem storage fee of |φ | · f2 units,
– A reward value r , chosen by Owen, which will be paid to

the first miner who successfully solves the problem, and

– A transaction fee t , also chosen by Owen.

• Owen’s signature proving that he is the one broadcasting

the transaction.

We call this problem proposal transaction a Type 1 message. Note

that Owen has to translate (reduce) his problem to a SAT instance

φ, before publishing it on the network. We now explain the reason

behind each of the payments:

• The constant problem proposal fee f1, which is paid by Owen
and is the same as the block reward fee, ensures that one

cannot overwhelm the network with many spam problems.

Also, it ensures that one cannot add new blocks by adding

simple problems and solving them on his own. This money

is burnt if the problem is solved, but it will be refunded to

Owen if the problem remains unsolved until its expiry time.

• The second payment is correlated with the length of the

problem instance. Every node of the network has to save the

problem instance φ. Hence, in order to avoid unnecessarily

long instances that aim to thwart the network, one has to pay

a “storage fee” that correlates with the length of the problem.

This idea is similar to the concept of Gas in Ethereum [38].

• In order to incentivize miners to solve the problem, Owen

has to set a reward r , which will be paid to the miner that

provides a solution to φ.
• As with any other transaction, Owen should pay a trans-

action fee t , in order to have his transaction processed and

added to a block by a miner.

Note that transactions are processed in essentially the same

way as Bitcoin. If the problem is not solved until its expiration

time, then Owen can create another transaction that refunds the

payment to him. We call such a transaction a Type 2 message. The

3
This time limit can be set by fixing the maximum number of Hashcash blocks that

can be added to the chain without expiring the problem.

Type 2 transaction would be rejected if it is broadcast prematurely,

i.e. before the expiry time of the problem.

3.2 Mining Protocol
Consider a miner Mindy, who has formed a block of valid transac-

tions and wants to add it to the blockchain. She has two choices

for mining. She can either take part in Hashcash mining or solve

one of the currently-unsolved problems on the blockchain. If she

solves a Hashcash problem, everything will be similar to Bitcoin.

She receives a block reward of f1 and transaction fees from the

transactions she has included in her block. As in Bitcoin, this is also

how new coins are created in Hybrid Mining.

On the other hand, if she solves a previously-unsolved problem

that has been proposed on the blockchain, she does not receive a

block reward, but instead receives the solution reward r which was

previously paid by the owner of the solved problem. In any case,

Mindy can also claim her transaction fees. The exact protocol for

adding a block by solving problems is explained in the next section.

Consensus Chain. As in Bitcoin, we consider the longest chain

in the network to be the consensus chain. However, given that the

difficulty of problem instances is not well-defined, we consider the

length of a chain to be the sum of difficulties of those blocks in the

chain that are mined by Hashcash.

Number of Blocks of Each Type. Note that each block that is mined

by Hashcash creates f1 new units of currency. On the other hand,

one has to pay a proposal fee of f1 to add a problem and this fee is

burnt in case the problem gets solved and used for adding a new

block to the chain. Hence, it is guaranteed that, at any point in time,

there are at least as many blocks mined by Hashcash, as by solving

proposed problems.

3.3 Solution Announcement and Reward
Collection Protocol

If a miner Mindy finds a solution to Hashcash, she proceeds with

announcing it in the same manner as in Bitcoin. No other miner

can claim the rewards for this solution, because Mindy’s identity is

part of the Hashcash problem.

However, if she wants to add a block by solving a proposed prob-

lem, she has to publish the solution. This is problematic, because

Mindy’s identity is not part of the problem, and another miner,

Manny, might see the solution, form another block with the same

solution and publish it shortly after Mindy. Then network latency

can lead to a situation where part of the network believes Manny

was the one who solved the problem first.

To avoid this problem, our protocol requires Mindy to announce

the block in a two-step manner, as described below.

In the first step, Mindy chooses a secret value s , and then an-

nounces the block she has created, which consists of the following

parts:

• A block header, showing that the block was created by solv-

ing a problem and pointing to the problem that is being

solved.

• Mindy’s public key.

• A hash value h obtained by hashing a tuple consisting of

the solution to the problem, the secret value s , and Mindy’s

public key.

• A deposit of 2 · f1 + |φ | · f2 currency units.
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• A storage fee of n · f2 units, which is a compensation for the

whole network having to store the solution. Note that n is

the number of variables in the problem instance.

• A list of transactions that are being included in the new

block.

• A pointer to the previous block in the blockchain.

• A signature by Mindy, proving that she is the one who broad-

cast this block.

We call this announcement a Type 3 message. Note that the block

will be rejected by the network if another block in the blockchain is

already claiming to have solved the same problem. By providing h,
Mindy is committing to her solution without actually publishing it,

i.e. she is promising that she has obtained a solution that, together

with the secret value s and her public key, can produce the hash

value h. After publishing this block, which includes paying a fee as

a deposit for this promise, the block will be added to the blockchain

by every node of the network. However, no reward is paid to Mindy

until she provides the full solution, i.e. she neither receives her

reward r , nor her transaction fees.

In the second step, Mindy has to publish a transaction, claiming

the rewards of the block she added to the chain, as well as her

deposit. We call this a Type 4 message. Mindy can opt to wait for

the chain that includes her block to get longer, so that when she

publishes the full solution she is already ensured that the chain will

not revert and no one else can claim her rewards. However, there is

a certain fixed length limit k , and Mindy has to publish her solution

before the length of the chain containing her block is increased by

k units. If she fails to do so, she will not receive her solution reward,

transaction fees or deposit. Instead, the problem owner, Owen, will

be refunded, i.e. he gets back all of his payments that were due to

this problem.

Concretely, in the second step, when Mindy is already ensured

that her block is going to remain in the blockchain, she can create a

specific type of transaction for claiming her money. This transaction

has the following parts:

• Mindy’s public key,

• A pointer to the block whose rewards are being claimed,

• The full solution to the problem,

• The secret value s , and
• A transaction fee.

When this transaction is published, other nodes of the network

validate it by checking that (i) the solution is correct, (ii) the problem

has not expired, (iii) the length of the chain has increased by at most

k since the block was added, (iv) the hash of the tuple consisting

of the solution, the secret value s , and Mindy’s public key is the

promised value h. If all the checks pass, Mindy’s deposit will be

returned back to her, and she will receive the problem reward r and
the transaction fees in her block.

Note that all transactions are permanently saved on the blockchain

and the second step transaction above contains the answer to the

problem posed by Owen. So Owen can simply read the answer from

the blockchain.

3.4 Overview of the System
We now summarize all parts of the Hybrid Mining protocol. Any

aspect of the protocol that is not mentioned here follows the Bitcoin

protocol as in [29]. Table 1 provides a summary of constants that

we use in Hybrid Mining. The values of these constants can be

set at the time of implementation. In order to support mining by

Constant Description

f1

The block reward for mining a Hashcash block,

and also the problem proposal fee for adding a

new problem

f2
The storage fee for storing one byte of data,

either as part of a problem or its solution

k

The maximum allowed waiting time between

claiming a solution and announcing it. The

time is measured by the increase in chain

length.

m

The rate at which new Hashcash blocks are

added to the blockchain, i.e. a new Hashcash

block should be mined roughly everym
minutes.

Table 1: Summary of Implementation-dependent constants
in Hybrid Mining

Type Description Issuer Effect

1

Problem

Proposal

Transaction

Problem

Owner

(Owen)

Adds a new unsolved

problem to the Blockchain.

2

Refund

Transaction

Problem

Owner

(Owen)

Refunds Owen if his

problem has expired or

claimed but not solved.

3

Committing to

a Solution and

Announcing a

New Block

Miner

(Mindy)

The block is added to the

Blockchain, but Mindy’s

deposit and rewards are

not paid until she publishes

the entire solution, hence

proving her claim.

4

Solution

Announcement

Miner

(Mindy)

If the solution is correct,

Mindy’s deposit is paid

back to her, together with

the reward for solving the

problem and transaction

fees in the resulting block.

Table 2: Summary of the 4 new types of messages in Hybrid
Mining

problem solving, we introduced 4 new types of messages that are

not present in Bitcoin. Table 2 summarizes the new message types.

Figure 4 shows a diagram of the behavior of an honest problem

owner, Owen, and Figure 5 shows the behavior of an honest miner,

Mindy. The circled numbers in these figures denote the type of

messages that are broadcast or waited for.

In our protocol, a network node works in exactly the same man-

ner as in Bitcoin. It listens for transactions and blocks that are

broadcast on the network. If it receives a valid new transaction, it

broadcasts it to the rest of the network. Similarly, if it receives a valid

new block, it adds the block to its local copy of the blockchain and

broadcasts it (see Figure 6). Moreover, if a longer chain is formed,

the node will adopt the new chain and broadcast it. Note that the

length of a chain is defined in the same manner as Bitcoin and is

the sum of difficulties of Hashcash problems solved in that chain.

The only difference with Bitcoin comes from the additional checks
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Figure 4: The behavior of an honest problem owner, Owen,
in Hybrid Mining. The circled numbers denote the type of
messages that are broadcast or expected.
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Figure 5: The behavior of an honest miner, Mindy, in Hybrid
Mining. The circled numbers denote the type of messages
that are broadcast.

that are performed for deciding whether blocks and transactions

resulting from the 4 new types of messages are valid.

4 REQUIREMENTS ANALYSIS
In this section, we show how our Hybrid Mining protocol satisfies

the requirements enumerated in Section 2. We deal with functional

and security requirements separately.

4.1 Functional Requirements Analysis
Satisfaction of the functional requirements directly follows from the

modeling and design of our protocols. The Problem Proposal Pro-

tocol of Section 3.1 allows all nodes to submit new problems for

Start

How is the block 
formed?

Does the 
provided nonce solve 

Hashcash?
Is ϕ proposed on 
the Blockchain?

By Hashcash By Solving a Problem ϕ

Yes

Are all the 
transac�ons in the 

block valid?
Accept

Yes

Has ϕ been 
claimed in past?

Is the deposit paid?

Yes

No

Yes

Reject

No

Yes

No

No

No

Figure 6: The process used by a network node to check valid-
ity of a newly broadcast block.

solution by the network. Hence, Hybrid Mining satisfies require-

ment (1.a). As illustrated in Section 3.2, miners can choose to mine

using Hashcash or solving previously-submitted problems. The

former is done in exactly the same manner as in Bitcoin and Sec-

tion 3.3 provides a protocol for the latter. Hence, our approach

satisfies requirements (1.b) and (1.c), as well. Therefore, we have

the following proposition:

Proposition 1. Hybrid Mining satisfies all the functional require-
ments listed in Section 2, i.e. it allows problem owners to submit their
problems for solution in the samemanner as in DPS, and allows miners
to mine either by Hashcash or by solving problems.

4.2 Security Requirements Analysis
In this section, we analyze the security of Hybrid Mining against

several attacks and show that it satisfies the security requirements

of Section 2.

Resilience to Double Spending. Given that at any point, at least

half of the blocks are mined by Hashcash, and that a new Hashcash

block is added roughly everym minutes
4
, our protocol is at least

as resilient to forks and double spending as Bitcoin, and the same

arguments for Bitcoin’s resilience, as in [29], can be applied to our

setting without any change. Note that we consider the longest chain

to be the consensus chain, and we define the length of a chain as

the sum of difficulties of Hashcash blocks in the chain, ignoring

the blocks obtained by problem solving. Hence, one cannot create

a long chain and double spend by simply solving (possibly easy)

problems. Therefore, Hybrid Mining is resilient to double spending

and satisfies requirement (2.a).

Analysis of Incentives for Honest Behavior. In several points, our

protocol relies on honest behavior of participants, including miners

and problem owners. We now show that such behavior is always

incentivized, and that the system is resilient to the following attacks:

4
This constant time is set to 10 minutes in Bitcoin, but can be changed in

implementation.
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• Falsely Claiming Solutions. In order to claim a solution, one

has to pay a deposit of 2· f1+ |φ | · f2. If the solution is incorrect
or not provided later, f1 + |φ | · f2 units of this deposit is used
to refund the problem owner, who might be the same person

who published the false solution claim. However, at least

f1 units of currency will be burnt. Hence, adding a block

by falsely claiming a solution has a cost of at least f1. Note
that this means anyone can pay f1 units just to add a new

block, but this is not a rational strategy and does not have

any other effect on the blockchain.

• Invalidating a Problem. Another reason for falsely claiming

solutions might be to invalidate a problem. For example,

if a miner Mindy wants to hurt the problem owner Owen,

she can publish a false solution. This leads to a refund for

Owen, except for the transaction fees he paid for adding

the problem. However, as mentioned before, such behavior

will cost Mindy at least f1 units, which is equal to a full

block reward. A block reward is often much more than a

transaction fee. Hence, this is not a rational attack for Mindy

and has negligible effect on Owen.

In both cases above, as well as in the other attacks mentioned be-

low, the misbehaving party is never benefiting from his dishonest

behavior. Rather, such dishonest actions lead to significant adverse

effects and losses for the party that takes them. Hence, there is

no incentive for such behavior and our approach satisfies require-

ment (2.d). Also note that, even if the attackers are assumed to be

irrational and perform an attack despite the losses it causes them,

none of these attacks lead to significant losses, i.e. losses beyond a

small transaction fee, for any other party.

Ensuring Miners are Rewarded for Solving a Problem. A miner

who solves a problem can claim the reward set by the problem

owner. We now show that our system is resilient to attacks that

aim to deprive a miner from her problem solving reward or to steal

the reward and claim it for another miner.

– Not Processing Another Miner’s Transaction. This line of at-
tack is between miners. Suppose Mindy has solved a problem

and published her first step block. After a while, she pub-

lishes the transaction for claiming the rewards. Now suppose

that the next block is mined by Manny. Manny can opt not

to include Mindy’s transaction in his block. However, this

means that Manny loses the transaction fee. Hence, this is

not a rational move for Manny. The only way that with-

holding transactions, as described above, can make sense for

Manny, is if he expects to be able to claim the reward himself.

However, this is never possible, because after the first step

block is published by Mindy, either she gets the rewards or

everything is refunded to the problem owner. Hence, Manny

cannot steal the solution.

– Replication Attack. Another type of attack between miners is

as follows: whenMindy publishes her first step block, Manny

can copy the block and replace Mindy’s public key with his

own. Then, part of the network would add Manny’s block

to their local copy of the blockchain, while the rest will add

Mindy’s. Then, when Mindy publishes her solution in the

second step, Manny can copy the same solution and publish

it as his own. Hence, at least part of the network would

consider Manny’s block as valid and if the chain containing

Manny’s block eventually happens to get longer, the attack

has succeeded. However, this attack is not rational and is

avoided by the fact that Mindy’s public key is included in the

hash value h. Hence, Manny cannot claim the solution for

himself and get back his deposit and rewards, i.e. his second

step transaction fails the hash check. Therefore, such an

attack would have the same consequences as falsely claiming

a solution.

Given the discussion above, HybridMining satisfies requirement (2.b).

Resilience to Spamming. A problem owner has to pay a problem

proposal fee, a storage fee, a transaction fee and a reward for every

problem he proposes. Therefore, proposing long spam problems is

costly and not rational. Similarly, proposing a problem and then

solving it on your own leads to a loss of the f1 units of proposal fee.
Hence, one would not rationally propose a problem that is already

solved. Therefore, the system is safe against such attacks. Hence,

Hybrid Mining satisfies requirement (2.c).

Given the discussion above, we have the following proposition:

Proposition 2. Hybrid Mining satisfies all the security require-
ments listed in Section 2, i.e. it is resilient to attacks such as double
spending, spamming, depriving a miner from her reward or stealing
it, and other dishonest behavior mentioned above.

5 EXPERIMENTAL RESULTS
We implemented our approach in Java, and simulated both Hybrid

Mining and classic Hashcash Mining for comparison.

Experiment Details. For classic Hashcash mining, we simulated

a blockchain network with 10 miners. In our experiment, in order

to speed up the simulation, a new Hashcash block is added roughly

every 10 seconds, i.e.m = 1/6. Similarly, for Hybrid Mining, we

simulated a network consisting of 10 miners and one problem pro-

poser. The miners randomly choose to attempt either Hashcash or

a problem that has not been claimed by another miner. For prob-

lems, we use a family of industrial benchmarks from the SAT 2009

competition, which originated from real-world computational biol-

ogy problems [27]. For mining by problem-solving, the simulated

miners run an extremely efficient SAT solver called SAT4J [26].

Experiment Machine. The experiment was conducted on an Intel

Xeon E5-1650 (12 Threads, 3.8 GHz, 12 MB Cache) machine running

64-bit Debian 8. The machine had a total memory of 128 GB and

each network node was given a single thread.

Experimental Results. In our experiment, using Hybrid Mining

increases the block mining rate by 87%, in comparison with classic

Hashcash, without changing the computational power or energy

consumption of the network. Figure 7 shows the number of blocks

mined in each approach as time goes by. Hence, Hybrid Mining not

only uses the computational power of blockchain for solving useful

problems, but also helps the blockchain become more scalable. In

practice, when this approach is used in a real-world blockchain, the

increase in scalability would be dependent on the relative hardness

of the submitted problems and Hashcash, and also the rate at which

new problems are submitted to the network.

6 CONCLUSION
In this paper, we introduced Hybrid Mining: a new mining protocol

that can exploit the vast computational power of the blockchain

network for solving real-world useful problem instances by incen-

tivizing the miners to solve them, while remaining compatible with

the traditional Hashcash method of mining. We implemented our
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Figure 7: Scalability comparison ofHybridMining andHash-
cash (using the same computational resources). The x axis is
the time, and the y axis is the number of mined blocks.

approach and simulated it, using problems from computational

biology, showing that in addition to usefulness in DPS, Hybrid

Mining can also make blockchains more scalable. We also analyzed

the security of the new protocol and showed that it is at least as

resilient to double spending as Bitcoin, while also providing several

other security guarantees.

A natural direction of future work would be to deploy this pro-

tocol in a large scale by creating a new cryptocurrency. This can

lead to a much higher total computational power than what was

available to us for the experiments, and can be used for solving

harder and more important practical problems, specifically in com-

putational biology. An example of such problems is protein folding.
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