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Abstract Production forecasting is a key step to design the future devel-
opment of a reservoir. A classical way to generate such forecasts consists in
simulating future production for numerical models representative of the reser-
voir. However, identifying such models can be very challenging as they need to
be constrained to all available data. In particular, they should reproduce past
production data, which requires to solve a complex non-linear inverse prob-
lem. In this paper, we thus propose to investigate the potential of machine
learning algorithms to predict the future production of a reservoir based on
past production data without model calibration. We focus more specifically
on robust online aggregation, a deterministic approach that provides a robust
framework to make forecasts on a regular basis. This method does not rely
on any specific assumption or need for stochastic modeling. Forecasts are first
simulated for a set of base reservoir models representing the prior uncertainty,
and then combined to predict production at the next time step. The weight
associated to each forecast is related to its past performance. Three different
algorithms are considered for weight computations: the exponentially weighted
average algorithm, ridge regression and the Lasso regression. They are applied
on a synthetic reservoir case study, the Brugge case, for sequential predictions.
To estimate the potential of development scenarios, production forecasts are
needed on long periods of time without intermediary data acquisition. An
extension of the deterministic aggregation approach is thus proposed in this
paper to provide such multi-step-ahead forecasts.
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1. Introduction

Forecasting reservoir production is a key step in the decision-making process
for field development. Numerical representations – or models – of the reservoirs
can be considered to perform such forecasts. They consist of a grid reproduc-
ing the structure of the reservoir and populated with facies and petrophysical
properties. The evolution of pressure and fluids in the reservoir induced by pro-
duction is then simulated based on flow equations. The production forecasts
should be as reliable as possible to be used for planning the future devel-
opment of the field. Therefore, they should be constrained to the available
observations. The usual way to do this consists in generating such forecasts
with reservoir models constrained to all available data. In particular, these
models should reproduce the time-dependent measurements acquired during
the production period, such as measurements at wells (pressure, oil and water
rates, etc.) and 4D-seismic related attributes. As the reservoir model input
parameters are not linearly related to these production data, identifying such
models requires to solve a non-linear inverse problem, usually referred to as
history-matching in reservoir engineering. In practice, solving this problem can
be very challenging. Many uncertainties exist, with varying types. They can be
related, for instance, to the geological scenario, to the structure of the reser-
voir, to the spatial distribution of the petrophysical properties, or to the fluid
characteristics. In addition, fluid-flow simulations can be very long. Several
methods have been investigated to solve the history-matching problem. The
variational approach consists in applying minimization algorithms to reduce
the error between the production data and the corresponding simulated prop-
erties [23]. Ensemble methods can also be considered, such as the Ensemble
Kalman Filter [1]. Interested readers can refer to [17], for instance, for a review
of history-matching approaches.

Recently, new techniques were proposed in the literature that tackle the
problem of reservoir forecasting from a different perspective: forecasts condi-
tioned to past-flow-based measurements are generated without model updating
[19–22]. These approaches provide uncertainty quantification for the forecasts
based on relationships identified between the model-output properties at dif-
ferent times. More precisely, a set of reservoir models is used to represent prior
uncertainty. The fluid-flow simulations performed for this ensemble provide a
sampling of the data variables and prediction variables, referring to the values
simulated for the measured dynamic properties during the history-matching
and prediction periods, respectively. The Prediction-Focused Approach (PFA)
introduced in [21] consists in applying a dimensionality reduction technique,
namely the non-linear principal component analysis (NLPCA), to the two
ensembles of variables (data and prediction). The statistical relationship esti-
mated between the two sets of reduced-order variables is then used to estimate
the posterior distribution of the prediction variables constrained to the obser-
vations using a Metropolis sampling algorithm. This approach is extended in
[19] to Functional Data Analysis. A Canonical Correlation Analysis is also con-
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sidered to linearize the relationship between the data and prediction variables
in the low-dimensional space and then to sample the posterior distribution
of prediction variables using simple regression techniques. The resulting ap-
proach was demonstrated on a real field case in [20]. In [22], the data and
prediction variables are considered jointly in the Bayesian framework. They
are first parameterized using Principal Component Analysis (PCA) combined
to some mapping operation that aims at reducing the non-Gaussianity of the
reduced-order variables. A randomized maximum likelihood algorithm is then
used to sample the distribution of the variables given the observed data.

Some machine learning algorithms can also be used to output production
predictions over time based on past observations without model updating. As
for the techniques described above, these approaches use as building blocks an
ensemble of base models, from which forecasts are generated. These base fore-
casts quantify in some sense some uncertainty (the larger the convex hull of
forecasts, the more uncertain). The machine learning algorithms then consist
in combining (aggregating) the base forecasts to output predictions. Some of
these aggregation techniques deal with stochastic data: the observations to be
forecast may be modeled by some stochastic process. On the contrary, other
techniques work on deterministic data and come with theoretical guarantees
of performance even when the observations cannot be modeled by a stochastic
process. Examples of popular aggregation methods include Bayesian model
averaging, random forests (stochastic approaches), as well as robust online
aggregation (deterministic approach). The latter is also known as prediction
of individual sequences or prediction with expert advice [7]. This sequential
aggregation technique, developed in the 1990s, provides a robust framework
to make forecasts on a regular (e.g., monthly) basis. It does not rely on any
specific assumption or need for stochastic modeling, and was successfully ap-
plied for the forecasting of air quality [16], electricity consumption [10,12] and
exchange rates [2]. Here, we propose to assess its performance for reservoir
forecasting. The ensemble of base forecasts may be generated from different
structural or geological models, as long as they are considered possible repre-
sentatives of the reservoir. The aggregation approach then provides a produc-
tion prediction based on the available past production data. This prediction
is obtained by combining the base forecasts using convex or linear weights set
based on past performance of each base model. This dependency on past per-
formance is where something with a flavor of history-matching is performed.
This approach is intrinsically sequential, in the sense that it provides predic-
tions for the next time step only. This will be referred to as one-step-ahead
predictions in what follows. In reservoir engineering, production forecasts for
a given development scenario are generally required on long periods of time,
without intermediary data acquisition. This problem is referred to as the batch
case in machine learning. As far as we know, methods dealing with this batch
case problem rely on a modeling of the data. In this paper, we thus propose
to adapt the robust online aggregation technique to longer-term forecasts, or
equivalently multi-step ahead predictions. The basic idea is to apply sequential
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aggregation to a set of possible sequences of observations during the prediction
period in order to obtain some intervals for the production predictions.

The paper outlines as follows. Section 2 contains a high-level exposition of
the machine-learning approach followed (with some additional practical details
on the implementation of the algorithms being provided later in Section 5).
Section 3 describes the synthetic data set used – the Brugge case. Section 4
discusses our one-step-ahead predictions for this test case while Section 5 shows
our longer-term predictions.

2. How to combine production forecasts

Our approach aims to predict the value of a given property y forward in time
based on past observations of this property. In the case of reservoir engineering,
property y stands for production data such as pressure and oil rate at a given
well, or cumulative oil produced in the reservoir.

In what follows, we assume that a sequence of observed values for y at
times 1, . . . , T − 1 is available, and we denote it by y1, y2, . . . , yT−1. The time
interval between two consecutive observations is assumed to be regular. Then
the proposed approach provides prediction for property y at subsequent times
T, . . . , T+K following the same time frequency as the observations. To do so, a
set of N reservoir models representative of the prior uncertainty is generated,
and fluid-flow simulations are performed to obtain the values of y at times
t = 1 . . . T + K. These simulated values will be denoted by mj,t, where j =
1 . . . N indexes the models. To estimate property y at time T , we propose
to apply existing aggregation algorithms “from the book”, with no tweak or
adjustment that would be specific to the case of reservoir production (section
2.1). An extension of these techniques to predict longer-term forecasts, i.e., at
times T + 1,...,T +K, is then proposed in section 2.2.

2.1. High-level methodology: point aggregation for one-step-ahead forecasts

The aggregated forecast ŷT at time T is obtained by linearly combining the
simulated forecasts mj,T :

ŷT =

N∑
j=1

wj,T mj,T , (1)

where the weights wj,T are determined based on the past observations yt and
past forecasts mj,t, where t 6 T −1. The precise formulae to set these weights
(some specific algorithms designed by the literature) are detailed in Section 2.3
below. The basic idea is to put higher weights on models that performed better
in the past.
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The main interest of this methodology is given by its performance guar-
antee: the weights can be set to mimic the performance of some good con-
stant combination of the forecasts. More precisely, given a set W? of reference
weights (e.g., the set of all convex weights, or of all linear weights in some
compact ball), good algorithms ensure that, no matter what the observations
yt and the forecasts mj,t of the models were,

1

T

T∑
t=1

(
ŷt − yt

)2
6 εT + inf

(v1,...,vN )∈W?

1

T

T∑
t=1

ŷt − N∑
j=1

vjmj,t

2 , (2)

where εT is a small term, typically of order 1/
√
T . More details are given in

Section 2.3, for each specific algorithm.
The reference set W? will always include the weights (v1, . . . , vN ) of the

form (0, . . . , 0, 1, 0, . . . , 0) that only put non-zero mass equal to 1 on one model.
Thus, the infimum over elements in W? will always be smaller than the cu-
mulative square loss of the best of the N models. For some algorithms, this
reference set W? will be much larger and will contain all weights of some Eu-
clidean ball of RN with radius larger than 1, thus in particular, all convex
weights.

The algorithms we will consider (and the way we will refer to them in
the sequel) are: the exponentially weighted average (EWA) forecaster; the
ridge regression (Ridge); the Lasso regression (Lasso). Their statement and
theoretical guarantees – in terms of the quantities W? and εT in (2) – are
detailed in Section 2.3.

Before we describe them in details, we provide a high-level view on the
second aspect of our methodology, pertaining to longer-term predictions.

2.2. High-level methodology: multi-step-ahead predictions

As previously, we assume here that only observations until time T−1 are avail-
able. The aggregated forecast at time T can be obtained using the one-step-
ahead techniques described above. In this section, we focus on the prediction
of longer-term forecasts, i.e., for rounds t = T + k, where k > 1 and k can be
possibly large.

To predict such multi-step-ahead forecasts, we propose to apply point ag-
gregation methods on a set of plausible values of the measurements at times
T, . . . , T + K. For each k = 1, . . . ,K, this approach thus provides at each
round T + k a set ŴT+k of possible weights (w1,T+k, . . . , wN,T+k). The inter-
val forecast for round t = T + k is then

ŜT+k = conv


N∑
j=1

wj,T+kmj,T+k : (w1,T+k, . . . , wN,T+k) ∈ ŴT+k

 , (3)

where conv denotes a convex hull, possibly with some enlargement to take into
account the noise level.
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Fig. 1 Schematic diagram for multi-step-ahead predictions.

More precisely, the approach encompasses the following steps, also illus-
trated in Figure 1:

1. we consider the set S = ST × . . . × ST+K of all plausible continuations
zT , . . . , zT+K of the observations y1, . . . , yT−1; this set S will be referred
to as the set of scenarios;

2. for each given scenario y1, . . . , yT−1, zT , . . . , zT+K ∈ S,
– for each round T + k, where k = 1, . . . ,K, we compute the weights

(w1,T+k, . . . , wN,T+k) corresponding to the putative past observations
y1, . . . , yT−1, zT , . . . , zT+k−1 and corresponding model forecasts;

– we form the aggregated forecast ẑT+k =
∑
j wj,T+kmj,T+k.

3. The interval forecasts ŜT+k are the convex hulls of all possible aggregated
forecasts ẑT+k obtained by running all scenarios in S (possibly with some
enlargement to take into account the noise level and with some initial
matching at time T ).

The main constructions remaining to be explained is (i) how the set S
of plausible continuations is determined; (ii) how we may efficiently compute

the interval forecasts ŜT+k, as there are infinitely many scenarios; what we
mean by (iii) an enlargement to account for the noise level and (iv) an initial
matching at time T .

Set of plausible continuations. We propose here an assisted way to build the
set S of possible scenarios (i). The high-level idea is that we look on available
data how large the typical variations were. More precisely, we compute the
maximal variations upwards M or downwards m of the observations on the
learning part of the data set (times 1 to T − 1), and of any single trajectory
of model forecasts on the prediction part of the data set (times T to T +K).
We do so by considering variations averaged out over 10 consecutive steps.
The maximal variation downwards m can be negative or positive, depending
on the property considered; the same remark holds for the maximal variation
upwards. This yields an interval [m,M ] of typical 1-step average variations.
The set of scenarios is then the cone formed by the product of the intervals
[yT−1 +km, yT−1 +kM ], where k = 0, 1, 2, . . .. See Figure 2 for an illustration.
This approach provides a first guess for S, that can be adjusted afterwards
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Fig. 2 An example of the set of scenarios S calculated for oil rate at a producer (QO P19,
see Section 3) on the last third of the simulation period (left) and a repetition of the
corresponding schematic diagram (right). On the left figure, production data are plotted in
red and simulated forecasts in green.

depending on the specificity of the problem. For instance, physical bounds can
be introduced to constrain S, such as maximum values for the oil rates.

Efficient computation of the interval forecasts. As for (ii), a computational
issue is to be discussed: getting a numerical value of the convex hull (3) is
computationally challenging as S typically contains infinitely many scenarios.
However, we should note that only the upper and lower bounds of ŜT+k need
to be computed (or bounded). We could provide a solution to this problem
for two of the considered algorithms, namely Ridge and EWA. As the corre-
sponding formulae are however not easy to describe, we prefer to omit them
and refer the interested reader to [9, Chapter 5]. For Ridge, we were able
therein to determine a closed-form expression of the upper and lower bounds
of the sets ŜT+k in (3). As for EWA, we offer therein an efficient and recursive
computation of a series of sets Ŵ ′T+k containing the target sets ŴT+k, from
which it is then easy to compute intervals containing the target prediction
intervals ŜT+k. Indeed, it suffices to compute the maximum and the minimum

of each ŜT+k.

Enlargement of the interval forecasts to take noise into account. We first study
the learning part of the data set and estimate some upper bound σmax on the
noise level of the observations, as detailed below. Then, denoting by cT+k the

center of each interval forecast ŜT+k, we replace

ŜT+k by max
{
ŜT+k, [cT+k − σmax, cT+k + σmax]

}
,

where the maximum in the right-hand side has to be understood in terms of
the inclusion ⊆ operator.

Our estimate σmax is formed as follows, based on an interpretation of noise
as some intrinsic variability. We first determine, among the observations avail-
able, time steps corresponding to some local stability of the property studied;
those steps t are the ones when the observation yt is within 150 psi or 150
bbl/day (depending of the property) of all yt−r, where r varies between −15
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and +15. We denote by S the set of those time steps with local stability. Then,
our estimate is

σmax = max
t∈S

∣∣∣∣∣yt − 1

5

t+2∑
r=t−2

yr

∣∣∣∣∣ .
Initial matching at T . All algorithms make some prediction error when fore-
casting yT by ŷT at the beginning of the prediction period. To avoid that this
error of ∆T = ŷT −yT be carried over the whole prediction part of the data set
(over all time steps T +k, where k > 1), we shift all interval forecasts ŜT+k by
this initial error ∆T (in the case of EWA) or by the average of ∆T−4, . . . ,∆T

(in the case of Ridge).

2.3. Statement of the point aggregation algorithms considered

We provided in Section 2.1 the general methodological framework for sequen-
tially aggregating forecasts in a robust manner, not relying on any stochastic
modeling of the observations or of the forecasts of the models. We now provide
the statements and the theoretical guarantees of the considered algorithms; the
theoretical guarantees refer to (2) and consist in providing the values of W?

and εT for the considered algorithm.

2.3.1. The ridge regression (Ridge)

The ridge regression (which we will refer to as Ridge when reporting the ex-
perimental results) was introduced by [14] in a stochastic and non-sequential
setting. What follows relies on recent new analyses of the ridge regression in
the machine learning community; see the original papers by [26,4] and the
survey in the monograph by [7], as well as the discussion and the optimization
of the bounds found in these references proposed by [13].

Ridge relies on a parameter λ > 0, called a regularization factor. At round
T = 1, it picks arbitrary weights, e.g., uniform (1/N, . . . , 1/N) weights. At
rounds T > 2, it picks

(w1,T , . . . , wN,T ) ∈ arg min
(v1,...,vN )∈RN

λ
N∑
j=1

v2j +

T−1∑
t=1

(
yt −

N∑
j=1

vjmj,t

)2 ; (4)

i.e., it picks the best constant weights to reconstruct past observations based
on the model forecasts subject to an `2–regularization constraint

∑
v2j , which

is useful to avoid overfitting to the past.
The performance bound relies on two bounds V and B and is over

W? =

(v1, . . . , vN ) :

N∑
j=1

v2j 6 V 2

 ,
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the Euclidean ball of RN with center (0, . . . , 0) and radius V > 1. This ball
contains in particular all convex combinations in RN . The bound (2) with the
above W? reads: for all bounded sequences of observations yt ∈ [−B,B] and
model forecasts mj,t ∈ [−B,B], where t = 1 . . . T ,

εT 6
1

T

(
λV 2 + 4NB2

(
1 +

NB2T

λ

)
ln

(
1 +

B2T

λ

)
+ 5B2

)
.

In particular, for a well-chosen λ of order
√
T , we have εT = O

(
(lnT )/

√
T
)
.

The latter choice on λ depends however on the quantities T and B, which
are not always known in advance. This is why in practice we set the λ to be
used at round t based on past data. More explanations and details are provided
in Section 2.3.4 below.

2.3.2. The Lasso regression (Lasso)

The Lasso regression was introduced by [24], see also the efficient implemen-
tation proposed in [11]. Its definition is similar to the definition (4) of Ridge,
except that the `2–regularization is replaced by an `1–regularization: at rounds
T > 2,

(w1,T , . . . , wN,T ) ∈ arg min
(v1,...,vN )∈RN

λ
N∑
j=1

|vj |+
T−1∑
t=1

(
yt −

N∑
j=1

vjmj,t

)2 .

As can be seen from this definition, Lasso also relies on a regularization pa-
rameter λ > 0.

One of the key features of Lasso is that the weights (w1,T , . . . , wN,T ) it
picks are often sparse: many of its components are null. Unfortunately, we are
not aware of any performance guarantee of the form (2): all analyses of Lasso
we know of rely on (heavy) stochastic assumptions and are tailored to non-
sequential data. We nonetheless implemented it and tabulated its performance.

Another appealing regularized regression is the elastic net introduced by [27]:
it seeks the best compromise between Lasso and Ridge by considering both
regularizations, i.e., by adding a

λ1

N∑
j=1

|vj |+ λ2

N∑
j=1

v2j

regularization to the least-square criterion, where λ1, λ2 are two parameters
to be tuned. Its known analyses are also only tailored to non-sequential data.
The method would be subject of study in future developments of the present
approach.
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2.3.3. The exponentially weighted average (EWA) forecaster

The previous two forecasters were using linear weights: weights that lie in RN
but are not constrained to be nonnegative or to sum up to 1. In contrast,
the exponentially weighted average (EWA) forecaster picks convex weights:
weights that are nonnegative and sum up to 1. The aggregated forecast ŷT lies
therefore in the convex hull of the forecasts mj,T of the models, which may be
considered a safer way to predict.

EWA (sometimes called Hedge) was introduced by [25,15] and further un-
derstood and studied by, among others, [6,5,3]; see also the monograph by [7].
This algorithm picks uniform (1/N, . . . , 1/N) weights at round T = 1, while
at subsequent rounds T > 2, it picks weights (w1,T , . . . , wN,T ) such that

wj,T =

exp

(
−η

T−1∑
t=1

(yt −mj,t)
2

)
N∑
k=1

exp

(
−η

T−1∑
t=1

(yt −mk,t)
2

) .

The weight put on model j at round T depends on the cumulative accuracy
error suffered by j on rounds 1 to T − 1; however, the weight is not directly
proportional to this cumulative error: a rescaling via the exponential function
is operated, with a parameter η > 0. We will call this parameter the learning
rate of EWA: when η is smaller, the weights get closer to the uniform weights;
when η is larger, the weights of the suboptimal models get closer to 0 while
the (sum of the) weight(s) of the best-performing model(s) on the past get
closer to 1.

To provide the performance bound we first denote by δj the convex weight
vector (0, . . . , 0, 1, 0, . . . , 0), where the unique non-zero coordinate is the j–th
one. The set W? of reference weights is given by

W? =
{
δj : j ∈ {1, . . . , N}

}
.

The performance bound (2) with the above W? relies on a boundedness pa-
rameter B and reads: for all bounded sequences of observations yt ∈ [0, B] and
model forecasts mj,t ∈ [0, B],

εT 6


lnN

ηT
if η 6 1/(2B2),

lnN

ηT
+
ηB2

8
if η > 1/(2B2).

In particular, εT = O(1/T ) if η is well-calibrated, which requires the knowledge
of a plausible bound B. Here again, we may prefer to set the η to be used at
round t based on past data; see Section 2.3.4 below.
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2.3.4. How to implement these algorithms (i.e., pick their parameter λ or η)

First, note that the algorithms described above rely each on a single parameter
λ > 0 or η > 0, which is much less than the number of parameters to be tuned
in reservoir models during history-matching. (These parameters λ and η are
actually rather called hyperparameters to distinguish them from the model
parameters.)

In addition, the literature provides theoretical or practical guidelines on
how to choose these parameters. The key idea was introduced by [3]. It consists
in letting the parameters η or λ vary over time: we denote by ηt and λt the
parameters used to pick the weights (w1,t, . . . , wN,t) at round t. Theoretical
studies offer some formulae for ηt and λt (see, e.g., [3,8]) but the associated
practical performance are usually poor, or at least, improvable, as noted first
by [10] and later by [2]. This is why [10] suggested and implemented the
following tuning of ηt and λt on past data, which somehow adapts to the data
without overfitting; it corresponds to a grid search of the best parameters on
available past data.

More precisely, we respectively denote by Rλ, Lλ and Eη the algorithms
Ridge and Lasso run with constant regularization factor λ > 0 and EWA run
with constant learning rate η > 0. We further denote by LT−1 the cumulative
loss they suffered on prediction steps 1, 2, . . . , T − 1:

LT−1( · ) =

T−1∑
t=1

(
ŷt − yt)2 ,

where the ŷt denote the predictions output by the algorithm considered, Rλ,
Lλ or Eη. Now, given a finite grid G ⊂ (0,+∞) of possible values for the
parameters λ or η, we pick, at round T > 2,

λT ∈ arg min
λ∈G

{
LT−1(Rλ)

}
, λT ∈ arg min

λ∈G

{
LT−1(Lλ)

}
and ηT ∈ arg min

η∈G

{
LT−1(Eη)

}
,

and then form our aggregated prediction ŷT for step T by using either the
aggregated forecast output by RλT

, LλT
, or EλT

.

We resorted to wide grids in our implementations, as the various properties
to be forecast have extremely different orders of magnitude:

– for EWA, 300 equally spaced in logarithmic scale between 10−20 and 1010;
– for Lasso, 100 such points between 10−20 and 1010;
– for Ridge, 100 such between 10−30 and 1030.

However, how fine the grids are has not a significant impact on the perfor-
mance; what matters most is that the correct orders of magnitude for the
hyperparameters be covered by the considered grids.
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Table 1 Petrophysical properties of the Brugge field

Formation Depositional Average Average Average Average
environment thickness (m) Porosity Permeability (mD) Net to Gross

Schelde Fluvial 10 0.207 1105 60
Waal Lower shoreface 26 0.19 90 88
Maas Upper shoreface 20 0.241 814 97
Schie Sandy shelf 5 0.194 36 77

Fig. 3 Structure of the Brugge field and well location. Producers are indicated in black
and injectors in blue.

3. Reservoir case study

We consider here the Brugge case, defined by TNO for benchmark purposes
[18], to assess the potential of the proposed approach for reservoir engineering.
This field, inspired by North Sea Brent-type reservoirs, has an elongated half-
dome structure with a modest throw internal fault as shown in Figure 3. Its
dimensions are about 10km × 3km. It consists of four main reservoir zones,
namely Schelde, Waal, Maas and Schie. The formations with good reservoir
properties, Schelde and Maas, alternate with less permeable regions. The av-
erage values of the petrophysical properties in each formation are given in
Table 1. The reservoir is produced by 20 wells located in the top part of the
structure. They are indicated in black in Figure 3 and denoted by Pj, with
j = 1, . . . , 20. Ten water injectors are also considered. They are distributed
around the producers, near the water-oil contact (blue wells in Figure 3), and
are denoted by Ii, where i = 1, . . . , 10.

A fine-scale reference geological model of 20 million grid blocks was ini-
tially generated and populated with properties by TNO. It was then upscaled
to a 450 000 grid block model used to perform the fluid-flow simulation consid-
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ered in the following as the reference one. The reservoir is initially produced
under primary depletion. The producing wells are opened successively during
the first 20 months of production. They are imposed a target production rate
of 2 000 bbl/day, with a minimum bottomhole pressure of 725 psi. Injection
starts in a second step, once all producers are opened. A target water injection
rate of 4 000 bbl/day is imposed to the injectors, with a maximal bottomhole
pressure of 2 611 psi. A water-cut constraint of 90% is also considered at the
producers.

The aim of our study is to apply the one-step-ahead and multi-step-ahead
approaches described in Section 2 to predict the production data provided by
TNO, namely the oil and water rates at the producers and bottomhole pres-
sure at all wells (see Table 2). To do so, we consider the set of 104 geological
models of 139 × 48 × 9 grid blocks (∼ 60 000) provided to the project partic-
ipants to represent the prior geological uncertainty. These models were built
considering various approaches for the simulation of facies, fluvial reservoir
zones, porosity and permeability, and are conditioned to static data extracted
from the reference case. They differ in the distributions of facies, porosity,
net-to-gross, water saturation and permeability. More details can be found in
[18], together with examples of permeability realizations.

Two-phase flow simulations were performed for each of the 104 reservoir
models, considering the same fluid and well properties. Production constraints
are the ones used for the reference case. This provides a set of 104 base forecasts
for the 70 production time-series to be predicted. Some of them are shown in
Figure 4.

The available data cover 10 years of production. This time interval was split
here into 127 evenly spaced prediction steps, which are thus roughly separated
by a month. The aggregation algorithms were first applied to sequentially pre-
dict the production at wells on this (roughly) monthly basis (Section 4). Then,
the approach developed for longer-term forecasts was considered to estimate an
interval forecast for the last 3.5 years of production (Section 5). In both cases,
the approaches were applied to each time-series independently, i.e., property
by property and well by well.

Table 3 provides some descriptive statistics pertaining to the orders of
magnitude of the time-series. They should be put in perspective with the root
mean-square errors calculated later in Section 4.2. In this table, we report
both descriptive statistics for the original (nominal) time-series, as well as
for the time-series of unit changes1 (variations between two prediction steps).
The latter are the most interesting ones in our view, as far as one-step-ahead
forecasting is concerned.

1 We suppressed the extreme changes caused by an opening or a closing of the well when
computing the mean, the median, and the standard deviation of the absolute values of these
changes.
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Fig. 4 Reference production data [red] versus values simulated with the 104 models [green],
over time (in days).
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Table 2 Summary of the 70 times-series to be predicted.

Notation Well type Property measured Units Number

BHP Ii injector bottomhole pressure psi 10
BHP Pj producer bottomhole pressure psi 20
QO Pj producer flow rate of oil bbl/day 20
QW Pj producer flow rate of water bbl/day 20

Table 3 Some descriptive statistics on the properties to be predicted, by type of property.
The upper part of the table discusses the nominal time-series, while its lower part studies
the time-series of the unit changes.

Property BHP I BHP P QO QW
Units psi psi bbl/day bbl/day

Observations
– Minimum 2 007 708 0 0
– Maximum 2 488 2 380 2 147 1 870
Forecasts output by the models
– Minimum 1 973 723 0 0
– Maximum 2 610 2 443 2 002 1 800

Unit changes
– Minimum −52 −1 308 −306 1 824
– Maximum 39 487 2 147 156
Absolute values of the unit changes
– Mean 10 12 32 18
– Median 8 9 25 0
– Standard deviation 8 13 28 28

4. Results of point aggregation for one-step-ahead forecasts

We discuss here the application of the Ridge, Lasso and EWA algorithms on the
Brugge data set for one-step-ahead predictions, which (roughly) correspond to
one-month-ahead predictions.

4.1. Qualitative study

Figures 5 and 6 report the forecasts of Ridge and EWA for 12 time-series,
considered representative of the 70 time-series to be predicted.

The main comment would be that the aggregated forecasts look generally
close enough to the observations, even though most of the model forecasts they
build on may err. The aggregated forecasts evolve typically in a smoother way
than the observations. The right-most part of the BHP I1 picture reveals that
Ridge is typically less constrained than EWA by the ensemble of forecasts:
while EWA cannot provide aggregated forecasts that are out of the convex
hull of the ensemble forecasts, Ridge resorts to linear combinations of the
latter and may thus output predictions out of this range.
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Fig. 5 Values simulated for the 104 models (green lines —), observations (red solid line —),
one-step-ahead forecasts by Ridge (blue solid line —) and EWA (black dotted line - - -).
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Also, Ridge typically adjusts faster to regime changes, while EWA takes
some more time to depart from a simulation it had stuck to. This can lead to
better results for Ridge, as can be seen for instance for BHP I8, BHP P12 or
QO P19. However, it may at times react too fast and be less successful than
EWA in predicting discontinuous changes in the production curves, typically
pressure drop, water breakthrough or well shut-in. This is visible in Figure 5 for
pressure at well P12 in the initial time steps (bumps), for water breakthrough
time at wells P9 and P18, and in Figure 6 for the well closures due to the
water-cut constraint at the producers. EWA appears thus more reliable than
Ridge. However, its performance is very dependent on the choice of the base
models as illustrated in Figure 6 for property QW P15: the observed data being
outside the range of simulated values at the end of the production period, the
aggregated forecast can in no way be predictive.

Figure 8 shows the aggregated forecasts obtained with Lasso for 4 time-
series. The results seem globally better than with the two other approaches,
even if, as for Ridge, we can see bumps at the beginning of the production
period for BHP P12 and QW P18.

Due to the nature of the discontinuous events occurring in this study,
the time they take place is not known in advance, making them difficult to
predict. For events that can be included in the production schedule considered
for simulating the ensemble forecasts, such as well shut-in and re-opening for
testing or workover, the time of the discontinuity will be the same for the
simulations and the observations. In this case, the aggregated forecasts at the
time of the re-opening could rather be computed based on the misfit between
the observations and the simulations prior to the shut-in.

4.2. Quantitative study

A more objective assessment of the performance of the approaches followed
can be obtained through an accuracy criterion. As is classical in the literature,
we resort to the root mean-square error (RMSE), which we define by taking
into account a training period: by taking out of the evaluation the first 31
predictions (that is, roughly 1/4 of the observations, ∼ 900 days). Hence, the
algorithms are only evaluated on time steps 32 to 127, as follows:

√√√√ 1

127− 32 + 1

127∑
t=32

(
ŷt − yt

)2
.
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Fig. 6 Values simulated for the 104 models (green lines —), observations (red solid line —),
one-step-ahead forecasts by Ridge (blue solid line —) and EWA (black dotted line - - -).

Similar formulae determine on this time interval 32–127 the performance
of the best model and of the best convex combination of the models:

min
j=1,...,104

√√√√ 1

127− 32 + 1

127∑
t=32

(mj,t − yt)2

and min
(v1,...,v104)∈C

√√√√√ 1

127− 32 + 1

127∑
t=32

 104∑
j=1

vjmj,t − yt

2

where C denotes the set of all convex weights, i.e., all vectors of R104 with non-
negative coefficients summing up to 1. The best model and the best convex
combination of the models vary by the time-series; this is why we will some-
times write the “best local model” or the “best local convex combination”.

Note that the orders of magnitude of the time-series are extremely different,
depending on what is measured (they tend to be similar within wells of the
same type for a given property). We did not correct for that and did not try
to normalize the RMSEs. (Considering other criteria like the mean absolute
percentage of error – MAPE – would help to get such a normalization.)

The various RMSEs introduced above are represented in Figures 7 and 9.
A summary of performance would be that Ridge typically gets an overall
accuracy close to that of the best local convex combination while EWA rather
performs like the best local model. This is perfectly in line with the theoretical



Sequential model aggregation for production forecasting 19

guarantees described in Section 2.3. But Ridge has a drawback: the instabilities
(the reactions that might come too fast) already underlined in our qualitative
assessment result in a few absolutely disastrous performance, in particular for
BHP P5, BHP P10, QW P16, QW P12. The EWA algorithm seems a safer
option, though not being as effective as Ridge. The deep reason why EWA is
safer comes from its definition: it only resorts to convex weights of the model
forecasts, and never predicts a value larger (smaller) than the largest (smallest)
forecast of the models.

As can be seen in Figure 9, the accuracy achieved by Lasso is slightly better
than that of Ridge, with only one exception, the oil production rate at well P9.
Otherwise, Lasso basically gets the best out of the accuracy of EWA (which
predicts globally well all properties for producers, namely, bottomhole pres-
sure, oil production rate and water production rate) and that of Ridge (which
predicts well the bottomhole pressure for injectors). However, this approach
does not come with any theoretical guarantee so far. We refer the interested
reader to [9] for an illustration of the selection power of Lasso (the fact that
the weights it outputs are sparse, i.e., that it discards many simulated values).

5. Results for multi-step-ahead forecasts

In this section, the simulation period of 10 years is divided into two parts:
the first two thirds (time steps 1 to 84, i.e., until ∼ 2400 days) is considered
the learning period, for which observations are assumed known; the last third
corresponds to the prediction period for which we aim to provide longer-term
forecasts in the form of interval forecasts as explained in Section 2.2. We only
discuss here the use of Ridge and EWA for which such longer-term forecasting
methodologies have been provided. We actually consider a practical twist on
the implementation of Ridge (not on EWA).

5.1. Selection of a subset of the models for Ridge

As far as Ridge is concerned (not EWA), we actually do not use all the models
in the prediction part of the data set, but only the most reasonable ones: the
ones whose root mean-square error on the learning part of the data set is
smaller than 10 times the one of the best model. The forecasts of these models
are printed in green in Figures 10 and 12 while the forecasts of the models
discarded due to this rule are in grey. We did so for the sake of practical
performance and numerical stability.

5.2. Some good results

Figures 10 and 11 report interval forecasts that look good: they are significantly
narrower than the sets of scenarios while containing most of the observations.
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Performance summary for Ridge
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Figure 1.1 – RMSE of EWA (blue/red, above) and Ridge (blue/red, below) vs RMSE of the
best simulation (yellow) and of the best constant convex combination (pink)
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Performance summary for EWA
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Figure 1.1 – RMSE of EWA (blue/red, above) and Ridge (blue/red, below) vs RMSE of the
best simulation (yellow) and of the best constant convex combination (pink)

3

Fig. 7 RMSEs of the best model (yellow bars) and of the best convex combination of
models (pink bars) for each property, as well as the RMSEs of the considered algorithms:
Ridge (top graphs) and EWA (bottom graphs). The RMSEs of the latter are depicted in
blue whenever they are smaller than that of the best model for the considered time-series,
in red otherwise.
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Fig. 8 Values simulated for the 104 models (green lines —), observations (red solid line —)
and one-step-ahead forecasts by Lasso (purple solid line —).
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3Fig. 9 RMSEs of the best model (yellow bars) and of the best convex combination of models
(pink bars) for each property, as well as the RMSEs of Lasso. The latter are depicted in
blue whenever they are smaller than that of the best model for the considered property, in
red otherwise.
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They were obtained, though, by using some hand-picked parameters λ or η:
we manually performed some trade-off between the widths of the interval fore-
casts (which is expected to be much smaller than the set S of all scenarios)
and the accuracy of the predictions (a large proportion of future observations
should lie in the interval forecasts).

We were unable so far to get any satisfactory automatic tuning of these
parameters (unlike the procedure that we described in Section 2.3.4 for one-
step-ahead prediction). Hence, the good results achieved on Figures 10 and 11
merely hint at the potential benefits of our methods once they will come with
proper parameter-tuning rules.

5.3. Some disappointing results

Figures 12 and 13 show, on the other hand, that for some time-series, neither
Ridge nor EWA may provide useful interval forecasts: the latter either com-
pletely fail to accurately predict the observations or they are so large that they
cover (almost) the set of all scenarios – hence, they do not provide any useful
information.

We illustrate this by letting λ increase (Figure 12) and η decrease (Fig-
ure 13): the interval forecasts become narrower as the parameters vary in this
way. They first provide intervals (almost) covering all scenarios and finally
resort to inaccurate interval forecasts. This behavior is the one expected by
a theoretical analysis: as the learning rate η tends to 0 or the regularization
parameter λ tends to +∞, the corresponding aggregated forecasts of EWA
and Ridge tend to the uniform mean of the simulated values and 0, respec-
tively. In particular, variability is reduced. In constrast, when η is large and
λ is small, past values, including the plausible continuations zT+k discussed
in Section 2.2, play an important role for determining the weights. The latter
vary much as, in particular, the plausible continuations are highly varied.

For time-series BHP I1, we can see that the interval forecast is satisfying
at the beginning of the prediction period (until ∼ 3000 days, see Figures 12
and 13), but then starts to diverge from the data. In this second period,
the data are indeed quite different from the forecasts, and lie outside of the
simulation ensemble. Similarly, observations for QO P19 and QW P14 show
trends globally different from the simulated forecasts. This may explain the
disappointing results here. Indeed, the approach appears highly dependent on
the base forecasts, especially the ones that perform well in the learning period.
If the latter diverge from the true observations in the prediction period, the
aggregation may fail to correctly predict the future behavior.

In the case study considered here, we used the 104 geological models pro-
vided to the benchmark participants for aggregation on the entire production
period. In practice, we could consider updating the ensemble of base models
when the simulated forecasts start to diverge from the data, as is the case
for well P19. This requires generating a new ensemble of geostatistical real-
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Fig. 10 Values simulated for the 104 models (green lines — or grey lines —, depending
on whether the simulations were selected for the interval forecasts), observations (red solid
line —), set S of scenarios (upper and lower bounds given by black dotted lines - - -), and
interval forecasts output by Ridge (upper and lower bounds given by blue solid lines —).
Values of λ used are written on the graphs. The grey vertical line denotes the beginning of
the prediction period.
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Fig. 11 Values simulated for the 104 models (green lines —), observations (red solid
line —), set S of scenarios (upper and lower bounds given by black dotted lines - - -),
and interval forecasts output by EWA (upper and lower bounds given by solid lines —).
Values of η used are written on the graphs. The grey vertical line denotes the beginning of
the prediction period.



24 Deswarte, Gervais, Stoltz & Da Veiga

0 1000 2000 3000 4000
Time (days)

2200

2400

2600

2800

BH
P 

(p
si)

   = 1.0E3
BHP_I1

0 1000 2000 3000 4000
Time (days)

0

500

1000

1500

2000

Oi
l r

at
e 

(s
tb

/d
)

   = 1.0E6
QO_P19

0 1000 2000 3000 4000
Time (days)

0

500

1000

1500

2000

W
at

er
 ra

te
 (s

tb
/d

)

   = 1.0E4
QW_P14

0 1000 2000 3000 4000
Time (days)

2200

2400

2600

2800

BH
P 

(p
si)

   = 5.0E4
BHP_I1

0 1000 2000 3000 4000
Time (days)

0

500

1000

1500

2000

Oi
l r

at
e 

(s
tb

/d
)

   = 1.3E7
QO_P19

0 1000 2000 3000 4000
Time (days)

0

500

1000

1500

2000

W
at

er
 ra

te
 (s

tb
/d

)

   = 1.0E6
QW_P14

0 1000 2000 3000 4000
Time (days)

2200

2400

2600

2800

BH
P 

(p
si)

   = 1.0E6
BHP_I1

0 1000 2000 3000 4000
Time (days)

0

500

1000

1500

2000

Oi
l r

at
e 

(s
tb

/d
)

   = 3.2E8
QO_P19

0 1000 2000 3000 4000
Time (days)

0

500

1000

1500

2000

W
at

er
 ra

te
 (s

tb
/d

)

   = 1.0E8
QW_P14

Fig. 12 Values simulated for the 104 models (green lines — or grey lines —, depending
on whether the simulations were selected for the interval forecasts), observations (red solid
line —), set S of scenarios (upper and lower bounds given by black dotted lines - - -), and
interval forecasts output by Ridge (upper and lower bounds given by blue solid lines —).
Values of λ used are written on the graphs. The grey vertical line denotes the beginning of
the prediction period.

izations for the petrophysical properties that is more suitable in some sense.
More generally, the choice of the base ensemble should be investigated in more
details in future work to improve the applicability of the proposed aggregation
approaches.

6. Conclusions and perspectives

In this paper, we investigated the use of deterministic aggregation algorithms
to predict the future production of a reservoir based on past production data.
These approaches consist in aggregating a set of base simulated forecasts to



Sequential model aggregation for production forecasting 25

0 1000 2000 3000 4000
Time (days)

2200

2400

2600

2800

BH
P 

(p
si)

   = 1.0E-3
BHP_I1

0 1000 2000 3000 4000
Time (days)

0

500

1000

1500

2000

Oi
l r

at
e 

(s
tb

/d
)

   = 6.3E-6
QO_P19

0 1000 2000 3000 4000
Time (days)

0

500

1000

1500

W
at

er
 ra

te
 (s

tb
/d

)

   = 1.0E-5
QW_P19

0 1000 2000 3000 4000
Time (days)

2200

2400

2600

2800

BH
P 

(p
si)

   = 3.2E-5
BHP_I1

0 1000 2000 3000 4000
Time (days)

0

500

1000

1500

2000

Oi
l r

at
e 

(s
tb

/d
)

   = 1.6E-6
QO_P19

0 1000 2000 3000 4000
Time (days)

0

500

1000

1500

W
at

er
 ra

te
 (s

tb
/d

)

   = 1.0E-6
QW_P19

0 1000 2000 3000 4000
Time (days)

2200

2400

2600

2800

BH
P 

(p
si)

   = 1.0E-5
BHP_I1

0 1000 2000 3000 4000
Time (days)

0

500

1000

1500

2000

Oi
l r

at
e 

(s
tb

/d
)

   = 1.0E-7
QO_P19

0 1000 2000 3000 4000
Time (days)

0

500

1000

1500

W
at

er
 ra

te
 (s

tb
/d

)

   = 1.0E-7
QW_P19

Fig. 13 Values simulated for the 104 models (green lines —), observations (red solid
line —), set S of scenarios (upper and lower bounds given by black dotted lines - - -),
and interval forecasts output by EWA (upper and lower bounds given by solid lines —).
Values of η used are written on the graphs. The grey vertical line denotes the beginning of
the prediction period.

predict production at the next time step. To answer the need for longer-term
predictions in reservoir engineering, an extension of these approaches was de-
veloped for multi-step-ahead predictions that provides interval forecasts based
on some putative observations in the prediction period.

These approaches were applied on the Brugge test case. The one-step-ahead
forecasts were globally satisfactory, even very satisfactory. For longer-term pre-
dictions, the proposed approaches yield mixed results. Sometimes they can lead
to accurate and narrow interval forecasts, and sometimes they can fail in pro-
viding an interval forecast that is narrower than the initial putative interval or
that contains most of the future observations. This may be due to the lack of
relevance of the set of base forecasts, not informative enough as far as future
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observations are concerned. More research is needed to find automatic ways
to correct inaccurate sets of base forecasts.

In the future, and once the methodology for longer-term predictions is fully
developed, it would be interesting to test the proposed approaches on other
reservoir case studies. New developments could also be envisioned, such as the
extension of Lasso to multi-step-ahead predictions. Another interesting work
would be to identify quantitative criteria to validate the interval forecasts
output by the aggregation techniques. Finally, the aggregation was performed
here time-series by time-series, meaning one property and one well at a time.
In the future, it would be interesting to consider a simultaneous aggregation
of all time-series, with identical weights for all of them. This could pave the
way to other applications, such as the prediction of the dynamic behavior at
a new well, or a better characterization of the model parameters.
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