Large deviations and heterogeneities in driven or non-driven glassy systems.

Estelle Pitard

To cite this version:
Estelle Pitard. Large deviations and heterogeneities in driven or non-driven glassy systems.. EPJ Web of Conferences, EDP Sciences, 2013, 44, pp.44, 03001 (2013). 10.1051/epjconf/20134403001 . hal-01939701

HAL Id: hal-01939701
https://hal.archives-ouvertes.fr/hal-01939701
Submitted on 1 Jun 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Large deviations and heterogeneities in driven or non-driven glassy systems

Estelle Pitard
CNRS/ Université Montpellier 2, Laboratoire Charles Coulomb, 34090 Montpellier, France

Abstract. We give a short overview of the results for large deviations of dynamical quantities obtained for models of glassy systems. We introduce the paper with the study of kinetically constrained models (KCMs), first without external forcing. In these models, it has been shown using the thermodynamic formalism for histories, that there is a coexistence between an active and an inactive phase. Later, it has been found that adding a driving field to a KCM model leads to a singularity in the large deviation function of the current at large fields. Finally we report on recent studies on realistic glassy systems, and open directions for future research.

1 Introduction

Glasses are still a challenge for theorists. After decades of active research, it has become evident that structural and static differences between supercooled liquids and glasses are minute, and that dynamics are essential to understand the nature of glasses. Many studies rely on theories based on a complex energy landscape to account for both thermodynamic and dynamical features (see [1]). Here, we review on results obtained in the framework of simple models (KCMs- Kinetically Constrained Models) for which no consideration on energy is needed. These models [2], for which the focus is put on dynamical rules, allow for the systematic study of relevant order parameters for space-time trajectories such as the activity \(K(t) \) or the integrated current \(Q(t) \), and of their fluctuations, more precisely their large deviation function.

In the stationary state of these models, there is a coexistence between active and inactive trajectories. These trajectories can be probed by tuning an external parameter \(s \), which plays the role of a chaoticity temperature. In mean-field as well as in finite dimensional models, this translates into a singularity in the large deviation function for the activity at \(s = 0 \). This is a first-order transition, characterized by a related discontinuity in the average activity.

The study of driven KCMs reveals the same kind of dynamical phase transitions, for the activity as well as for the integrated current; moreover it becomes more evident to relate this transition to microscopic spatial heterogeneities of the current at large fields.

Finally we will present recent results for large deviations in realistic glasses, for which the computational task remains a challenge.

2 Glassy lattice models

The study of large deviations for dynamical quantities is now a subject of expanding interest. It concerns the study of out-of-equilibrium models, the simplest ones being the SEP (Symmetric Exclusion Process) and ASEP (Asymmetric Exclusion Process) and can be applied to chaotic systems, dissipative systems, turbulence...

It has been realized recently that the large deviation approach can encompass both the equilibrium thermodynamics ensemble formalism, and a thermodynamics formalism of space-time trajectories which can describe out-of-equilibrium properties [3]. In this thermodynamics formalism of histories, the theory is easier to formulate and results are more tractable if the models are Markovian [4, 5, 18]. Apart from analytical results which are scarce in finite dimensions (see however [6, 7]), one has to rely on different numerical methods for the computation of large deviations and cumulants of the dynamical observables. These are Trajectory Path Sampling (TPS)[15], cloning algorithm [16, 17], and density-matrix renormalization group [19–21].

We briefly present here the formalism that can be used for medium-field and finite-dimensional KCMs [11, 12] for which a first-order dynamical phase transition is found. Let us mention some other works on disordered systems, such as spin glasses [8, 9], and REM (Random Energy Model)[10] for which phase transitions between active and inactives states are also found.

KCMs are spin models on a lattice (or lattice gases), designed to mimic steric effects in amorphous materials. On each node of the lattice one puts a spin variable (or, equivalently, an occupation number) which can take two possible values. The value \(s_i = 1 \), or \(n_i = 1 \) defines a mobile-active state (which corresponds, in a coarse-grained view of an amorphous material, to a region of low density, with fast dynamics). If \(s_i = -1, n_i = 0 \), one has on the con-
trary a blocked/inactive state (region of high density, and slow dynamics). There is no interaction between spins but the dynamical evolution is dictated by specific dynamical rules. In the simplest case of the Fredrickson-Andersen (FA) model in 1 dimension: a spin can flip only if at least one of its nearest neighbours is in the mobile state. In particular, such transitions $\uparrow\downarrow\uparrow=\downarrow\uparrow\downarrow$ are forbidden. In other words, this is a diffusive system with geometrical dynamical constraints. In such systems, it is known that active and inactive particles self-organize in space, leading to a slow, glassy relaxation.

How to classify time-trajectories and their activity? Following [4] one defines the activity $K(t)$ of a trajectory as the number of flips between 0 and t, given a history, namely a succession of configurations $C_0 \to C_1 \to \ldots \to C_t$. For a Markovian system, the evolution of the occupation probability follows a master equation: $\frac{d}{dt} P(C, t) = \sum r(C) P(C', t) - r(C) P(C, t)$, where $r(C) = \sum_{C \to C'} W(C \to C')$ and Ws are the transition rates. If one introduces s (analog of a temperature), conjugated to K, and define $\tilde{P}(C, s, t) = \sum_k e^{-sK} P(C, K, t)$, one obtains a new evolution equation for $\tilde{P}(C, s, t)$ and the generating function of K is simply $Z_k(s, t) = \sum_{C} \tilde{P}(C, s, t) = e^{-sK}$. For $t \to \infty$, $Z_k(s, t) \approx e^{\psi(s)}$, where $\psi(k)$ is the large deviation function for the activity K.

The analogy with the canonical ensemble of standard thermodynamics is straightforward. In the space of configurations, at fixed β, $Z(\beta) = \sum C e^{-\beta H} \approx e^{-Nf(\beta)}$, $N \to \infty$, the free energy $f(\beta)$ (minus) the large deviation for the energy. In the space of trajectories, at fixed s: $Z_k(s, t) = \sum_{C, k} e^{-sK} P(C, K, t) = e^{-f(s)}, t \to \infty, f_s(s)$ is free energy for trajectories and $\psi_s(s) = -f_s(s)$ is the large deviation function for the activity. The average activity in the s-state is given by $\frac{Z_k(s)}{N^t} = \frac{1}{N^t} \psi_s(s)$, and all other cumulants can be derived as well. Two distinct phases can be studied: the active phase for $K > (s, t)/(NT) > 0$ and $s < 0$; and the inactive phase for $K < (s, t)/(NT) = 0$ and $s > 0$. The central question is to try and understand whether there is a phase transition separating those two phases.

A simple solution can be found for the mean-field FA[11, 12]. In this model, one chooses the transition rates as: $W_i(0 \to 1) = k' \rho/2$, $W_i(1 \to 0) = k = \frac{n+1}{N}$, where $n = \sum n_i$ is the number of mobile sites. The solution can be formulated as a variational principle for $\psi_s(s)$, involving a Landau-Ginzburg free energy $F_k(\rho, s) (\rho$: density of mobile spins) with $F_k(\rho, s) = -2e^{-\beta(\rho(1-\rho) + k')^1/2} + k(1-\rho)$ and $\psi_k(s) = -\min_{\rho} F_k(\rho, s)$. The inspection of the minima of $F_k(\rho, s)$ at fixed s (see Figure 1) allows to find the following phase diagram: (i) $s > 0$: an active phase with $\rho_k(s) = 0$, $\psi_k(s)/N = 0$; (ii) $s < 0$: coexistence between $\rho_k(0) = 0$ and $\rho_k(\infty) = \rho'$, $\psi_k(0) = 0$, this is a first order phase transition. (iii) $s < 0$: active phase, $\rho_k(s) > 0$, $\psi_k(s)/N > 0$.

The importance of the dynamical constraints can be checked by looking at the non-constrained version of the mean-field FA model, namely with transition rates: $W_i(0 \to 1) = k'$, $W_i(1 \to 0) = k$, for all i. Then the variational free energy reads: $F_k(\rho, s) = -2e^{-\beta(\rho(1-\rho) + k')^1/2} + k'$. How to classify time-trajectories and their activity? Following [4] one defines the activity $K(t)$ of a trajectory \ldots
Large deviation function close to 0. In this case $E = E_0 \pm |E_0 - E| = \beta \Delta t$, where Δt is the time needed for a particle to move a distance of the order of a molecular diameter.

Whether s^* is strictly zero or not is still an open question, which is difficult to confirm through numerical simulations, since they require a very precise finite-size study. In [25], the large deviation function for the activity was computed, using a finite-size study and the cloning algorithm. In this case, the activity, related to the escape rate of a particle is defined as: $K(t) = \int_0^t dt' V_{eff}(t')$ where $V_{eff}(t) = \sum_i \left(\frac{1}{2} |F_i|^2 + \frac{1}{2} \nabla_i \cdot F_i \right)$ and $F_i = -\sum_j \nabla V(r_i - r_j)$ is the force acting on particle i given the interaction potential $V(r_i - r_j)$. Up to numerical limitations, the transition seems to occur at s^* equal to zero (see Figure 4). However, the difference of definition of the activity observable in [29] and [25] may explain the differences found in the two studies.

In [30] a "softened" FA model was studied, designed to be more realistic than the pure FA model, as it relaxes the dynamical constraints so that motion is possible, at a slow rate, even in blocked regions. In this model it can be shown that the dynamical phase transition takes place at s^* strictly positive.

Finally [31, 32] have investigated in more detail particle systems in order to understand the link between structure and activity in a given phase, and see how energy landscape and dynamical properties can be related (or not) in realistic glasses. Many answers are however not clear and further work will be needed to clarify the existence of a dynamical phase transition in realistic models of glasses; this will in particular include a comparison between numerical methods in the perspective of reducing long computation times.

5 Acknowledgements

Numerous collaborators and colleagues have to be acknowledged, through their contributions and stimulating discussions: Frédéric van Wijland, Juanpe Garrahan, Vivien Lecomte, Francesco Turci, Mauro Sellitto, Kristina van Duijvenduijk, David Chandler, Chris Fullerton, Rob
Figure 4. Large deviation function for the activity in a 3d mixture of Lennard-Jones particles, from ref [25]. The finite size study hints at a transition at $s = 0$.

Jack, Jorge Kurchan, Christian Maes, Kirone Mallick, Carlo Vanderzande and others.

References