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Abstract

We propose a new methodology to select and rank covariates associated to a

variable of interest in a context of high-dimensional data under dependence

but few observations. The methodology imbricates successively clustering of

covariates, decorrelation of covariates using Factor Latent Analysis, selection

using aggregation of adapted methods and finally ranking. Simulations study

shows the interest of the decorrelation inside the different clusters of covariates.

The objective of our method is to determine profiles of patients linked with

the outcome of a treatment. We apply our method on transcriptomic data of

n = 37 patients with advanced non-small-cell lung cancer, who have received

chemotherapy. The survival time of these patients being known, we apply our

method to select the covariates that are the most linked with the outcome

treatment among a set of more than 50 000 transcriptomic covariates. We

obtain different transcriptomic profiles for the patients whose survival time was

short, versus the other patients with longer survival time.

Keywords: Variable selection, genetic profiles, High dimension, Multiple

testing procedures, Aggregated methods, Correlated covariates selection,
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1. Introduction

The purpose of personalised medicine is to select appropriate and optimal ther-

apies based on the context of a patientâĂŹs genetic content or other molecular

or cellular analysis. For this, the first step is to select among a set of more than

tens of thousands covariates the ones that are linked with the outcome of a given5

therapy. For instance, if we consider a transcriptomic dataset of patients with

advanced non-small-cell lung cancer who have received a treatment, we want to

select the covariates associated with the effect of this treatment. The survival

time of these patients being known, the question is to find a relation between

the treatment outcome (i.e. the survival time) and the transcriptomic profiles of10

the patients. We propose a methodology, that, firstly selects and ranks the tran-

scriptomic covariates that are the most linked with the outcome treatment, and

secondly, that visualises the profiles of the selected transcriptomic covariates,

for all the patients of the study.

More generally, the problem to detect association between a variable of interest15

and many covariates has been tackled by many biologists and statisticians [1, 2,

3, 4, 5]. A common example, coming from biology, is testing which of p genes’

expression levels given in a dataset X is linked significantly with a variable

Y , which we will call the variable of interest. The variable of interest may

be a binary variable like an outcome of treatment or it may be a quantitative20

variable such as a phenotype or physiological parameter. Sometimes, the aim

of the biologist is not necessarily to detect exhaustively all the genes involved

in his problem but to have a list of the most important of them in order to

study their biological function. For this purpose, it is interesting to rank the

genes according to the strength of their link with the variable of interest. We25

will use the gene expression example for concreteness, but our aim is to propose
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a general methodology in a context of high dimensional data (the number p of

covariates is in the order of thousands) while the total number n of samples

could be small (for instance between 25 and 100).

In this context, the covariates are high dimensional and correlated. This corre-30

lation between covariates, in a high-dimensional context, has to be taken into

account in the statistical analysis. Moreover, we are in a context of small sam-

ple size (n � p). Thus, robustness of the statistical analysis has to be quanti-

fied.

We cite here some statistical methods that have been developed to select co-35

variates in high-dimensional contexts. The state of the art about the control of

false discoveries in multiple testing procedures is very extensive. The famous

correction proposed by Bonferroni [6] to control the Family Wise Error Rate

(FWER) has been emulated and we can find a review about these methods in

[7]. Alternative methods focused on the control of the False Discovery Rate40

(FDR) [8, 9] or of the local FDR [10] or the q-value [11, 12, 13]. For a review

(in french) of the methods, see Bar-Hen et al. [3]. Regarding regression in

the framework of high dimensional data (n � p), many methods are available.

For exemple, PLS approach [14] is a kind of principal component regression.

The lasso regression [15], which performs both variable selection and regulariza-45

tion in penalizing the sums of squares by the L1-norm of the coefficients. This

method has been derived for many kinds of problem like logistic-regression in

the case of binary data or network inference [16, 17]. Another versatile tool to

select covariates in different non parametric contexts is given by the random

forests, with the concept of importance of covariates (see for instance Genuer et50

al., [18]).

Another important characteristic of the data that has to be taken into account

in the analysis of the association is the structure of covariance of the covari-

ates. Most of the multiple testing corrections make the assumption of the in-

dependence between the covariates. However it is well-known that omics data55

for instance are correlated by clusters. In the context of multiple testing, it
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has been shown, that covariance between the covariates could bias the uniform

repartition of the p-values under the null hypothesis and also inflates the vari-

ance of the estimation of the FDR [19, 20]. In [18] it is also shown that even

if the method of random forests is robust, importance of covariates calculated60

by random forests is perturbed by adding other correlated covariates. One of

the ways to deal with dependance is to model it by latent factors; it is a way

to reduce the information in supposing that the common information of the p

covariates is given by q � p latent factors as Friguet et al. in [19, 20]. More

precisely, they propose a way to correct the data according to a regression link65

with the variable of interest Y in such a way that covariates are independent

conditionally to Y . After this correction, they propose a multiple testing proce-

dure based on the Benjamini-Hochberg method [8, 9]. This method of correction

will be called FAMT correction (for Factor Analysis for Multiple Testing) in the

sequel.70

However, the framework of FAMT is to consider the data X as an only one

block of correlated covariates and has to be adapted if X is structured in sev-

eral independent clusters of correlated covariates. As we will see in Section 3,

the FAMT does not give good results if it is applied directly on the whole set of

data X, without taking into account its decomposition in independent clusters.75

Then, we propose to identify the clusters of correlated covariates before per-

forming FAMT correction on each of the clusters. The clustering of covariates

as proposed by Chavent et al. in [21] is a good way to arrange covariates into

homogeneous clusters, i.e., groups inside of which covariates are strongly related

to each other.80

Our purpose in this paper is to propose a method adapted to the selection

(and ranking) of correlated quantitative covariates associated with a variable of

interest. For this, we propose a methodology that takes into account (1) the

structure of correlation by clusters of covariates; (2) the correlation inside each

cluster of correlated covariates.85

Our methodology is divided in two steps: a pretreatment of the covariates (step
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1) and a procedure of selection of the pretreated covariates (step 2). The pre-

treatment consists of (step 1.1) detecting the independent clusters of covariates

by using the clustering of covariates proposed by Chavent et al. [21], and (step

1.2) applying a ”decorrelation” between the covariates inside each cluster using90

the analysis in factors proposed by Friguet et al. [19, 20, 22]. The method of

Friguet et al. performs a decorrelation of the covariates and compute corrected

covariates that are suitable for testing and/or regression.

After that pretreatment, we propose a procedure to select and rank the covari-

ates, by combining different selection methods that take into account the nature95

of the outcome Y (qualitative or quantitative) and the high dimensional context

(multiple testing procedures for the tests, penalised regression, ...). We define a

score for each covariate, which is defined by the number of selections among all

the selection methods involved in this step. This score can be used to classify

the covariates like in [23].100

The paper is organized as follows. In Section 2, we detail the model and explain

the principle of the main steps of our methodology: the pretreatment of the

covariates and the construction of a score of selection. Section 3 is dedicated to

simulations studies in order to assess the interest of the proposed pretreatment

on one hand and the good working of the whole selection strategy on the other105

hand. The simulations are performed in two different designs in the case where

the variable of interest is binary. Section 4 is dedicated to real data analysis,

the purpose is to select covariates that are linked with the outcome of a treat-

ment. Section 5 gives some conclusions and perspectives. An appendix gives

a simulation study in the case where the variable of interest is a quantitative110

continuous variable.
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2. Methodology

2.1. Framework and model

We suppose that we have n i.i.d replications of (Y,X) where Y is the variable of

interest, and X = (X1, X2, . . . , Xp) is the vector of covariates, taking its values

in Rp. We make the assumption that, conditionally to Y , the covariates are

decomposed into K independent clusters:

X = (X(1)
1 , . . . , X(1)

p1
, . . . X

(k)
i , . . . , X(K)

pK
) = (X(1), . . . ,X(K)),

where p1 + . . .+ pK = p.

More precisely, on one hand, we use the framework of Friguet et al. in [19]

to model each of the K different parts of the vector of covariates. Inside each

cluster X(k), the common information between the pk covariates is modeled by

regression on qk latent factors:

X
(k)
i = m

(k)
i (Y ) + b

(k)
i Z(k) + ε

(k)
i , for i = 1, . . . , pk, (1)

where Z(k) is a random qk-vector such that E(Z(k)Z(k)′) = Iqk
, b(k)

i is a qk-

vector, and ε(k) = (ε(k)
1 , . . . , , ε

(k)
pk ) is a random centered pk-vector with indepen-

dent components, and independent of Z(k). The common information contained

in X(k) is then concentrated in a small dimension space by qk latent factors Z(k).

Under the model (1), the correlation between the components of X(k), condi-

tionally to Y , is given by:

Σ(k) = B(k)(B(k))′ + Ψ(k) (2)

where Σ(k) is the covariance matrix of the data X(k), Ψ(k) is a diagonal pk × pk

matrix (the covariance matrix of ε(k)) and B(k) is a pk × qk matrix of factor

loadings (in Equation (1), b(k)
i represents the ith row of B(k)). In the above

decomposition, the diagonal elements Ψ(k)
i are also referred to as the specific
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variances of the responses X(k)
i . Therefore, B(k)(B(k))′ appears as the shared

variance in the common factor structure, and [19] define the common variance

by

cvk = trace(B(k)(B(k))′)
trace(Σ(k))

. (3)

On the other hand, we suppose that the informations specific at each cluster115

(that is vectors (Z(k), ε(k))1≤k≤K) are independent, then the covariance matrix

conditional to Y of the whole vector of covariates has the form given by the

Figure 1.

X(1) X(2) X(3) X(K)

q1	factors

0
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0

…….

qK	factors

Cluster	2

Cluster	3

…….
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X(1)

X(2)

X(3)

X(K)

Cluster	1

Figure 1: Conditional covariance structure of covariates

2.2. Main prodecure

The procedure is decomposed in a pretreatment of the covariates (step 1) and120

in a selection method of the covariates (step 2).

2.2.1. Step 1: pretreatment of data (clustering of covariates and decorrelation

inside clusters)

The aim of this pretreatment is to perform a decorrelation of the covariates,

to obtain corrected covariates that are suitable for testing and/or regression.125

Indeed, the correlation between covariates has an impact on all the classical
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selection procedures: the conventional methods, namely the multiple testing

procedures (p-value adjustment methods such as Bonferroni [6], Benjamini-

Hochberg procedure [8, 9], q-value [11, 12, 13], or local FDR [2], [3]) are all

built on the assumption that covariates are independent. As a results, they are130

no longer promising. A very detailed discussion can be found in the Friguet’s

thesis [24].

In estimating together the latent factors Z(k) and the coefficients of regressions

(B(k),Ψ(k)) by an E.M. algorithm in model (1), Friguet et al. [19] can correct

the covariates such that they are almost independent and as a result, suitable for135

multiple testing procedures or selection by regression or random forests. More

precisely, the corrected data, noted X(k)?
i = X

(k)
i −b

(k)
i Z(k) = m

(k)
i (Y )+ε(k)

i , i =

1, . . . , pk, lead to a standard multiple regression problem where the errors ε(k)
i

are independent. Note that this correction of the data X is done conditionally

on the variable of interest Y .140

Of course, the whole vector X satisfies assumption of Equation (1), and [19] ap-

plies this decorrelation procedure on the whole set of covariates X. But instead

of applying Friguet’s procedure on the whole set of covariates X, we propose to

first detect the different clusters (X(k))1≤k≤K and then to apply the decorrela-

tion method on each cluster. Indeed, some simulation studies [25] have shown145

that the decorrelation was degraded by the dimension of the vector of covariates,

whereas it was better after the detection of the independent clusters. By this

way, the covariates selection procedure can be highly improved by clustering of

covariates (step 1.1) before applying factor analysis to correct the correlation

within each cluster (step 1.2), as it is shown in Section 3.150

Step 1.1: clustering of covariates. We apply a clustering of covariates in the

purpose to find clusters as we assumed in Section 2.1.

We propose to use the Chavent et al. [21] algorithm to cluster covariates into

homogeneous clusters and thus to reveal structures. This algorithm maximizes

an homogeneity criterion, where the homogeneity of a cluster is defined by the155
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sum of squared Pearson correlations between the covariates present in the cluster

and the first principal component of this cluster. This algorithm is expected

to roughly find the highly correlated clusters of covariates as we assumed in

the Section 2.1. The procedure proposes also a method (based on bootstrap

resampling) to find the number K of clusters if it is unknown.160

Step 1.2: Factor analysis to correct dependent structure in each cluster. As

already explained in the beginning of this section, clustering is followed by

decorrelation inside each cluster using the Friguet’s procedure.

At the end of this pretreatment procedure, we obtain corrected data, noted X∗

in the sequel.165

2.2.2. Step 2: Aggregation of statistical methods applied on the resulting dataset

The statistical methods proposed in this part are not fixed and can be adapted

by the practitioner according to its preferred selection methods and the char-

acteristics of the data (nature of variable of interest Y , samples’ sizes and so

on...).170

The idea is the following: we choose several methods to select the pretreated

covariates X?. Suppose that you perform L methods, then for each covariate

X?
j , you obtain a score Sj ∈ {0, 1, . . . , L} that is the number of selections among

the L methods. By this way, you can rank the covariates according to their link

with the outcome Y .175

For instance, in the examples developed in our simulation studies and in real

data, Y is binary, the size of the samples are low and we choose eight different

methods of selection: five different multiple testing procedures applied to the

Wilcoxon test (Bonferroni, Benjamin-Hochberg, q-values, local FDR, FAMT),

logistic regression penalised by Lasso, and two selections by random forests180

(threshold step and interpret step, see [18]). The outcomes of this procedure

are the scores Si, i = 1, . . . , p which are integers included in [0, 8]. For example,
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if Si = 8, then the corresponding variable has been selected by all the eight

methods, whereas if Si = 0, the corresponding variable has been selected by

none of them. The scores can be used to rank the covariates according to the185

strength of their link with the variable of interest.

In the sequel, we call our procedure ARMADA for AggRegated Methods for co-

vAriates selection under Dependence.

3. Simulations

We first explain the two different simulation designs in Section 3.1. We then190

describe the effect of the pretreatment in Section 3.2 and finally, we study the

selection procedure itself in Section 3.3.

3.1. Simulation designs

We propose a simulation study with p = 1600 covariates and sample size n = 60.

We first describe how to create dependance in the covariates X, then we present195

two simulation designs in a classification study. One design in a regression case

is given in Appendix A.

The covariates X = (X(k))k=1,...,4 are clustered into four clusters, which are

independent conditionally to Y , each of them containing pk = 400 covariates.

For this, before to model the dependence with the outcome Y , we generate200

for each cluster k, a preliminary vector X̃(k) that is a gaussian 400-vector,

with mean 0 and non-diagonal variance-covariance matrix Σ(k). The correlation

between the covariates X̃(k)
j inside the cluster k is designed by a factor analysis

model described in Equation (2). More precisions on the simulation procedure

of data with covariance design defined by (2) can be found in Friguet’s thesis205

[24]. We simulate data with common variances cv(k) equal to 0.8 in each cluster

(recall that the common variance is defined in Equation (3)). Moreover, the

numbers of latent factors in each cluster are (q(1), . . . , q(4)) = (4, 6, 8, 10).

10



Now, we create the dependence with outcome Y in perturbing some component

of X̃. The two following simulation designs consider an equiprobable two-class210

problem, Y ∈ {0, 1} (i.e. Y = 1 for n
2 subjects, and Y = 0 for n

2 subjects).

In the two designs, there are either 160 (for design 1) or 240 (for design 2)

influential covariates, whose links with the response variable Y have different

intensities. More precisely, in both cases, the response variable Y is the most

strongly linked with the 10 first covariates of each cluster, and the strength of215

the link is decreasing in the successive clusters of 10 influential covariates. The

link between the influential covariates and Y is described for each design in the

two following sections.

3.1.1. Design 1

This simulation design is inspired from the simulation design of Friguet et220

al. [19]. Y is linked with 160 influential covariates in X, the others being noise

covariates. More precisely,

• for the m1 = 40 first covariates of each cluster, we had dependence with

Y to X̃(k)
j by setting X(k)

j = X̃
(k)
j + δj1Y =0 where:

– δj = 1.5 for j = 1, . . . , 10,225

– δj = 1 for j = 11, . . . , 20,

– δj = 0.75 for j = 21, . . . , 30,

– δj = 0.5 for j = 31, . . . , 40.

• X(k)
j = X̃

(k)
j for the m0 = 360 remaining covariates of each cluster, such

that they are independent of Y .230

3.1.2. Design 2

This simulation design is inspired from the toys-data of Genuer et al. [18]. Y

is linked with 240 influential covariates in X, the others being noise covariates.

11



Let us define the simulation model by giving the conditional distribution of Xi

for Y = y :235

• For the m1 = 60 first covariates of each cluster, X(k)
j = X̃

(k)
j + δj where

δj is a random variable modelled according to the value j:

– for j = 1, . . . , 10, with probability 0.7, δj ∼ N (3y, 1), and with prob-

ability 0.3, δj ∼ N (0, 1);

– for j = 11, . . . , 20, with probability 0.7, δj ∼ N (2y, 1), and with240

probability 0.3, δj ∼ N (0, 1);

– for j = 21, . . . , 30, with probability 0.7, δj ∼ N (y, 1), and with prob-

ability 0.3, δj ∼ N (0, 1);

– for j = 31, . . . , 40, with probability 0.3, δj ∼ N (3y, 1), and with

probability 0.7, δj ∼ N (0, 1);245

– for j = 41, . . . , 50, with probability 0.3, δj ∼ N (2y, 1), and with

probability 0.7, δj ∼ N (0, 1);

– for j = 51, . . . , 60, with probability 0.3, δj ∼ N (y, 1), and with prob-

ability 0.7, δj ∼ N (0, 1).

• X(k)
j = X̃

(k)
j for the m0 = 340 remaining covariates of each cluster, such250

that they are independent of Y .

We can remark that these two designs respect the conditional covariance matrix

given in Figure 1. The design 1 is exactly in the scope of our model given by

Equation (1). Design 2 differs a little bit from the model of Equation (1) because

of the term of regression on Y . Note that in real data analysis, we don’t know255

the model from which they are generated. It is why it is interesting to analyse

the performance of our method on different kinds of simulated data.

12



3.2. Interest of our data pretreatment

In order to emphasize the interest of our data pretreatment, we compare the

results of a Wilcoxon test after three different data pretreatments:260

Procedure 1: nothing is done on the dataset X.

Procedure 2: the covariates X are decorrelated with the factor analysis procedure FAMT

[19, 22], taking Y into account, given a new dataset X∗Y .

Procedure 3: the 4 clusters are estimated with the procedure of Chavent et al. [21],

implemented in the R package ClustOfVar; then the covariates are decor-265

related in each cluster, taking Y into account, with the factor analysis

procedure of Friguet et al. [19, 22], implemented in the R package FAMT.

This gives a new dataset X†Y obtained by the concatenation of the decor-

related clusters.

Remark: our data pretreatment is the Procedure 3. We have supposed that the270

number of clusters is known. If that is not the case, the user can choose its

own number of clusters by using the graphical tools of the ClustOfVar procedure

(plots of the dendrogram).

Our objective is to find out the differently expressed covariates in the two groups

(groups Y = 0 and Y = 1) with sample sizes n
2 = 30. For this, we perform275

Wilcoxon tests on each of the p pretreated covariates of the dataset (that is X

for Procedure 1, X∗Y for Procedure 2, X†Y for Procedure 3), given a three sets

of p p-values. For each of these procedures, the selected covariates are those

with p-values lower than 0.05. We compare these procedures on N = 100 runs

of (X, Y ). For the comparison, we count the number of influential covariates280

that are correctly detected (this number is noted TP, for True Positive), this

indicator gives an idea of the sensibility of the test after the procedure. To assess

the specificity, we count the number of non-influential detected covariates (this

number is noted FP, for False Positive). Note that the perfect method would

detect all the influential covariates (that is 160 in design 1 and 240 in design285

2) and no False Positive. However, according to the detection threshold chosen
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for the p-value, the expected number of FP is 72 for design 1 and 68 for design

2. The results are shown in Figure 2 for the design 1 and in Figure 3 for the

design 2.

1 2 3

10
0

12
0

14
0

Procedure

nb
 o

f T
P

1 2 3

50
20

0
35

0

Procedure

N
b 

of
 F

P

Figure 2: Number of true positive tests (top), false positive tests (bottom) in the design
1 according to the different pretreatment procedures (1: Nothing, 2: FAMT, 3: clustering
followed by FAMT in each cluster). Dotted lines: expected number of FP. Boxplots are
calculated on N = 100 runs.
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Figure 3: Number of true positive tests (top), false positive tests (bottom) in the design
2 according to the different pretreatment procedures (1: Nothing, 2: FAMT, 3: clustering
followed by FAMT in each cluster). Dotted lines: expected number of FP. Boxplots are
calculated on N = 100 runs.

If we analyse the results given by Figures 2 and 3, we can see that Procedure 1290

is in fact the one that has the lowest rate of FP but its power is also the poorest

whatever the design. Our Procedure is the one that reduces the mean and the

variability of the distributions of the false positive rates. The power of our

Procedure is comparable with Procedure 2 with a little bit better performance

in design 1 and a little bit worse one in design 2. This results show the interest295

of our proposed pretreatment before performing selection.

3.3. Results of the whole method (pretreatment and selection)

In order to describe the performances of our method, we show in Figures 4 and

5 the mean ARMADA scores obtained on the N = 100 runs of (X, Y ) for each

design. The scores are given for all the covariates individually, and also by300

group of influential and noise covariates (the groups of influential covariates are

noted by ”1.5”, ”1”, ”0.75”, ”0.5” in the design 1, and by ”(0.7,3)”, ”(0.7,2)”,
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”(0.7,1)”, etc. in the design 2 (see Section 3.1); and the group of noise covariates

is noted by ”-”).
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Figure 4: Top: mean of the ARMADA scores obtained by all the covariates. Bottom: boxplot of
the scores of the covariates, ranked by levels of link with Y . Means and boxplots are calculated
on N = 100 runs. Simulation in the design 1.
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Figure 5: Top: mean of the ARMADA scores obtained by all the covariates. Bottom: boxplot of
the scores of the covariates, ranked by levels of link with Y . Means and boxplots are calculated
on N = 100 runs. Simulation in the design 2.

We can see on the Figures 4 and 5 that the scores give a clear ranking of the305

covariates, according to the strength of their link with the response variable Y .

The highest scores are obtained by the covariates which are the most strongly

linked with the response variable Y . The ARMADA method is particularly per-

formant in the design 1, the mean score clearly distinguishes the five groups of

covariates according to their link with Y . The distribution of the individual310

scores inside each group is given by the boxplots. For design 1, scores clearly

separate the influential covariates from the others; and inside the influential co-

variates the two first groups are clearly separated of the last one. The method

is not so performant for the design 2 probably because we are note exactly in

the model of the study (Equation (1)) but also because the strength of the link315

with Y is low excepted for the two first groups of covariates that have scores

which are well separated from the others by the selection method. Whatever

the design, we can precise that around 95% of the noise covariates obtained a

ARMADA-score that was exactly 0.
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ARMADA Wilcoxon FAMT
1.5 0.99 (0.04) 0.99 (0.07) 0.99 (0.02)
1 0.97 (0.15) 0.85 (0.35) 0.95 (0.20)

0.75 0.91 (0.27) 0.62 (0.48) 0.82 (0.38)
0.5 0.79 (0.40) 0.33 (0.47) 0.52 (0.49)
- 0.05 (0.23) 0.05 (0.22) 0.10 (0.30)

Table 1: Results of the N = 100 runs in the design 1: rates of selection of the different groups
of influential and noise covariates by the method ARMADA, the Wilcoxon test and the FAMT
procedure. The corresponding standard deviations are given in brackets.

ARMADA Wilcoxon FAMT
(0.7-3) 0.99 (0.08) 0.99 (0.07) 0.99 (0.04)
(0.7-2) 0.92 (0.27) 0.92 (0.26) 0.96 (0.17)
(0.7-1) 0.44 (0.49) 0.43 (0.49) 0.58 (0.49)
(0.3-3) 0.54 (0.49) 0.41 (0.49) 0.61 (0.48)
(0.3-2) 0.32 (0.46) 0.28 (0.45) 0.41 (0.49)
(0.3-1) 0.12 (0.32) 0.12 (0.33) 0.19 (0.39)

- 0.05 (0.23) 0.05 (0.22) 0.09 (0.29)

Table 2: Results of the N = 100 runs in the design 2: rates of selection of the different groups
of influential and noise covariates by the method ARMADA, the Wilcoxon test and the FAMT
procedure. The corresponding standard deviations are given in brackets.

3.4. Comparison with other selection methods320

We propose the following selection criterion in our procedure: the selected co-

variates are those with scores greater or equal to 1.

We compare this selection procedure with two other selection methods:

• the Wilcoxon test: the selected covariates are those with raw-pvalues (i.e.

p-values without any correction) lower than 0.05,325

• the FAMT procedure [22]: the selected covariates are those with adjusted

p-values lower than 0.05.

To compare the three selection methods, Tables 1 and 2 give the rates of selec-

tion for each group of influential covariates, and for the group of noise covari-

ates.330

• We can see that our method respect the expected rate of false positives

that is not the case for the FAMT method which exhibits a greater rate

18



of 10 %.

• Moreover, our method gives the best results in the design 1. The rate of

selection of the influential covariates is very good compared with the other335

methods even if the strength of the link is poor.

• In the design 2, our method is competitive with the FAMT procedure for the

influential covariates, but again FAMT procedure has more false positives

than ours and consequently more than expected.

Finally, we can conclude with the ROC curves given in Figure 6 that our method340

outperforms the two others selection methods (the ordinates of the points of

the ARMADA ROC curve are all higher than the ordinates of the points of the

two other ROC curves). Note that the ROC curves of the design 2 give the

impression that our method is not competitive with the two others, but this

is only caused by the fact that we have traced a solid line between the points345

(1-specificity, sensibility)ARMADA score=0 and (1-specificity, sensibility)ARMADA score=1.

The ROC curves have been obtained by the mean of the N = 100 ROC curves

obtained in the N = 100 runs of (X, Y ).
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Figure 6: ROC curves for the three selection methods, in the case of design 1 (top), design 2
(bottom).

4. Application to real data

We apply our method on transcriptomic data of n = 37 patients with advanced350

non-small-cell lung cancer, who have received chemotherapy. Even if we are

aware of the fact that chemotherapy is not a target therapy, the problematic is

really to select suitable transcriptomic covariates in the purpose to detect pro-

files associated with the effect of a treatment. For each patient, we have 51 336

transcriptomic covariates, and its survival status: 24 patients whose death oc-355

curred before 12 months and 13 patients whose death occurred after 12 months,

this criteria of death before one year is very common in clinical trials. We ap-

plied a first filtering of the covariates, where we decided to ignore the covariates

for which the Wilcoxon test does not detect a difference between the 24 patients

whose survival time is lower than 12 months and the 13 other ones (we elimi-360

nate covariates with Wilcoxon-pvalue greater than 0.05). After this filtering we

obtained a dataset with n = 37 patients and p = 6810 covariates.

20



4.1. Classification study

In a first time, the biological question was to find the genes which can explain

a survival time greater or lower than 12 months. We then consider a binary365

response variable: Y = 1 for the 24 patients whose survival time is lower than

12 months and Y = 0 for the 13 patients whose survival time is greater than

12 months. The results are shown in Table 3: 10 covariates are particularly

important, with a score equal to 7, whereas 2827 covariates have a score equal

to 0, and 3983 covariates have a score greater or equal to 1.

Score 0 1 2 3 4 5 6 7 8
Number of covariates 2827 553 460 596 1170 888 306 10 0

Table 3: Distribution of the covariates scores in the transcriptomic dataset: classification
study.

370

It is clear that, the biologist will not focus on the 3983 covariates with a positive

score. But the method clearly gives a hierarchy between the genes and it is sure

that the the function of the 10 genes with a score at 7 has to be studied to

understand its link with the ”success” of the treatment.

4.2. Regression study375

As the survival time was known for all the 37 patients, we also apply our method

on the same dataset (6810 covariates) but here, Y is the survival time. We then

have a regression problem. We have used eight selection methods in the Step 2

of our method: five different multiple testing procedures applied to the Pearson

correlation test (Bonferroni, Benjamin-Hochberg, q-values, local FDR, FAMT),380

regression penalised by Lasso, and two selections by random forests (threshold

step and interpret step, see [18]). The results are given in Table 4.

Score 0 1 2 3 4 5 6 7 8
Number of covariates 3988 89 456 509 984 692 86 5 1

Table 4: Repartition of the covariates scores in the transcriptomic dataset: regression study.
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4.3. Comparison between regression and classification studies

The comparison between the classification and regression studies is given in

Table 5. This table is a little disappointing, because regression and classification385

do not select the same covariates. Whatever, among the covariates with a

C-score equal to 7, there is only one with a R-score lower than 4 (equal to

0 !). But this two analyses are not looking the same kind of link with the

covariates. w Moreover, these two approaches give two tools to detect influential

covariates. We can combine these two approaches and consider the covariates390

that are selected by at least one approach, or consider the covariates that are

selected by both of them. In the Figure 7, we show the heatmap of the selected

covariates which have a classification score and a regression score greater than

some threshold.

The visualisation of the co-clustering of the selected genes and the survival395

leads to the distinction of three different groups of patients (noted P1, P2, P3

in Figure 7) of respective sizes 7, 8, 22 from the left to the right of the x-axis.

The co-clustering identifies also two clusters of genes (noted G1 and G2 for

simplicity).

All the people except 2 of the two first group P1 have a life status Y = 1 (among400

the two exceptions, one is at the threshold with a survival of 11.5 months), all of

the people of the third group P3 have a life status Y = 0. The selected covariates

clearly separates groups P1 and P3 : the patients of the group P1 have a low

expression of the covariates in G1 and a high expression of the covariates in G2

and the inverse for group P3. Patients of group P2 have intermediate expressions405

according the two others groups.
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Classification score

Regression 0 1 2 3 4 5 6 7
score

0 2227 328 273 337 531 257 34 1
1 41 7 3 9 17 10 2 0
2 131 35 39 52 119 71 9 0
3 119 48 44 50 117 114 17 0
4 174 65 56 86 256 241 102 4
5 119 64 40 57 116 176 116 4
6 15 4 4 5 12 19 26 1
7 1 2 1 0 1 0 0 0
8 0 0 0 0 1 0 0 0

Table 5: Repartition of the covariates scores in the transcriptomic dataset. The R-scores are
given in the 9 rows, the C-scores are given in the 8 columns. For example, 41 covariates have
a R-score equal to 1, and a C-score equal to 0.

G1	

G2	

P1	 P2	 P3	

Figure 7: Heatmaps of the 342 covariates which have ARMADA scores greater or equal to 5 in
both classification and regression studies. Each column corresponds to one patient. The
x-axis represents the patients (marked with their survival time) and the y-axis represents
the covariates. The heatmap has been obtained thanks to the R package heatmaply after
co-clustering of the survival times (on the x-axis) and of the covariates (on the y-axis) with
the function hclust.
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As the number of patients n = 37 is small compared to the number of covariates

even after filtering (p = 6810), we have checked our results with a bootstrap

study. The results, for instance in the case of classification, are shown in Figure

8. We can see that the distributions of the bootstrap means of the C-scores410

have a quite small dispersion. If we consider the covariates which have a non

null C-score, they all have a bootstrap mean C-score greater than 1. And if we

consider the most important covariates (the 10 covariates that have a C-score

equal to 7) : their corresponding bootstrap means of C-scores are all greater

than 5.84 and lower than 7.415
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Figure 8: Distributions of the bootstrap mean of C-scores (i.e. means of C-scores obtained on
B = 50 bootstrap samples), versus their respective C-score, for all the p = 6810 covariates.

5. Conclusion and perspectives

We have proposed a new methodology which is able to select the covariates

(here the genes) that are linked with a variable of interest (here the treatment

of an outcome). After this selection obtained with our method, it is then easy

to visualise the selected genes for all the patients, and to classify the genetic420

profiles of patients with respect to their treatment outcome. In the case of the

treatment by chemotherapy in the advanced non-small-cell lung cancer, we have

identify three types of genetic profiles defined with two clusters of genes (noted
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G1 and G2 for simplicity):

• the patients who have an high level of expression for the genes of group425

G1 and a low level of expression for the genes of group G2 have all a low

survival time (lower than 1 year);

• on the contrary, the patients who have a low level of expression for the

genes of group G1 and an high level of expression for the genes of group

G2 have all a better survival time (greater than 1 year);430

• between these two opposite groups, we have a transitional group of pa-

tients who have intermediate expressions according to the two others

groups. Apart from two patients, the survival time in this group is greater

than 1 year (among the two exceptions, one patients has a survival time

of 11.5 months).435

This kind of results is very promising for the development of the personalized

medicine.

We are developing an R-package, called ARMADA, in order to propose our methods

to the users who want to do covariates selection in high-dimensional datasets.

The package proposes also a graphical representation of the selected covariates,440

through heatmaps, as we have presented in Figure 7.

Appendix A. Design 3: regression

In this section, we give results of simulations in the purpose to study the be-

haviour of our algorithm to select covariates linked with a continuous variable of

interest (like survival time here). We simulate X̃ = (X̃(k))k=1,...,4 as in Section

3.1 excepted that the number of latent factors q(k) are respectively 1, 4, 6 and

8, and the common variances cv(k) are respectively equal to 0, 0.3, 0.5 and 0.8

in each of the four clusters. We do not transform the covariate so that X = X̃

but the quantitative outcome Y is dependent of some covariates by a linear

regression link. More precisely, Y is linked with 5 covariates of the three first
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clusters, by the following equation:

Y = 50X(1)
1 + 40X(1)

2 + 30X(1)
3 + 20X(1)

4 + 10X(1)
5

+ 50X(2)
1 + 40X(2)

2 + 30X(2)
3 + 20X(2)

4 + 10X(2)
5

+ 50X(3)
1 + 40X(3)

2 + 30X(3)
3 + 20X(3)

4 + 10X(3)
5 + ε

where ε is a standard gaussian distribution, independent of X. Y is then linked

with 5× 3 = 15 covariates in X. Note that, because of the dependence between

the covariates, Y is indirectly linked with others covariates of the three first445

clusters.

Similarly as in Section 3.2, we study the interest of the pretreatment, using the

three procedures detailed in 3.2. We see the effect on the Pearson correlation

test (instead of the Wilcoxon test in Section 3.2). We produce N = 100 runs

of (X, Y ) and counted the number of false and true positive (shown in Figure450

A.10), as well as the ARMADA scores. As we can in Figure A.10), compared to

the two other procedures, our pretreatment procedure gives the lowest rate of

false positives, and with the lowest variability. The rate and variability of the

true positives is quite similar with the three procedures.
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Figure A.9: Number of: true positive tests (top), false positive tests (bottom) in the design
3. Boxplots are calculated on N = 100 runs.

As in Section 3.3, the Figure A.10 shows the ARMADA scores obtained on these455

N = 100 runs of (X, Y ). The scores give a ranking of the covariates, according

to the intensity of their link with respect to the response variable Y . The highest

scores are obtained by the covariates which are the most strongly linked with

the response variable Y . The boxplots in the bottom of the Figure A.10 show

that the median scores of the covariates of groups ”50” and ”40” are non nul.460

The mean scores visible in Figure A.10, are greater than 1 for the covariates of

groups ”50”, ”40” and ”30”. We can also precise that around 93% of the noise

covariates obtained a score that was 0.
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Figure A.10: Top: mean of the ARMADA scores obtained by all the covariates. Bottom: boxplot
of the scores of the covariates, ranked by levels of link with Y . Means and boxplots are
calculated on N = 100 runs. Simulation in the design 3.

As in Section 3.4, the Table A.6 allows us to compare our method with the

Pearson test and the FAMT procedure. We can see that465

• all excepted the covariates of groups ”20” and ”10” in the design 3, have

a mean ARMADA score greater than 1. Moreover the noise covariates have

a mean ARMADA score lower than 1.

• only the most strongly linked covariates (those of group ”50”) have mean

pvalues lower than 0.05 in the Pearson correlation test and in the FAMT470

procedure.

• we can see that our method obtains 7% of false positives in the regression

case, whereas the two other methods have 8% and 11% of false positives.

• our method is competitive with the FAMT procedure for the selection of

influential covariates.475

As in design 2, the ROC curve of the design 3 gives the impression that our

28



ARMADA Pearson FAMT
50 0.83 (0.37) 0.82 (0.38) 0.87 (0.33)
40 0.71 (0.45) 0.64 (0.48) 0.75 (0.43)
30 0.45 (0.50) 0.46 (0.50) 0.55 (0.50)
20 0.22 (0.41) 0.25 (0.43) 0.31 (0.46)
10 0.11 (0.32) 0.15 (0.36) 0.17 (0.38)
- 0.07 (0.26) 0.08 (0.27) 0.11 (0.31)

Table A.6: Results of the N = 100 runs in the design 3: rates of selection of the different
groups of influential and noise covariates by the method ARMADA, the Pearson correlation test
and the FAMT procedure. The corresponding standard deviations are given in brackets.

method is not competitive with the two others, but this is only an impres-

sion caused by the fact that we have traced a solid line between the points

(1-specificity, sensibility)ARMADA score=0 and (1-specificity, sensibility)ARMADA score=1.

The ROC curves have been obtained by the mean of the N = 100 ROC curves480

obtained in the N = 100 runs of (X, Y ). As in the classification study, the or-

dinates of the points of the ARMADA ROC curve are all higher than the ordinates

of the points of the two other ROC curves.
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Figure A.11: ROC curves for the three selection methods, in the case of design 3.
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