B. Nayak, R. H. Liu, and J. Tang, Effect of Processing on Phenolic Antioxidants of Fruits, Vegetables, and Grains-A Review, Crit. Rev. Food Sci. Nutr, vol.55, pp.887-919, 2015.

B. D. Oomah, Flaxseed as a functional food source, J. Sci. Food Agric, vol.81, pp.889-894, 2001.

A. Kamal-eldin, N. Peerlkamp, P. Johnsson, R. Andersson, R. E. Andersson et al., An oligomer from flaxseed composed of secoisolariciresinoldiglucoside and 3-hydroxy-3-methyl glutaric acid residues, Phytochemistry, vol.58, pp.587-590, 2001.

K. Struijs, J. Vincken, T. G. Doeswijk, A. G. Voragen, and H. Gruppen, The chain length of lignan macromolecule from flaxseed hulls is determined by the incorporation of coumaric acid glucosides and ferulic acid glucosides, Phytochemistry, vol.70, pp.262-269, 2009.

N. Westcott and A. Muir, Flax seed lignan in disease prevention and health promotion, Phytochem. Rev, vol.2, pp.401-417, 2003.

M. J. Mccann, C. I. Gill, H. Mcglynn, and I. R. Rowland, Role of Mammalian Lignans in the Prevention and Treatment of Prostate Cancer Mark, Nutr. Cancer, vol.52, pp.1-14, 2005.

E. Lainé, C. Hano, and F. F. Lamblin, Phytoestrogens: Lignans

S. Knasmüller, D. M. Demarini, I. Johnson, and C. Gerhäuser, , 2009.

C. Hano, S. Renouard, R. Molinié, C. Corbin, E. Barakzoy et al., Flaxseed (Linum usitatissimum L.) extract as well as (+)-secoisolariciresinol diglucoside and its mammalian derivatives are potent inhibitors of ?-amylase activity, Bioorg. Med. Chem. Lett, vol.23, pp.3007-3012, 2013.

K. Prasad, Hydroxyl radical-scavenging property of secoisolariciresinol diglucoside (SDG) isolated from flax-seed, Mol. Cell. Biochem, vol.168, pp.117-123, 1997.

D. D. Kitts, Y. V. Yuan, A. N. Wijewickreme, and L. U. Thompson, Antioxidant activity of the flaxseed lignan secoisolariciresinol diglycoside and its mammalian lignan metabolites enterodiol and enterolactone, Mol. Cell. Biochem, vol.202, pp.91-100, 1999.

C. Hano, C. Corbin, S. Drouet, A. Quéro, N. Rombaut et al., The lignan (+)-secoisolariciresinol extracted from flax hulls is an effective protectant of linseed oil and its emulsion against oxidative damage, Eur. J. Lipid Sci. Technol, vol.119, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01607299

H. Adlercreutz, Y. Mousavi, J. Clark, K. Höckerstedt, E. Hämäläinen et al., Dietary phytoestrogen and cancer: In vitro and In vivo studies, J. Steroid Biochem. Mol. Biol, vol.41, pp.8012-8020, 1992.

U. Schoenrock, S. Untiedt, U. Kux, and K. Inoue, Application of Ferulic Acid Glucosides as Anti-Irritants in Cosmetic and Topical Dermatological Preparations, p.708582, 1997.

A. Kosinska, K. Penkacik, W. Wiczkowski, and R. Amarowicz, Presence of caffeic acid in flaxseed lignan macromolecule, Plant Foods Hum. Nutr, vol.66, pp.270-274, 2011.

V. Beejmohun, E. Grand, F. Mesnard, M. A. Fliniaux, and J. Kovensky, First synthesis of (1,2-13C2)-monolignol glucosides, Tetrahedron Lett, vol.45, pp.8745-8747, 2004.

V. Beejmohun, E. Grand, D. Lesur, F. Mesnard, M. A. Fliniaux et al., Synthesis and purification of [1,2-13C2]coniferin, J. Label. Compd. Radiopharm, vol.49, pp.463-470, 2006.

C. Hano, I. Martin, O. Fliniaux, B. Legrand, L. Gutierrez et al., Pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds, Planta, vol.224, pp.1291-1301, 2006.

D. S. Dalisay, K. W. Kim, C. Lee, H. Yang, O. Rübel et al., Dirigent Protein-Mediated Lignan and Cyanogenic Glucoside Formation in Flax Seed: Integrated Omics and MALDI Mass Spectrometry Imaging, J. Nat. Prod, vol.78, pp.1231-1242, 2015.

R. Huis, S. Hawkins, and G. Neutelings, Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.), BMC Plant Biol, vol.10, p.71, 2010.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, vol.25, pp.402-408, 2001.

C. Corbin, T. Fidel, E. A. Leclerc, E. Barakzoy, N. Sagot et al., Development and validation of an efficient ultrasound assisted extraction of phenolic compounds from flax (Linum usitatissimum L.) seeds, Ultrason. Sonochem, vol.26, pp.176-185, 2015.

I. Benzie and J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay, Anal. Biochem, vol.239, pp.70-76, 1996.

R. L. Prior, H. Hoang, L. Gu, X. Wu, M. Bacchiocca et al., Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples, J. Agric. Food Chem, vol.51, pp.3273-3279, 2003.

P. Mlad?nka, K. Macáková, T. Filipský, L. Zatloukalová, L. Jahodá? et al., In vitro analysis of iron chelating activity of flavonoids, J. Inorg. Biochem, vol.105, pp.693-701, 2011.

R. Bisquert, S. Muñiz-calvo, and J. M. Guillamón, Protective role of intracellular Melatonin against oxidative stress and UV radiation in Saccharomyces cerevisiae, Front. Microbiol, vol.9, pp.1-11, 2018.

C. Hano, M. Addi, O. Fliniaux, L. Bensaddek, E. Duverger et al., Molecular characterization of cell death induced by a compatible interaction between Fusarium oxysporum f. sp. linii and flax (Linum usitatissimum) cells, Plant Physiol. Biochem, vol.46, pp.590-600, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00283318

A. Diederichsen and Y. B. Fu, Flax Genetic Diversity as the Raw Material for Future Success, Proceedings of the International Conference on Flax and Other Bast Plants, pp.21-23, 2008.

R. Zimmermann, U. Bauermann, and F. Morales, Effects of growing site and nitrogen fertilization on biomass production and lignan content of linseed (Linum usitatissimum L.), J. Sci. Food Agric, vol.86, pp.415-419, 2006.

R. Zimmermann, U. Bauermann, and C. Spedding, Effects of nitrogen fertilisation and two growing sites on biomass production and lignan content of linseed (Linum usitatissimum L.): Second year, Acta Agron. Hungarica, vol.55, pp.173-181, 2007.

H. B. Li, C. C. Wong, K. W. Cheng, and F. Chen, Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants, LWT-Food Sci. Technol, vol.41, pp.385-390, 2008.

K. Struijs, J. P. Vincken, R. Verhoef, W. H. Van-oostveen-van-casteren, A. G. Voragen et al., The flavonoid herbacetin diglucoside as a constituent of the lignan macromolecule from flaxseed hulls, Phytochemistry, vol.68, pp.1227-1235, 2007.

K. Struijs, J. P. Vincken, R. Verhoef, A. G. Voragen, and H. Gruppen, Hydroxycinnamic acids are ester-linked directly to glucosyl moieties within the lignan macromolecule from flaxseed hulls, Phytochemistry, vol.69, pp.1250-1260, 2008.

N. D. Westcott and A. D. Muir, Variation in the concentration of the flax seed lignan concentration with variety, location and year, Proceedings of the 56th Flax Institute of the United States Conference, pp.77-80, 1996.

P. Johnsson, A. Kamal-eldin, L. N. Lundgren, and P. Aman, HPLC method for analysis of secoisolariciresinol diglucoside in flaxseeds, J. Agric. Food Chem, vol.48, pp.5216-5219, 2000.

C. Eliasson, A. Kamal-eldin, R. Andersson, and P. Aman, High-performance liquid chromatographic analysis of secoisolariciresinol diglucoside and hydroxycinnamic acid glucosides in flaxseed by alkaline extraction, J. Chromatogr. A, vol.1012, pp.151-159, 2003.

A. Ramsay, O. Fliniaux, J. Fang, R. Molinie, A. Roscher et al., Development of an NMR metabolomics-based tool for selection of flaxseed varieties, Metabolomics, vol.10, pp.1258-1267, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01344388

H. Wang, J. Wang, C. Qiu, Y. Ye, X. Guo et al., Comparison of phytochemical profiles and health benefits in fiber and oil flaxseeds (Linum usitatissimum L.). Food Chem, vol.214, pp.227-233, 2017.

C. Corbin, S. Drouet, L. Markulin, D. Auguin, É. Lainé et al., A genome-wide analysis of the flax (Linum usitatissimum L.) dirigent protein family: From gene identification and evolution to differential regulation, Plant Mol. Biol, vol.97, pp.73-101, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02626866

C. B. Von-heimendahl, K. M. Schäfer, P. Eklund, R. Sjöholm, and T. J. Schmidt, Fuss, E. Pinoresinol-lariciresinol reductases with different stereospecificity from Linum album and Linum usitatissimum, vol.66, pp.1254-1263, 2005.

S. Renouard, M. Tribalatc, F. Lamblin, G. Mongelard, O. Fliniaux et al., RNAi-mediated pinoresinol lariciresinol reductase gene silencing in flax (Linum usitatissimum L.) seed coat: Consequences on lignans and neolignans accumulation, J. Plant Physiol, vol.171, pp.1372-1377, 2014.

K. Ghose, K. Selvaraj, J. Mccallum, C. W. Kirby, M. Sweeney-nixon et al., Identification and functional characterization of a flax UDP-glycosyltransferase glucosylating secoisolariciresinol (SECO) into secoisolariciresinol monoglucoside (SMG) and diglucoside (SDG), BMC Plant Biol, vol.14, 2014.

B. Fofana, K. Ghose, J. Mccallum, F. M. You, and S. Cloutier, UGT74S1 is the key player in controlling secoisolariciresinol diglucoside (SDG) formation in flax, BMC Plant Biol, vol.17, pp.1-13, 2017.

J. D. Ford, K. Huang, H. Wang, L. B. Davin, and N. G. Lewis, Biosynthetic Pathway to the Cancer Chemopreventive Secoisolariciresinol Diglucoside-Hydroxymethyl Glutaryl Ester-Linked Lignan Oligomers in Flax (Linum usitatissimum) Seed, J. Nat. Prod, vol.2, pp.1388-1397, 2001.

M. ?uk, A. Kulma, L. Dymi?ska, K. Szo?tysek, A. Prescha et al., Flavonoid engineering of flax potentiate its biotechnological application, BMC Biotechnol, vol.11, issue.10, 2011.

D. Oomah, B. Mazza, G. Kenaschuk, and E. O. , Flavonoid content of flaxseed. Influence of cultivar and environment, Euphytica, vol.90, pp.163-167, 1996.

M. Saastamoinen, J. M. Pihlava, M. Eurola, A. Klemola, L. Jauhiainen et al., cadmium, lead, oil and protein contents of linseed (Linum usitatissimum L.) cultivated in trials and at different farm conditions in the south-western part of Finland, Agric. Food Sci, vol.22, pp.296-306, 2013.

N. D. Westcott, A. D. Muir, G. Lafond, D. W. Mcandrew, W. May et al., Factors Affecting the Concentration of a Nutraceutical Lignan in Flaxseed, Proceedings of the Symposium on Fertilizing Crops for Functional Food, pp.1-3, 2002.

P. Podloucká, K. Berka, G. Fabre, M. Paloncýová, J. L. Duroux et al., Lipid bilayer membrane affinity rationalizes inhibition of lipid peroxidation by a natural lignan antioxidant, J. Phys. Chem. B, vol.117, pp.5043-5049, 2013.

C. Donoso-fierro, J. Becerra, E. Bustos-concha, and M. Silva, Chelating and antioxidant activity of lignans from Chilean woods (Cupressaceae), Holzforschung, vol.63, pp.559-563, 2009.

F. Fucassi, A. Heikal, L. I. Mikhalovska, G. Standen, I. U. Allan et al., Metal chelation by a plant lignan, secoisolariciresinol diglucoside, J. Incl. Phenom. Macrocycl. Chem, vol.80, pp.345-351, 2014.

E. L. Steels, R. P. Learmonth, and K. Watson, Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically, Microbiology, vol.140, pp.569-576, 1994.

N. Wolak, E. Kowalska, A. Kozik, and M. Rapala-kozik, Thiamine increases the resistance of baker's yeast Saccharomyces cerevisiae against oxidative, osmotic and thermal stress, through mechanisms partly independent of thiamine diphosphate-bound enzymes, FEMS Yeast Res, vol.14, pp.1249-1262, 2014.