D. Karabelli, C. Uzum, T. Shahwan, A. E. Eroglu, T. B. Scott et al., , vol.987

I. Lieberwirth, Batch removal of aqueous Cu 2+ ions using nanoparticles of zero-valent 988 iron: A study of the capacity and mechanism of uptake, Ind. Eng. Chem. Res, vol.47, issue.14, pp.4758-4764, 2008.

N. Efecan, T. Shahwan, A. E. Eroglu, and I. Lieberwirth, Characterization of the uptake 991 of aqueous Ni 2+ ions on nanoparticles of zero-valent iron (nZVI). Desalination, pp.1048-1054, 2009.

Y. L. Zhang, W. Chen, C. M. Dai, C. L. Zhou, X. F. Zhou et al., Structural evolution of 994 nanoscale zero-valent iron (nZVI) in anoxic Co 2+ solution: Interactional performance and 995 mechanism, Environ. Sci. Technol, vol.5, issue.116, 2013.

, Chemosphere, vol.113, pp.93-100, 2014.

G. N. Glavee, K. J. Klabunde, C. M. Sorensen, G. C. Hadjipanayis, M. L. Mccormick et al., Chemistry of 1003 borohydride reduction of iron(II) and iron-(III) ions in aqueous and nonaqueous media1004 formation of nanoscale Fe, FeB, and Fe 2 B powders, Environ. Sci. Technol, vol.34, issue.118, pp.3245-3246, 1995.

S. Bae, S. Gim, H. Kim, and K. Hanna, Effect of NaBH 4 on properties of nanoscale 1010 zero-valent iron and its catalytic activity for reduction of p-nitrophenol, Appl. Catal. B: 1011 Environ, vol.182, issue.121, pp.4286-4290, 2008.

H. R. Dong and I. M. Lo, Influence of humic acid on the colloidal stability of surface1015 modified nano zero-valent iron, Water Res, vol.47, issue.123, pp.419-427, 2013.

B. W. Hydutsky, E. J. Mack, B. B. Beckerman, J. M. Skluzacek, and T. E. Mallouk, Optimization of nano-and microiron transport through sand columns using 1018 polyelectrolyte mixtures, Environ. Sci. Technol, issue.124, pp.6418-6424, 1017.
DOI : 10.1021/es0704075

C. Lee, C. R. Keenan, and D. L. Sedlak, Polyoxometalate-enhanced oxidation of organic 1020 compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen

H. H. Kim, H. Lee, H. E. Kim, J. Seo, S. W. Hong et al., Environ. Sci. Technol, vol.42, issue.13, pp.4921-4926, 2008.

C. R. Keenan, D. L. Sedlak, E. J. Kim, J. H. Kim, and A. Azad, Polyphosphate-enhanced production of reactive oxidants by nanoparticulate zero-valent 1024 iron and ferrous ion in the presence of oxygen: Yield and nature of oxidants, Environ. Sci. Technol, vol.86, issue.127, pp.6936-1028, 2008.

. Mater and . Inter, , vol.3, pp.1457-1462, 2011.

T. B. Scott, M. Dickinson, R. A. Crane, O. Riba, G. M. Hughes et al., The 1033 effects of vacuum annealing on the structure and surface chemistry of iron

, Enhanced reactivity of nanoscale iron particles through a vacuum annealing process

, Nanopart. Res, vol.13, issue.10, pp.4591-4601, 2011.

Y. Y. Gong, L. S. Gai, J. C. Tang, J. Fu, Q. L. Wang et al., , p.1039

, Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles

. Environ, , vol.595, pp.743-751, 2017.

Z. Cao, X. Liu, J. Xu, J. Zhang, Y. Yang et al.,

, Removal of antibiotic florfenicol by sulfide-modified nanoscale zero-valent iron

, Environ. Sci. Technol, vol.2017, issue.19, pp.11269-11277

J. Li, X. Zhang, Y. Sun, L. Liang, B. Pan et al., Advances in 1045 sulfidation of zerovalent iron for water decontamination, Environ. Sci. Technol, vol.51, issue.133, pp.13533-13544, 1046.

F. Liang, J. Fan, Y. H. Guo, M. H. Fan, J. J. Wang et al., Reduction of 1048 nitrite by ultrasound-dispersed nanoscale zero-valent iron particles, Ind. Eng. Chem. Res, vol.47, issue.134, pp.8550-8554, 1049.

Q. J. Rasheed, K. Pandian, and K. Muthukumar, Treatment of petroleum refinery 1051 wastewater by ultrasound-dispersed nanoscale zero-valent iron particles

. Sonochem, , vol.18, pp.1138-1142, 2011.

I. Mikhailov, A. R. Mandal, S. Kotov, and D. Kuznetsov, A new ultrasound-assisted 1054 method of wastewater treatment by air-stable nanosized zero-valent iron

. Electrochem, , vol.1, pp.1-4, 2014.

C. L. Geiger, N. E. Ruiz, C. A. Clausen, D. R. Reinhart, and J. W. Quinn, Ultrasound 1057 pretreatment of elemental iron: kinetic studies of dehalogenation reaction enhancement 1058 and surface effects, Water Res, vol.36, issue.5, pp.1342-1350, 2002.

Z. L. Yang, X. L. Wang, H. Li, J. Yang, L. Y. Zhou et al., Re-activation of 1060 aged-ZVI by iron-reducing bacterium Shewanella putrefaciens for enhanced reductive 1061 dechlorination of trichloroethylene, Electrochemical depassivation for 1063 recovering Fe 0 reactivity by Cr(VI) removal with a permeable reactive barrier system. J, vol.2017

. Hazard and . Mater, , pp.355-360, 2012.

Y. Liu and G. V. Lowry, Effect of particle age (Fe 0 content) and solution pH on NZVI 1066 reactivity: H 2 evolution and TCE dichlorination, Environ. Sci. Technol, vol.40, p.6090, 2006.