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Abstract
In open-ended environments, autonomous learn-
ing agents must set their own goals and build their
own curriculum through an intrinsically motivated
exploration. They may consider a large diversity
of goals, aiming to discover what is controllable
in their environments, and what is not. Because
some goals might prove easy and some impos-
sible, agents must actively select which goal to
practice at any moment, to maximize their overall
mastery on the set of learnable goals. This paper
proposes CURIOUS, an algorithm that leverages
1) a modular Universal Value Function Approxi-
mator with hindsight learning to achieve a diver-
sity of goals of different kinds within a unique
policy and 2) an automated curriculum learning
mechanism that biases the attention of the agent
towards goals maximizing the absolute learning
progress. Agents focus sequentially on goals of
increasing complexity, and focus back on goals
that are being forgotten. Experiments conducted
in a new modular-goal robotic environment show
the resulting developmental self-organization of a
learning curriculum, and demonstrate properties
of robustness to distracting goals, forgetting and
changes in body properties.

1. Introduction
In autonomous continual learning, agents aim to discover
repertoires of skills in an ever-changing open-ended world,
and without external rewards. In such realistic environments,
the agent must be endowed with intrinsic motivations to
explore the diversity of ways in which it can control its
environment. One important form of intrinsic motivation
system is the ability to autonomously set one’s own goals
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Figure 1. The Modular Goal Fetch Arm environment. An intrin-
sically motivated agent can set its own (modular) goals (Reach,
Push, Pick and Place, Stack), with multiple objects and distractors.

and self-organize one’s own curriculum. This challenge can
be tackled within the framework of Intrinsically Motivated
Goal Exploration Processes (IMGEP) (Baranes & Oudeyer,
2013; Forestier et al., 2017), leveraging computational mod-
els of autonomous development in human infants.

Modular goal representation. In a same environment,
an agent might want to ‘put the cube in position x’ or
to ‘reach position y’ for any x or y. Here, describ-
ing the full goal space requires modular goal representa-
tions. Goals are organized by modules, where module
refers to the pair of a reward function and a goal space
Mi = (RMi,gi∈GMi

,GMi
). The reward function describes

a set of constraints that must be satisfied by the agent’s state
(e.g. Reach), given a continuous parameter (e.g. gi = y)
evolving in the associated goal space (e.g. 3D Euclidean
space), see Fig. 1.

While flat multi-goal problems with continuous (Schaul
et al., 2015; Andrychowicz et al., 2017; Plappert et al., 2018)
or discrete goals (Mankowitz et al., 2018; Riedmiller et al.,
2018) have been explored in the past, only few works tackle
the problem of modular multi-goal learning (Forestier &
Oudeyer, 2016), none in an RL setting. Here, we present
CURIOUS1, a modular multi-goal reinforcement learning
(RL) algorithm that uses intrinsic motivations to efficiently
learn a continuous set of diverse goals using modular goal
representations. To build an algorithm able to learn modular
goals, one must answer the following questions: 1) How
to choose the action policy architecture? 2) How to select

1 CURIOUS stands for Continual Universal Reinforcement learn-
ing with Intrinsically mOtivated sUbstitutionS.



CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning

the next module and goal to practice and learn about? 3)
How to efficiently transfer knowledge between modules and
goals?

Related work. Kaelbling (1993) proposed the first algo-
rithm able to leverage cross-goal learning to address a dis-
crete set of goals. For each goal, the algorithm learned
a specific value function using Q-learning (goal-experts
approach). More recently, Schaul et al. (2015) proposed
Universal Value Function Approximators (UVFA), a unique
policy able to address an infinity of goals by concatenating
the current state and goal to feed both the policy and the
value function. In UNICORN, UVFA is used to address a
discrete set of goals in parallel: reaching different objects in
a visual world (Mankowitz et al., 2018). SAC-X implements
multi-task RL where easy tasks are considered as auxiliary
tasks to help learning about the hardest task (placing cubes
inside a closed box) (Riedmiller et al., 2018). Here, one
network is trained for each task and the collected transi-
tions are shared (goal-experts approach). In other works
from multi-task RL (Teh et al., 2017; Espeholt et al., 2018;
Hessel et al., 2018), agents do not represent explicitly the
current task and aim at maximizing the overall reward. Fi-
nally, within the Intrinsically Motivated Goal Exploration
Processes framework (IMGEP), Forestier & Oudeyer (2016)
proposed MACOB, an algorithm able to target modular goals
using a population-based algorithm that mutates and replays
controllers experienced in the past. MACOB maintains a
population of solutions, one for each goal (modular goal-
experts approach), see Nguyen & Oudeyer (2012) for a
similar approach. This enables efficient cross-goal learn-
ing in high-dimensional goal spaces, but is limited by the
memory-based representation of policies.

Multi-goal approaches prove better than simply training
a policy per goal because knowledge can be transferred
between different goals using off-policy learning and hind-
sight learning (Andrychowicz et al., 2017). Off-policy learn-
ing enables the use of any transition to improve the cur-
rent policy: transitions collected from an older version of
the current policy (Lillicrap et al., 2015), from a popula-
tion of exploratory policies (Colas et al., 2018), or even
from demonstrations (Večerı́k et al., 2017). Transitions col-
lected while aiming at a particular goal can be used to learn
about any other. With finite sets of goals, each transition
is generally used to update the policy on every other goal
(Mankowitz et al., 2018; Kaelbling, 1993). With continuous
sets of goals, imaginary goals are sampled from the goal
space (Andrychowicz et al., 2017). In the case of UVFA poli-
cies, this consists in the substitution of the goal that is part
of the input by the imaginary one, a technique called goal re-
play or goal substitution. Building on UVFA, Andrychowicz
et al. (2017) proposed Hindsight Experience Replay (HER),
a method leveraging hindsight for transferring knowledge

between goals. The original goal of a transition can be sub-
stituted by any outcome experienced later in the trajectory
(imaginary goal). This helps to increase the probability to
observe rewards in reward-sparse environments.

In the literature, environments usually provide goals that the
agent is asked to solve. In the IMGEP framework however,
autonomous agents are intrinsically motivated to set their
own, possibly learning their representation (Laversanne-
Finot et al., 2018). Forestier & Oudeyer (2016) in particular,
biased the selection of the next goal to attempt towards mod-
ules showing high absolute measures of learning progress
(LP). This mechanism helps the agent to focus on learnable
goals and to disengage from goals that are currently too hard
or already solved. Veeriah et al. (2018) uses LP computed
from Bellman errors for goal selection, but this form of LP
does not improve over random goal selection.

Additional background can be found in the supplementary
document. Table 1 presents a classification of the multi-goal
approaches most related to our work.

Contributions. The contributions of this paper are:

1. A modular encoding of goals to enable learning of
continuous sets of diverse goals within a single policy
using UVFA (Reach, Push, Pick and Place, Stack). This
enables to tackle different kinds of goals, each with
their own continuous parameterization, and facilitates
transfer between modules and goals. See Sec. 2.1.

2. An active strategy for cross-module goal replay. Off-
policy learning enables to use any experience to learn
about any goal from any module. We propose to guide
the selection of module for replay using absolute learn-
ing progress measures (in addition to LP-based goal
sampling to interact with environment). See Sec. 2.2.

3. From the IMGEP perspective, a single monolithic modu-
lar multi-goal action policy. This is an alternative to the
population-based algorithms studied so far (Forestier
& Oudeyer, 2016; Forestier et al., 2017) and provides
the flexibility of RL methods.

4. An environment for modular goal RL. See Sec. 3.

5. Empirical comparisons to other architectures: a goal-
parameterized RL with HER (flat multi-goal RL) and
a multi-goal module-experts approach (one multi-goal
expert per module). See Sec. 4.1.

6. A study of the self-organization of learning phases
demonstrated by our algorithm (automatic curriculum).
See Sec. 4.2.

7. Experimental evidence of robustness to distracting
goals, forgetting and body changes in comparison with
random goal selection. See Sec. 4.3 and 4.4.
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2. CURIOUS
2.1. A Modular Multi-Goal Architecture using

Universal Approximators

UVFA concatenates the goal of the agent with its current
state to form the input of the policy and the value function
implemented by deep neural networks (Schaul et al., 2015).
With CURIOUS, we propose a new encoding of goals us-
ing modular representations. This enables to target a rich
diversity of modular goals within a single network (modu-
lar multi-goal approach), see Fig. 2. Given GMi

the goal
space of module Mi, the current goal g is defined as a vec-
tor of dimension |G| =

∑N
i=1 |GMi

|, where the GMi
can

have different dimensionalities. g is set to 0 everywhere
except in the indices corresponding to the current module
Mi, where it is set to gi ∈ GMi . By masking the goal-inputs
corresponding to unconsidered modules, the corresponding
weights are frozen during backpropagation. In addition,
a module descriptor md of size N (one-hot encoding) en-
codes the current module. The overall input to the policy
network is [st, g,md], see Fig. 2. We call this modular
goal-parameterized architecture Modular-UVFA (M-UVFA).

In Fig. 2, we can see the underlying learning architecture
(actor-critic). The actor implements the action policy and
maps the input [st, g,md] to the next action at. The action
is then concatenated to a copy of the actor’s input to feed the
critic [st, g,md, at]. The critic provides an estimate of the
Q-value: Q(st, g,md, at). The critic and the actor are then
trained using DDPG (Lillicrap et al., 2015), although any
other off-policy learning method could be used (e.g. TD3
(Fujimoto et al., 2018), or DQN for the discrete case (Mnih
et al., 2013)). More details about DDPG can be found in the
supplementary document or in Lillicrap et al. (2015).

2.2. Module and Goal Selection, Cross-Module
Learning, Cross-Goal Learning

In UVFA, HER and UNICORN, the next goal to target is se-
lected at random (Schaul et al., 2015; Andrychowicz et al.,
2017; Mankowitz et al., 2018). This is coherent with the
common view that the agent must comply with the desires
of an engineer and target the goal it is asked to target. Here

Actor

actions to perform in 
the environment

generated
by the agent:

module 1, goal

goal param. for module 1 (2D)

goal param. for module 2 (1D)

states from
the environment

Critic

1

0

0

1

0

0

Figure 2. Modular goal-parameterized actor-critic architec-
ture (M-UVFA). Toy example with 2 modules, parameterized
by g1 (2D) and g2 (1D) respectively. Here, the agent is attempting
goal g1 in module M1, as specified by the one-hot module descrip-
tor md = 〈1, 0〉. The actor (left) computes the action at. The
critic (right) computes the Q-value.

on the other hand, agents have the capacity to select which
goal to target next. Because goals are not equivalent, the
agent can benefit from intrinsic motivations towards LP
(Schmidhuber, 1991; Kaplan & Oudeyer, 2004). This can
be useful: 1) when there are distracting goals on which the
agent cannot progress; 2) when some goals are already mas-
tered. This idea comes from the IMGEP framework and was
used in Baranes & Oudeyer (2013) to guide goal selection
and in Forestier & Oudeyer (2016) to guide module selec-
tion. The problem of selecting a module can be modeled
as a non-stationary multi-armed bandit (MAB), where the
value of each arm (module) is the current absolute LP. Learn-
ing progress (LP) is defined as the derivative of the agent’s
competence on a particular module: LPMi

=
dCMi

dt , where
the competence CMi

: t→ psuccess(t) is the probability of
success at time t. Here, the agent focuses its attention on
modules for which it is making the largest absolute progress,
and pays little attention to modules that are already solved
or unsolvable, i.e. for which |LP | stays small. Using the ab-
solute value of LP also leads to the prioritization of modules
for which the agent is showing decreasing performances.
This helps to deal with forgetting: the agent reallocates
learning resources to the modules being forgotten, Sec. 4.3.

Table 1. Classification of multi-goal approaches. Underlined: Algorithms internally generating goals (IMGEP), (*) using LP-based
intrinsic motivations. Italic: Population-based algorithms (non-RL). Bold: Algorithms proposed in this paper.

n GOALS, n POLICIES n GOALS, 1 POLICY

FLAT REPR. GOAL-EXPERTS: MULTI-GOAL: UVFA (Schaul et al., 2015)
(Kaelbling, 1993) HER (Andrychowicz et al., 2017)

SAC-X (Riedmiller et al., 2018) UNICORN (Mankowitz et al., 2018)
SAGG-RIAC* (Baranes & Oudeyer, 2013)

MODULAR REPR. MOD-GOAL-EXPERTS: MACOB* (Forestier & Oudeyer, 2016) MODULAR-MULTI-GOALS:
MULTI-GOAL MODULE-EXPERTS: MG-ME M-UVFA, CURIOUS *
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Learning Progress Estimation. Since an autonomous
agent is not externally provided its true competence or LP,
it needs to approximate them for each module. To measure
its competence, it uses some episodes (with peval = 0.1)
to evaluate itself on random modules and targets without
exploration noise. The results (success 1 or failure 0) of
these rollouts are stored in competence queues results(i)

for all Mi. In a similar way as Forestier & Oudeyer (2016),
the agent computes its subjective competence as

CMi
(n

(i)
eval) =

1

l

l−1∑
j=0

results(i)(n
(i)
eval − j),

where n(i)eval is the number of self-evaluation rollouts per-
formed by the agent in module Mi. The subjective LPMi

after n(i)eval self-evaluation rollouts is then computed as:

LPMi
(n

(i)
eval) = CMi

(n
(i)
eval)− CMi

(n
(i)
eval − l).

Given the subjective LP measures, we tackle the multi-
armed bandit problem by implementing a simple approach
called proportional probability matching, with an additional
ε-greedy strategy for exploration. More precisely, we com-
pute the LP probabilities pLP (Mi) as:

pLP (Mi) = ε× 1

N
+ (1− ε)× |LPMi

|∑N
j=1 |LPMj |

,

where N is the number of modules. The ratio ε implements
a mixture between random exploration of modules (left
term) and exploitation through a biased selection/replay of
modules (right term). The random exploration term enables
sampling modules that do not show any LP (i.e. already
solved, too hard, or at a plateau). This way, the agent can
check that it stays competent on modules that are already
learned, or can insist on modules that are currently too hard.

Note that we use LP for two distinct purposes: 1) Before
data collection, to select the module from which to draw the
next goal to attempt in the environment; 2) Before training,
to select the substitute module descriptor (module replay).
Recall that, once transitions are sampled from the replay
buffer, they can be modified (replayed) by substituting the
original module descriptor (or goal) by a new one. The
substitute module is the one the agent is going to learn about.
When replaying a particular module more than others, the
agent allocates more resources to that module. While the use
of LP for module selection is not new (Forestier & Oudeyer,
2016), we are the first to consider its use for cross-module
goal replay.

Module and Goal Selection. Before interacting with the
environment, the agents selects the next goal to target by
first sampling a module from M using pLP , and second,
sampling the goal uniformly from the corresponding goal
space GMi .

Cross-Module and Cross-Goal Learning. In an exam-
ple with three modules, an agent computed pLP =
[0.6, 0.2, 0.2]. The agent uses these probabilities to guide
learning towards modules with high absolute LP. If the size
of the minibatch isNmb, the agent will sample bNmb × 0.6c
transitions relevant to module 1, bNmb × 0.2c transitions
relevant to module 2 etc. A transition that is relevant for
module Mi (e.g. Push module), means that it comes from
an episode during which the corresponding outcome has
changed (e.g. cube position). This sampling bias towards
“eventful” transitions is similar to Energy-Based Prioriti-
zation (Zhao & Tresp, 2018) (see supp. doc.). In this
minibatch, every transition has been sampled to train on
a specific module (e.g. m∗d), although it could have been
collected while targeting another module (e.g. md). To
perform this cross-module learning, we simply substitute
the latter by the former. Goal substitution is then performed
using hindsight, which means the goal g of a transition is
sometimes (p = 0.8) replaced by an outcome reached later
in the same episode g∗ (Andrychowicz et al., 2017).

Internal Reward. After module descriptors and goals
have been substituted, the agent computes an internal reward
for each transition using a reward function parameterized
by the new m∗d and goal g∗. Thus it answers: What would
have been my reward for experiencing this transition, if
I were aiming at that imagined goal from that imagined
module? The reward is non-negative (0) when the outcome
satisfies the constraints described by the imagined module
m∗d, relative to the imagined g∗; negative otherwise (-1).
In a reaching module for instance (see Fig. 1), a positive
reward is generated when the Euclidean distance between
the 3D target (goal) and the gripper (outcome) falls below a
precision parameter εreach (reward constraint associated to
the reaching module).

2.3. Combining Modular-UVFA and Intrinsically
Motivated Goal Exploration

A schematic view of CURIOUS is given in Fig. 3. The
detailed algorithm is given in the supplementary document.

1. Module and goal selection. The agent selects module
Mi and goal gi for the next rollout (blue), respectively
sampled from the set of potential modulesM using
pLP (purple), and uniformly from the corresponding
goal space GMi

.

2. Data collection. The agent interacts with the environ-
ment using its current M-UVFA policy (grey), collects
transitions and stores them in memory (red).

3. LP update. If it was a self-evaluation rollout, the agent
updates its measures of competence, LP and pLP given
the new result (success or failure, purple).
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4. Module and goal substitution. The agent decides on
which modules and goals to train. To update the policy
and critic, the algorithm first samples a minibatch from
the replay buffers (red) using pLP and implements
module and goal substitutions to perform cross-module
and cross-goal learning (orange), see Sec. 2.2.

5. Internal reward. The agent computes its reward r
for each transition, using RM,g parameterized by the
substitute module m∗d and goal g∗ (brown).

6. RL updates. The agent updates its policy and value
function with DDPG using the modified minibatch
(green).

Minibatch

(s, a, s', g*, md*) 

Minibatch

(s, a, s', g*, md*,r)

Env

Data collection

LP update

RL updates

Module and goal selection

Module and goal substitutions

rollout
(s, a, s', g, md) 

+
outcome
(0 or 1)

New parameters

sa g

md

pLP

pLPMinibatch    
(s, a, s', g, md) 

g g*

md*

outcomes

Goal 
sampling

Module
sampling

Module substitution
(LP probas)

Goal substitution
(HER)

DDPG Int. reward
function

E-UVFA

LP 
estimator

Memory

md

Figure 3. Schematic view of CURIOUS.

2.4. Evaluation Methodology

The performance of the agents are evaluated offline in terms
of success rates over sets of achievable goals (defined by the
experimenter). Every point of a learning curve represents
the success rate over 95 offline evaluation rollouts (5× 19
actors), using random achievable goals. Evaluation is com-
pletely independent from training, i.e. agents cannot train
on evaluation transitions. We use the non-parametric one-
tail Mann-Whitney U-test with confidence level α = 0.01
for all comparisons. More details and justifications can be
found in the supplementary document.

3. A Modular Goal Environment
Modular Goal Fetch Arm is a new simulated environment
adapted from the OpenAI Gym suite (Brockman et al.,
2016). The agent is embodied by a robotic arm facing
2 cubes randomly positioned on a table. The agent controls
the position of its gripper and the gripper opening (4D). It
can target a diverse set of modular goals: (M1) Reach a 3D

target with the gripper; (M2) Push cube 1 onto a 2D target
on the table; (M3) Pick and Place cube 1 on a 3D target;
(M4) Stack cube 1 over cube 2. Additional Push modules
concerning additional out-of-reach and moving cubes can
be defined (impossible, distracting goals). Further details
can be found in the supplementary document.

4. Experiment and Results
In this section, we present ablative studies to assess the
relative importance of: 1) the policy and value function
architecture and 2) the use of intrinsically motivated mod-
ule selection for practice and replay. We call M-UVFA the
algorithm using a modular goal-parameterized policy and
random module choices, while the intrinsically motivated
version is called CURIOUS. We do not investigate the ef-
ficiency of HER or the efficiency of the sampling bias to-
wards interesting transitions as they were already studied
in Andrychowicz et al. (2017); Plappert et al. (2018) and
Zhao & Tresp (2018) respectively. For fair comparisons, we
apply both mechanisms to all the tested algorithms.

4.1. Impact of Policy and Value Function Architecture

Experiments. In this section, we investigate the impact
of using an M-UVFA architecture for the policy and value
function. The module-set is composed of four achievable
modules and four distracting modules. We test this algo-
rithm against two baselines:

1. A flat multi-goal architecture (HER). This algorithm
does not represent goals in a modular fashion but
in a linear way. The corresponding goal is selected
uniformly inside G, a holistic goal space such that
G =

∏N
i=1 GMi

. To generate a reward, the agent needs
to satisfy the constraints described by all the modules
at once. This goal-parameterized architecture is equiv-
alent to UVFA, which makes the algorithm equivalent
to HER +DDPG.

2. A multi-goal module-experts architecture (MG-ME)
where an expert multi-goal policy is trained for each of
the N modules. Each policy is trained one epoch every
N on its designated module and shares the collected
transitions with other experts. When evaluated on a par-
ticular module, the algorithm uses the corresponding
module-expert.

Results. Fig. 5 shows the evolution of the average success
rate computed over achievable goals for M-UVFA and the
two baselines described above. The learning curve of HER
stays flat. This can be easily understood as none of the goals
expressed in the complete goal space G corresponds to a real
situation (e.g. the agent cannot reach a 3D target with its
gripper while placing a cube at another). The agent cannot
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Figure 5. Impact of the policy and value function architecture.
Average success rates computed over achievable goals. Mean +/-
std over 10 trials are plotted, while dots indicate significance when
testing M-UVFA against MG-ME.

fulfill the constraints of all modules simultaneously, thus
receives no reward. This motivates the use of a modular
representation with separated modules. Comparing MG-
ME and M-UVFA, we can see that the achievable goals are
learned much faster in the multi-modular-goals approach
(one, policy, ≈ 250 · 103 vs. ≈ 450 · 103 episodes). From
now on, all experiments use the M-UVFA architecture.

4.2. Visualizing the Intrinsic Motivation towards
Learning Progress

Experiments. This section aims at showing the inner
working of CURIOUS’s intrinsic motivation towards LP. Here
we focus on a setting with four achievable modules (Reach,
Push, Pick and Place, and Stack).

Results. Fig. 4(a) shows the evolution of the module-
dependent competence measures as subjectively perceived
by the agent, while Fig. 4(b) shows the evolution of the
corresponding LP measures. Finally, Fig. 4(c) shows the
corresponding module selection probabilities pLP , a mix-
ture of random selection with probability ε and active se-
lection proportional to LP measures with probability 1− ε.
These figures demonstrate the existence of successive learn-
ing phases, that can be interpreted as developmental phases
(Oudeyer & Smith, 2016). The robot first learns how to

control its gripper (M1), then to push objects on a desired
target on the table (M2) before it learns how to place the
cube on a 3D target (M3) and how to stack the two cubes
(M4). Fig. 4(b) shows that LP stays small for modules
that are already solved (e.g. M1 after 104 episodes) or too
hard to solve (e.g. M3 and M4 before 35 · 103 episodes),
and increases when a module is being learned. We further
discuss the link between these learning phases, developmen-
tal learning and curriculum learning in the supplementary
document.

4.3. Impact of the Intrinsic Motivation: Resilience to
Forgetting and Sensor Perturbations

Experiments. During learning, the agent can forget about
a previously mastered module. This can happen because is
not targeting it often (catastrophic forgetting), because of
environmental changes (e.g. icy floor) or because of body
changes (e.g. sensor failure). Ideally, CURIOUS should be
able to detect and react when such situations arise. This
section investigates the resilience of our algorithm to such
perturbations and compares it to the M-UVFA baseline.

We first look at a run where forgetting occurs and explain
how CURIOUS detects the situation and reacts. Since for-
getting cannot be triggered, we add more emphasis to a
second experiment, where we simulate a time-locked sen-
sory failure. We present the following setup to the agent:
first, it learns about a set of 4 modules (Reach, Push, Pick
and Place for cube 1, and Push for cube 2). Then, a sensory
perturbation is triggered at a precise time (epoch = 250,
episode = 237.5 · 103) such that the perception of cube 2
gets shifted by 0.05 (simulation units) until the end of the
run. The performance on this module suddenly drops and
we compare the recoveries of CURIOUS and M-UVFA.

Results - Forgetting. Looking at Fig. 4(a), we can ob-
serve a drop in the competence on M3 around episode
80 · 103. This phenomenon is usually described as catas-
trophic forgetting: because it is trained on other modules,
the network can forget about the previously mastered mod-
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Figure 4. Visualization of a single run. a: Module-dependent subjective measures of competence for CURIOUS (1 run). b: Corresponding
module-dependent subjective measures of absolute LP. c: Corresponding probabilities pLP to select modules to practice or to learn about.
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ule M3, without any obvious reason. The corresponding
period of Fig. 4(b) shows an increase in LP for M3, which
in turn triggers an additional focus of the agent towards
that module (see the corresponding probability increase in
Fig. 4(c)). Using LP to bias its attention, the agent monitors
its competence on the modules and can react when it forgets
about a previously mastered module. This mechanism helps
to deal with the problem of forgetting and facilitates learn-
ing of multiple modules in parallel. To prove its efficiency,
we need to compare CURIOUS to its baseline M-UVFA using
a time-locked perturbation.
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Figure 6. Impact of the intrinsic motivation towards LP for
sensory failure recovery. Mean success rates over the four mod-
ules +/- std over 10 trials are plotted. The dashed line indicates
the onset of the perturbation, while the dots indicate significance
when testing CURIOUS against M-UVFA.

Results - Sensor Perturbation. In Fig. 6, we can ob-
serve the drop in average success rate after the perturbation
(around 240 · 103 episodes). This perturbation only affects
one of the four modules (Push cube 2), which triggers a drop
in the average performance of about 1/4th. As described
above, CURIOUS agents detect that perturbation and react
by using more transitions to improve on the corresponding
module. This translates into a significantly faster recov-
ery when compared to M-UVFA. The agents recover 95%
of their pre-perturbation performance in 78 and 43 · 103
episodes (random and active respectively), which translates
in a 45% faster recovery for CURIOUS (p < 10−4), see
Fig. 6.

4.4. Impact of the Intrinsic Motivation: Resilience to
Distracting Modules

Experiments. In this section, we investigate the resilience
of our learning algorithm when the number of distracting
modules increases (0, 4, 7). The agent faces four achievable
modules in addition to the distracting modules. The distract-
ing modules are all Push modules relative to the randomly
moving and out-of-reach cubes. The agent receives extra
noisy inputs corresponding to the random movements of
these cubes.

Results. In Fig. 7, we see that the number of distracting
modules faced by the agents highly impacts their learn-
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Figure 7. Impact of the intrinsic motivation towards LP when
the number of distracting modules grows. Average success
rates computed over achievable goals when the number of dis-
tracting modules increases (0, 4, 7). Mean and standard error of
the mean (for visualization purpose) over 10 trials are plotted. The
dots indicate significance when testing CURIOUS against M-UVFA.

ing speed on achievable goals. In particular, M-UVFA ran-
dom agents do not know that these goals are impossible to
achieve and waste time and resources trying to improve on
them. Since these agents sample distracting modules just
like others, we can expect the learning speed to be scaled
by #achievablemodules

#modules . On the other hand, CURIOUS agents
try to learn which modules are too difficult at the moment
to target them less often. Note that CURIOUS agents still
need to choose them sporadically to keep updated measures
of their LP: they sample a random module with probability
ε. In Fig. 7, we see that the advantage of CURIOUS over
its random counterpart increases as the number of distract-
ing modules grows (see colored dots indicating significant
differences). Although the addition of distracting modules
might sound a bit ad-hoc here, it is important to note that au-
tonomous agents evolving in the real world face numerous
modules such as these. For humans, quantity of potential
modules are impossible (predicting the movement of leaves
on a tree, trying to walk on walls etc.). Just as humans,
artificial agents need to discard them based on experience
and LP.

5. Discussion
Leveraging Environment Modularity. In some environ-
ments, representing all the potential goals requires modular
representations. Because Sec. 4.1 proved that a simple UVFA
architecture could not deal with this situation, we proposed
M-UVFA. Note that, although our Modular Goal Fetch-Arm
environment only contains goals that can be represented in a
modular way, M-UVFA can also target discrete sets of goals
using flat representations (by setting the goal gi of module
Mi to the null vector and letting md encode for the goal).
In short, M-UVFA enables traditional UVFA to target a richer
diversity of goals than what was possible with traditional
UVFA implementations.

Pros and Cons of Monolithic Policies. As noted in
Mankowitz et al. (2018), representations of the world state
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are learned in the first layers of a neural network pol-
icy/value function. A representation learned to achieve
goals from one module could probably be useful for learn-
ing goals from another similar module. Our monolithic
modular goal policy leverages that fact, by re-using subparts
of the same network to learn different but similar modules
and goals. This might explain why M-UVFA outperforms
the multi-goal module-experts (MG-ME) policy architecture
(Fig. 5). However, such monolithic policies are more prone
to forgetting. Although this phenomenon is partially miti-
gated by the use of the absolute value of LP, it might still be
an issue when the number of potential modules increases. To
answer this problem, we could think of combining several
M-UVFA policies for different subsets of modules.

A Monolithic IMGEP. Contrary to the vision shared by
many multi-goal RL papers where agents must comply to
the engineer desires (do goal 1, do goal 3 ...), our work takes
the perspective of agents empowered by intrinsic motiva-
tions to choose their own goals (do whatever you want, but
be curious.). This vision comes from the IMGEP framework
which defines agents able to set their own parameterized
problems to explore their surrounding and master their envi-
ronment (Forestier et al., 2017). Contrary to previous IMGEP
algorithms grounded on memory-based representations of
policies, CURIOUS uses a single monolithic policy for all
modules and goals (M-UVFA). Because it is memory-based,
MACOB does not handle well the variety of initial states
which limits its generalization capacity.

Active Learning using Learning Progress. Although
LP-based module selection already brings significant ad-
vantages compared to random module selection, CURIOUS
could benefit from a more advanced LP estimator. Our cur-
rent estimator uses moving averages. It is fast and requires
small amounts of memory, but could be more reactive to
changes in true LP. This delay causes the agent to persevere
on modules that are already mastered, or not to react quickly
to newly learnable modules. These drawbacks could be
mitigated with more advanced measures of competence or
LP (e.g. approximate Bayesian methods like in Mathys et al.
(2011)).

6. Further Work
Hierarchical Extension. The idea of using a high-level
policy to select goals for a lower-level policy was also stud-
ied in the field of hierarchical RL. Yet, while hierarchical
RL agents choose their own subgoals, they usually do so to
achieve higher-level goals imposed by the engineer (Vezhn-
evets et al., 2017; Nachum et al., 2018; Levy et al., 2018).
A natural extension of our work could be to replace our
high-level MAB module selection policy by another CURI-
OUS agent targeting self-generated higher-level goals, in a

hierarchical manner.

Learning a Goal Selection Policy. In this work we pro-
vide the policy for goal sampling inside modules: sampling
uniformly from a pre-defined (reachable) goal space. In the
future, the agents could learn it autonomously using adapta-
tions of existing algorithms such as SAGG-RIAC (Baranes &
Oudeyer, 2013) or GOAL-GAN (Held et al., 2017). SAGG-
RIAC enables to split recursively a wide continuous goal
space and to focus on sub-regions where LP is higher, while
GOAL-GAN proposes to generate goals of intermediate diffi-
culty using a Generative Adversarial Network.

Learning Representations for Modules and Goals. An-
other assumption of our work, is that agents should already
know a modular representation of goals and their modules.
Although modules and goal spaces were hand-defined in the
experiments of this paper, this was a scaffolding for the stud-
ies we presented. In a general IMGEP setting, autonomous
agents must be able to construct their own set of modules
and goal representations. The idea of autonomously learn-
ing modular goal representations from experience has been
explored in Laversanne-Finot et al. (2018), using β−V AEs.
This was used for goal exploration using a population-based
IMGEP algorithm. Combining CURIOUS to this unsuper-
vised learning of disentangled goal spaces is an interesting
avenue to explore, in the quest of more autonomous learning
agents.

7. Conclusion
This paper presents CURIOUS, a learning algorithm that
combines an extension of UVFA to enable modular goal
RL in a single policy (M-UVFA), and active mechanisms
that bias the agent’s attention towards modules where the
absolute LP is maximized. This self-organizes distinct learn-
ing phases, some of which are shared across agents, others
dependent on the agent experience. With this mechanism,
agents spend less time on impossible modules and focus
on achievable ones. It also helps to deal with forgetting,
by refocusing learning on modules that are being forgot-
ten because of model faults, changes in the environment
or body changes (e.g. sensory failures). This mechanism
is important for autonomous continual learning in the real
world, where agents must set their own goals and might face
goals with diverse levels of difficulty, some of which might
be required to solve others later on.

Links. The environment, code and video of the CURIOUS
agent are made available at https://github.com/
flowersteam/curious.

https://github.com/flowersteam/gym_flowers
https://github.com/flowersteam/curious
https://www.youtube.com/watch?v=qO_OZpsXXGQ&feature=youtu.be
https://github.com/flowersteam/curious
https://github.com/flowersteam/curious
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