
HAL Id: hal-01934741
https://hal.science/hal-01934741

Submitted on 26 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HTC Vive Pro time performance benchmark for
scientific research

M Le Chénéchal, J Chatel-Goldman

To cite this version:
M Le Chénéchal, J Chatel-Goldman. HTC Vive Pro time performance benchmark for scientific re-
search. ICAT-EGVE 2018, Nov 2018, Limassol, Cyprus. �hal-01934741�

https://hal.science/hal-01934741
https://hal.archives-ouvertes.fr


(2018)

HTC Vive Pro time performance benchmark for scientific research
M. Le Chénéchal1 and J. Chatel-Goldman1

1Open Mind Innovation

Abstract
Widespread availability of consumer-level virtual reality (VR) devices creates a venue for their massive use in psychology and
neuroscience research. The application of VR to scientific research however poses significant constraints on system performance
and stability. In particular, studies with multimodal measurement of human behavior and physiology require precise hardware-
software synchronization with precise event labeling (within 10 milliseconds). Previous works investigating suitability of VR
systems for research have mainly focused on benchmarking performance in spatial tracking. Therefore, it remains unclear if
timing parameters such as latency or jitter in VR motion capture and VR audiovisual stimulation allow for carrying out science
under strong time constraints. Here we present the first quantitative test of time performance in VR input and VR feedback of the
current state-of-the-art HTC Vive Pro system. Using both low-level Python-based API and a high-level game engine (Unity), our
multilevel testing procedure allows us to isolate software influence on observed results. We report that, in both test conditions,
latencies are non-negligible considering fine synchronization with multimodal measurements; however, jitters are stable and
low, which allows to counter-balance the effect of latency by using constant offsets to re-synchronize multimodal data. Finally,
we plan to share our testing hardware setup as an open-source and low-cost benchmark toolkit, allowing objective testing to be
easily reproduced by the community in an open collaborative framework.

CCS Concepts
• Computing methodologies → Virtual reality; • Hardware → Board- and system-level test; Sensors and actuators;

1 Introduction
The recent introduction of consumer-level, relatively low-cost vir-
tual reality (VR) hardware systems fosters their widespread use
for psychology and neuroscience research [WMK∗18]. This holds
the promise of pushing further what can be explored in terms of
user action (VR input) and user perception (VR feedback) in vari-
ous experimental settings, from lab-based studies to crowd-sourced
experiments [BAB11, MCP∗18]. However, beyond entertainment,
the use of VR as a research tool poses significant constraints on
system performance and stability. In the spatial domain, good ac-
curacy and precision of position and orientation tracking is nec-
essary for research demanding precise body motion capture from
the head mounted display (HMD) and controller sensors, such as
in sports science. Perhaps more crucially in the time domain, a
sufficient sampling rate as well as low measurement latency and
jitter [TPSM09] are of prime importance for experiments involv-
ing synchronized multimodal measurement of human behavior and
physiology. In brain-computer interface (BCI) research, for in-
stance, one must synchronize electrophysiological measurements
with audiovisual stimulations at the <10ms level in order to ade-
quately analyze the event-related potentials [ICM∗14]. In experi-
ments where biosignals must be used in real-time, such as in BCI
or during biofeedback protocols, post-hoc synchronization of var-
ious data streams is inadequate, as overall system timing perfor-
mance must be characterized and corrected beforehand when nec-
essary. While previous studies have extensively assessed HTC Vive
system tracking accuracy in the spatial domain (e.g., [NLL17]), a
thorough testing of latency parameters is still required to evaluate
to what extent this popular system is suitable for research imply-
ing strong time constraints. In addition, most VR content today is
produced using high-level game engines, whose specific influence

on time performance must be assessed separately. Finally, as bench-
marking is a time consuming process and hardware evolves quickly,
it is of general interest to make these tests easily reproducible by
the community. An open collaborative framework is therefore de-
sirable. Our contribution in this paper is threefold: 1) we present
the first quantitative test of time performance in VR input and VR
feedback for the current state-of-the-art HTC Vive Pro system; 2)
in order to isolate the software bias we have run a multi-level time
benchmark on both low-level python-based API and one high-level
game engine (Unity); and 3) we have conceived our testing hard-
ware setup as a low-cost benchmark toolkit and we plan to share its
design and code as open-source.

2 Methods overview: interactive system loop and latencies
Classically, an interactive system can be defined as a continu-
ous discrete 3-step loop embracing perception, decision, and ac-
tion [Dix96]. Delays can add up at each stage with more or less
severe impact on the user experience, depending on their duration
and their jitter. As an example, let us consider the measure of a
user action in response to a visual stimulation and let us categorize
various additive system latencies as it follows (see illustration in
Figure 1a):

1. VR environment simulation (e.g., visual): software latency
2. Stimulation-to-display (VR feedback): hardware latency
3. Display-to-user perception: physical propagation
4. Decision-to-action: timing of cognitive processes
5. Action-to-simulation (VR input): hardware latency

Latencies introduced at each of these steps do not have equivalent
relevance and order of magnitude. In particular, display-to-user per-
ception latency (3) can be neglected as light and sound waves prop-

c© 2018 The Author(s)

https://orcid.org/0000-0002-8277-8291
https://orcid.org/0000-0002-8421-2697


M. Le Chénéchal & J. Chatel-Goldman / HTC Vive Pro time performance benchmark for scientific research

(a) (b)
Figure 1: (a) Illustration of the interactive system loop showing the different steps involved in latency introduction. (b) Timeline describing
different latencies involved in our measurement setup.

agate almost instantaneously from HMD screen and headphone to
user eyes and ears. Timing of cognitive processes in the decision-to-
action step (4), considered to be generally less than 100ms [Car81],
is a subject of study by itself in neuroscience experiments. The VR
environment simulation step (1) is typically bounded to run at 90
frames per second (FPS), which adds a maximum of 11ms latency
if computations are performed within one frame. The benchmark
toolkit we propose aims at evaluating hardware latencies intro-
duced during VR feedback (stimulation-to-display, step 2) and
during VR input (action-to-simulation, step 5).

We aim at measuring intrinsic latencies of the HTC Vive Pro
system. Our testing app uses a low-level interface for a direct com-
munication with the HMD through its native OpenVR API wrapped
into a Python library. This approach allows us to evaluate latency
parameters with a minimal overload generated by the testing app
itself. However, in more realistic cases, researchers and developers
use high-level game engine to ease and accelerate development of
their apps. Therefore we also ran the same tests using a Unity3D-
based app, which is one of the most popular game engine. This
lets us evaluate practical latencies of the whole system when used
in realistic scenarios and determine non-negligible overloads intro-
duced by the game engine.

For this evaluation we have substituted the human user with a
microcontroller assembled with simple sensors and actuators to al-
low precise timing of visual/auditory feedback and controller input.
We used an Arduino-Uno board directly wired through USB to the
computer in order to minimize communication latency between the
board and the benchmark process running on the computer. Differ-
ent setups used for testing visual / auditory stimulation and testing
controller input are presented in each section of the paper. All our
tests have been run on a PC embedding an Intel core i7-6700K
CPU @ 4.00GHz and a Nvidia GeForce GTX 1080.

We used a timestamp (TS)-based system to run our tests and
evaluate the different time-based parameters of the HTC Vive Pro
system. Timeline in Figure 1b illustrates the different latencies in-
volved in our measurement setup for a visual stimulation (similar
timelines describe auditory stimulation and controller input). D0 is
the duration between the draw call and the timestamp call (TS1).
D1 is the duration between the stimulus timestamp and the actual
stimulus display. D2 considers the delay between screen display
and actual stimulus detection by the sensor. Finally, D3 is the delay
between this detection and its associated timestamps (TS2). We use
sensors to detect the actual stimulus into the HMD, which means
that we actually measure D1 + D2 + D3 (i.e T S2− T S1). How-

ever, several durations can be considered negligible, i.e., less than
1ms (arbitrary threshold at 1/10 of usual VR framerate). First, D0
can be neglected because, in our testing apps, the stimulus is time-
stamped right after it is generated. This was assessed by measuring
the time difference between two timestamps generated just before
and just after the stimulus call (deltamean = 0.5ms,std < 0.1ms).
Then, we can consider D2 as being negligible due to the very
small reaction time of the photodiode and microphone sensors used
(<< 1ms), as documented in their electronic datasheet†. Lastly, D3
can be considered negligible because our entire experimental setup
is wired, thus this delay depends only on the PC Arduino serial
communication thread, which runs faster than 1000Hz (< 1ms la-
tency).

3 Evaluation of app-to-display latency

To assess the exact timing from app timestamping to actual HMD
display, our setup uses a photodiode positioned in front of the
HMD display panel (Figure 2a). Stimulation consists in flashing
the entire HMD screen from black to white at 5Hz. It is sent from
Unity/Python apps along with initial timestamp TS1. In turn, times-
tamp TS2 is triggered with the Arduino board when a significant
change in screen luminance is measured by the photodiode.

Results Figure 3 presents our results for 600 test samples.
• Python app: mean = 18.35ms,std = 0.96ms
• Unity app: mean = 31.33ms,std = 1.41ms

The results we obtain using Python binding are in line with
what has been previously described using third party commercial
solution such as VRTrek by Basemark [Bas18]; using an equiva-
lent setup with similar computer configuration and no game en-
gine, a 20ms “app-to-photon” latency for the HTC Vive system
was found. The Unity3D engine approximately adds 50% overload
compared with the native Python-app, which is partly due to the
computation introduced by its high-end rendering pipeline. Note
that we ran these tests within Unity using an empty scene and a
scene containing more than 1 million polygons; the two scenes pro-
vides equivalent results. Overall, latency parameters are stable over
the 2 min testing period, indicating that they can be reliably extrap-
olated for longer experimental sessions.

† https://www.vishay.com/docs/81521/bpw34.
pdf, https://www.mouser.fr/datasheet/2/737/
MAX4465-MAX4469-932825.pdf

c© 2018 The Author(s)

https://www.vishay.com/docs/81521/bpw34.pdf
https://www.vishay.com/docs/81521/bpw34.pdf
https://www.mouser.fr/datasheet/2/737/MAX4465-MAX4469-932825.pdf
https://www.mouser.fr/datasheet/2/737/MAX4465-MAX4469-932825.pdf


M. Le Chénéchal & J. Chatel-Goldman / HTC Vive Pro time performance benchmark for scientific research

(a) (b)

Figure 2: Schematic view of the setup used to evaluate (a) the app-to-display and (b) the app-to-headphone latencies

Figure 3: App-to-display latency: sample time series and delays
distribution.

Figure 4: App-to-headphone latency: sample time series and de-
lays distribution.

4 Evaluation of app-to-headphone latency

To assess the exact timing from app timestamping to actual HMD
sound emission, our setup uses a microphone positioned in front of
the HMD integrated headphones (Figure 2b). Stimulation consists
in producing a serie of audio bips with sharp onset/offset. For the
python-app, we used pyAudio to play the sound, which is a bind-
ing of PortAudio, a cross-platform low-level audio library. For the
Unity-app, we chose to use a trade-off setting that balances latency
and performance by setting the DSP buffer size to 2x512 samples.
Timestamp TS2 is triggered when a significant change in the audio
signal is measured from the microphone.

Results Figure 4 presents our results for 100 test samples.
• Python app: mean = 36.75ms,std = 4.53ms
• Unity app: mean = 65.93ms,std = 7.75ms

We observe that the Unity-app adds a 100% overload compared
to the Python-app. Moreover, it seems that both mean and std val-
ues are much higher than the ones found for visual feedback. This
is partly due to the buffering introduced in the audio processing
pipeline, which may add variable latencies, but which also im-

Figure 5: Setup
used to evaluate in-
put latency of Vive
controller buttons.
The Arduino board
is wired directly to
controller board
pins to measure
button push at the
lowest hardware
level we can access.

proves perceived sound quality. Furthermore, audio performances
are very OS- and drivers-dependent [WSR10], thus this test should
be run for the hardware configuration used at hand.

5 Evaluation of controller button input
For the evaluation of the HTC Vive Pro input latency parame-
ters, we used the main pad as testing button and we hypothesize
that other buttons would show similar timing performance. Indeed,
maximal information transmission rate is presumably imposed by
the bluetooth communication between controllers and HMD, which
presumably set the upper bound in timing performances for all but-
tons. As we needed to access the lowest-level of the controller in-
put, we directly wired the Arduino board to the physical button pins
into the controller, as shown in Figure 5. This setup allows reading
the button state through the Arduino pins directly. This way, we
trigger a “ground truth” timestamp TS1 at the exact moment of
the user button press. TS2 is generated upon button press software
reading in the Python OpenVR thread and the Unity main thread,
respectively. This controller “hacking” procedure allows bypass-
ing the bluetooth communication overload and potential intrinsic
latencies introduced by the Vive system, which can now be charac-
terized by observing T S2−T S1 differential delays.

Latency/jitter Figure 6 presents our results for 200 button push
samples using Python and Unity-based apps.

• Python app: mean = 7.18ms,std = 3.01ms
• Unity app: mean = 13.63ms,std = 4.80ms

As for VR feedback (display and audio) latencies, VR input la-
tencies show relatively small jitter (std < 5ms) with a stable behav-
ior throughout testing. Average time delay between actual button
presses and their software timestamping are almost doubled when
observed using Unity app as compared to using the native OpenVR
API through Python wrapper app. This can be explained by the fact

c© 2018 The Author(s)



M. Le Chénéchal & J. Chatel-Goldman / HTC Vive Pro time performance benchmark for scientific research

Figure 6: Controller button latency: sample time series and delays
distribution.

Figure 7: Controller button refresh rate frequency scanning test.

that input detection is performed within Unity main loop, which is
bounded to run at 90FPS when simulating VR environments. This
leads to an approximate 1/180 = 5.5ms additional delay on aver-
age, which is compatible with our observations.

Refresh rate Manual pushing of the button is a tedious task. Fur-
thermore this approach does not allow to test the maximum re-
fresh rate of the system. Thus, we took advantage of our setup
to stimulate the button electronically; indeed, thanks to our direct
wiring onto the button pins we are able to use the Arduino board
to trigger button push on demand by applying a potential differ-
ence between the two button pins. This way we can benchmark
the controller input refresh rate by swapping over testing frequen-
cies, and thus evaluate its upper limit. To do so, we first run a
frequency scanning test from 5 to 100Hz. These observations are
shown in Figure 7. The signal variance increases monotonically
up to 60Hz, showing increased button switch detection noise, after
which detection performance drops with a definite bias and missed
values. Therefore the system upper bound lies at a maximum re-
fresh rate of approximately 50-60Hz. Above these values the stim-
ulation rate might exceed functioning limits in some internal con-
troller chips, with possible saturation effects that lead to decreased
performance in button push detection or in its information trans-
fer. To assess the consistency of the results obtained with the scan-
ning procedure we stimulated at 60Hz over 1000 trials; we obtained
mean = 52.80Hz,std = 1.77Hz.

6 Conclusion
In this paper we presented the first quantitative test of time perfor-
mance in VR input and VR feedback of the current state-of-the-
art HTC Vive Pro system. Our objective was to evaluate whether
this popular system is suitable for research under strong time con-
straints, such as in neuroscience or biofeedback studies requiring
precise synchronization between multimodal measurements. Us-
ing both low-level python-based API and a high-level game engine
(Unity), our multi-level testing procedure allowed us to isolate soft-

ware influence from the observed results. Our results show that, in
both test conditions, latencies are non-negligible if a synchroniza-
tion latency of less than 10ms is needed during the VR simulation
(with minimum observed delays > 15ms for VR visual feedback,
> 30ms for VR audio feedback, > 5ms for VR input from con-
troller button push). However jitter (latency variance) is relatively
low and stable, which suggest the possibility to apply a simple cor-
rection procedure. This consists in simply counter-balancing mean
observed delays by using constant offsets to re-synchronize mul-
timodal data. Finally, we evaluated the overload introduced by the
Unity game engine, which is commonly used in scientific investiga-
tions involving VR. This high-level simulation environment intro-
duces additional latency with increased jitter in the overall system
performance. Observed delays however stay in a reasonable range
with a maximum values of 80ms delay during app-to-headphone
stimulation. Depending on the experimental demand, research en-
gineers can rely on Unity game engine and possibly apply some
simple time compensation to correct for the most important delays.
As the timing constraints increase in studies requiring more pre-
cise synchronization to other measurement devices and to actual
action/perception at the user level, it might become necessary to tap
into lower-level VR simulation input/output in the native OpenVR
API, using some additional layers such as our Python wrapper apps.
Our benchmark has been designed to be easy to setup. It is based on
simple, low-cost hardware. This is meant to allow replications and
extensions of our tests to other VR headsets, especially OpenVR-
compatible HMDs, which currently cover all major commercial
systems.

Acknowledgments
We thank Deborah Varoqui and Marco Congedo for their help in
reviewing this paper, as well as Antoine Semblat for his graphical
contributions.
References
[BAB11] BOHIL C. J., ALICEA B., BIOCCA F. A.: Virtual reality in neuroscience

research and therapy. Nature reviews neuroscience 12, 12 (2011), 752. 1

[Bas18] BASEMARK: VRTrek by Basemark, 2018. URL: https://www.
basemark.com/products/vrtrek-library/. 2

[Car81] CARD S. K.: The Model Human Processor: A Model for Making Engi-
neering Calculations of Human Performance. Proceedings of the Human Factors
Society Annual Meeting 25, 1 (1981), 301–305. 2

[Dix96] DIX A.: Closing the loop: modelling action, perception and information. In
Proceedings of the workshop on Advanced visual interfaces (1996), ACM, pp. 20–
28. 1

[ICM∗14] ITURRATE I., CHAVARRIAGA R., MONTESANO L., MINGUEZ J., MIL-
LÁN J.: Latency correction of event-related potentials between different experi-
mental protocols. Journal of neural engineering 11, 3 (2014), 036005. 1

[MCP∗18] MA X., CACKETT M., PARK L., CHIEN E., NAAMAN M.: Web-Based
VR Experiments Powered by the Crowd. arXiv preprint arXiv:1802.08345 (2018).
1

[NLL17] NIEHORSTER D. C., LI L., LAPPE M.: The accuracy and precision of
position and orientation tracking in the HTC vive virtual reality system for scientific
research. i-Perception 8, 3 (2017), 2041669517708205. 1

[TPSM09] TEATHER R. J., PAVLOVYCH A., STUERZLINGER W., MACKENZIE
I. S.: Effects of tracking technology, latency, and spatial jitter on object move-
ment. In 3D User Interfaces, 2009. 3DUI 2009. IEEE Symposium on (2009), IEEE,
pp. 43–50. 1

[WMK∗18] WADE A., MCCALL C., KARAPANAGIOTIDIS T., SCHOFIELD G.,
PRESTON C., HARTLEY T., KAESTNER M., HORNER A., MALONEY R.,
SMALLWOOD J., OTHERS: A neuroscientific approach to exploring fundamental
questions in VR. Electronic Imaging 2018, 3 (2018), 435–1. 1

[WSR10] WANG Y., STABLES R., REISS J.: Audio latency measurement for desk-
top operating systems with onboard soundcards. In Audio Engineering Society
Convention 128 (2010), Audio Engineering Society. 3

c© 2018 The Author(s)

https://www.basemark.com/products/vrtrek-library/
https://www.basemark.com/products/vrtrek-library/

