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Abstract

In this paper, we derive an efficient iterative algorithm for the recovery of block-sparse

signals given the finite data alphabet and the non-zero block probability. The non-zero

block number is supposed to be far smaller than the total block number (block-sparse).

The key principle is the separation of the unknown signal vector into an unknown support

vector s and an unknown data symbol vector a. Both number (‖s‖0) and positions

(si ∈ {0, 1}) of non-zero blocks are unknown. The proposed algorithms use an iterative

two-stage LASSO procedure consisting in optimizing the recovery problem alternatively

with respect to a and with respect to s. The first algorithm resorts on `1-norm of the

support vector and the second one applies reweighted `1-norm, which further improves

the recovery performance. Performance of proposed algorithms is illustrated in the

context of sporadic multiuser communications. Simulations show that the reweighted-`1

algorithm performs close to its lower bound (perfect knowledge of the support vector).

Key words: Block-sparsity recovery, iterative reweighting, `1-minimization, iterative

recovery algorithms, LASSO, finite-alphabet.

1. Introduction

Compressed Sensing (CS) is a signal processing approach that enables exact recovery

of sparse signals from highly incomplete sets of linear measurements [1, 2, 3]. In last

decade, CS techniques have spread in various disciplines such as medical imaging, ma-

chine learning, computer science and many others. In many applications of CS such as

measurement of gene expression levels [4], face recognition [5] or data clustering [6], the

signal is block-sparse, i.e., its non-zero elements are grouped into blocks [7]. Many algo-
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rithms have been proposed to recover sparse signals having a block structure. They can

be classified into two popular kinds of algorithms. The first ones, referred to as greedy

CS algorithms, lead to the lowest-complexity detectors from CS theory. A popular ex-

ample of greedy CS algorithm is Group-OMP [8, 9] where non-zero blocks of symbols

are iteratively detected. The second kind, referred to as the `1-minimization family,

comprises for example algorithms based on `2/`1-norm minimization [10]. This family

provides a better sparse recovery with a lower number of measurements than the greedy

one, and so lower error rates can be achieved at the expense of an increased complexity.

In many cases, signals belong to a finite alphabet and this property can be exploited

to enhance the recovery efficiency. For instance, CS under finite-alphabet constraints

was proposed in [11] in the case of a binary alphabet and in [12] for any finite alphabet.

In this paper, we consider the reconstruction of arbitrary finite-alphabet signals having a

block-sparse structure. As already mentioned, [7] and [10] deal with block-sparse signal

recovery without taking into account the finite-alphabet constraint. The main drawback

is the sensitivity of these algorithms to a `2-norm bounding constraint parameter that

depends on the noise level, which may not be available. In this paper, we derive an iter-

ative algorithm from `1−minimization family that takes into account the finite alphabet

constraint and whose single parameter depends only on sparsity parameters. The key

principle is the separation of the unknown signal vector into an unknown sparse support

vector s and an unknown data symbol vector a. Both number (‖s‖0) and positions

(si ∈ {0, 1}) of non-zero blocks are unknown. Proposed algorithms use an iterative two-

stage LASSO procedure consisting in optimizing the recovery problem alternatively with

respect to a and with respect to s. The first algorithm resorts on `1-norm of the support

vector and the second one applies reweighted `1-norm [13], which further improves the

recovery performance.

The paper is organized as follows: in Section 2, we first introduce the signal model

before describing the proposed iterative reweighted algorithm in Section 3. In Section 4,

proposed algorithms are applied in the context of sporadic communications. Finally,

conclusions and perspectives are given in Section 5.

Throughout this paper, notations x, x and X denote respectively a scalar value, a

column vector and a matrix. XT is the transpose of X and XH its Hermitian matrix.

0N (resp. 1N ) is the null (resp. all-one) vector of length N . x̂ stands for the estimated

value of x in a continuous domain included in R or C. QA(x) stands for the quantizer
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operator which maps x to its closest value in a discrete alphabet denoted by A. x̃ denotes

an estimate of x in A.

<{.} and ={.} denote, respectively, the real and the imaginary part of the object

in brackets. ⊗ and � denote the Kronecker and the Khatri-Rao products, respectively.

Finally, α ≤ x ≤ β means that each component xi of x is bounded by α and β. When

A is a set and n an integer, then An stands for the n-fold Cartesian product of A. In

an iterative algorithm seeking for the optimal value of x, x(i) denotes the value of x at

the i-th iteration.

2. System Model

The basic CS model describes the linear connection between a sparse vector x and

its measurement y by

y = Hx+ η, (1)

where η denotes a zero mean complex Gaussian noise vector with covariance matrix

σ2
ηI. H ∈ Cm×n is the underdetermined mixing matrix with fewer rows than columns

(m < n). x is a block-sparse vector x = [xT1 ,x
T
2 , . . . ,x

T
K ]T composed of K length-N

blocks xi i.e., n = KN . The number of non-zero blocks in x is a random variable,

denoted by Ka. When the k-th block is different from 0N , it takes its value in finite

alphabet AN . Thus, xk belong to zero-augmented alphabet AN ∪ {0N}. We denote by

pa the probability that a block is different from 0N .

The original mathematical model which defines the sparsity condition in the noisy

case is given by

x̂ = arg min
x

||x||0 s. t. ||y −Hx||2 ≤ ε. (2)

The optimization problem (2) is an NP-hard combinatorial problem [14]. A computation-

ally tractable alternative is to relax the problem by performing `1-norm minimization in

place of `0-norm minimization; the former can be solved in polynomial time using linear

programming techniques [15, 16]. Then the problem is given by

x̂ = arg min
x

||x||1 s. t. ||y −Hx||2 ≤ ε. (3)

However solving (2) or (3) leads to a sparse vector that is not necessarily block-sparse,

even when the true vector x is block-sparse [7]. In [7], the block-sparsity is taken into

account by replacing the `0-norm used in (2): the non-zero blocks can be counted by
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combining an indicator function with `2-norm to detect energy which gives the following

problem formulation:

x̂ = arg min
x

K∑
k=1

I(0,+∞)(||xk||2) s.t. ||y −Hx||2 ≤ ε, (4)

where IA(.) is the indicator function of subset A. Greedy algorithms such as GOMP

are used to solve (4). Another solution to reconstruct block-sparse signals is referred

to as ”`2/`1-norm minimization” [10]. Instead of using `1-norm as in (3), it combines

`1-norm to measure the block sparsity and `2-norm to detect energy. By defining the

energy vector ξx = [ξx1 , . . . , ξxK
] where ξxi = ||xi||2 for i = 1, . . . ,K, the `2/`1-norm

block-sparse signal recovery criterion is given by

x̂ = arg min
x

||ξx||1 s. t. ||y −Hx||2 ≤ ε,

which is equivalent to

x̂ = arg min
x

K∑
k=1

||xk||2 s. t. ||y −Hx||2 ≤ ε. (5)

In all the approaches mentioned above, the upper bound ε depends on the noise de-

viation and on the number of observations. The optimization of ε is critical and requires

a good knowledge of the noise standard deviation ση which may be unavailable. The

resulting lack of accuracy is mitigated in Section 3 by reformulating the problem in such

a way that its resolution doesn’t need the noise deviation estimation. On the contrary,

it exploits known information such as the source data alphabet and the probability that

a block is null.

3. Proposed Algorithms

Greedy algorithms such as GOMP are the least complex detectors from CS theory,

but they suffer from error propagation. A false non-zero detection at a given iteration

can cause the data and the non-zero detection of all subsequently blocks to be incorrect.

The error propagation increases with the number of non-zero blocks Ka and thus with

the probability pa.

In order to bypass the GOMP defaults, we aim to define a criterion and an algorithm

which exploits the finite alphabet constraint and the block-sparsity structure of the sig-

nal. Therefore, the main objective is the definition of the constraints from x properties.
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x is block-sparse and each block xk equals 0N or belongs to AN . The probability that

xk differs from 0N is pa.

By exploiting the independence between support (number and positions of non-zero

blocks) and data values, we introduce the length-K binary support vector s and the

block-data vector a. sk = 1 if the k-th block is non-zero and sk = 0 otherwise.

a = [aT1 ,a
T
2 , . . . ,a

T
K ]T with ak ∈ AN for k = 1, . . . ,K.

We can then write xk = skak that is to say x = Dsa where Ds is a KN × KN

matrix given by Ds = diag(s) ⊗ IN .

Given the constraints, the detection problem can be written as

arg min
s,a

||y −HDsa||2

s.t. s ∈ {0, 1}K

a ∈ AKN

(6)

Problem (6) is NP-hard and requires an exhaustive search. In order to get a polynomial

complexity, we relax the constraints and we use an iterative two-stage LASSO algorithm

which alternates between support detection given a and signal estimation given s. The

constraint involving s is relaxed by using `1-norm as well as lower and upper bounds,

whereas real and imaginary parts of a are bounded by extreme values of the finite-

alphabet. Then problem (6) is relaxed by:

arg min
s,a

||y −HDsa||2

s.t. ‖s‖1 ≤ δ

0 ≤ s ≤ 1

min<{A} ≤ < (a) ≤ max<{A}

min={A} ≤ = (a) ≤ max={A}

(7)

δ is introduced so as to force the sparsity of s. Its value can be fixed such that

Pr(Ka ≤ δ) = Pr

(
K∑
k=1

sk ≤ δ

)
= Pc, (8)

where Pc is defined as the target confidence probability. As Ka =
∑K
k=1 sk follows the

binomial distribution with parameters K and pa, the probability of having a non-zero
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Algorithm 1 Iterative two-stage LASSO

Initialize:

ŝ(0) = 1K

for i =1 . . .Niter do

Stage (1)



â(i) = arg min
a
||y −HDŝ(i−1)a||2

s. t.


min<{A} ≤ < (a) ≤ max<{A}

min={A} ≤ = (a) ≤ max={A}

Stage (2)



ŝ(i) = arg min
s
||y −HMâ(i)s||2

s. t.


‖s‖1 ≤ δ

0 ≤ s ≤ 1

end for

block number lower than δ in K trials is given by

Pr(Ka ≤ δ) =
bδc∑
k=0

(
K

k

)
pka(1− pa)K−k = I1−pa (K − bδc, 1 + bδc) (9)

with b.c the greatest integer function and Ix(·, ·) the ”regularized incomplete beta func-

tion”. We obtain δ by solving (9) given a target confidence probability Pc , Pr(Ka ≤ δ).

δ can also be interpreted as the maximum number of non-zero blocks that the algorithm

will be able to detect. Its choice is as critical as the choice of ε in (5). But δ only depends

on the probability pa, while ε depends on the noise variance σ2
η.

To solve (7), we assume as an initial condition that all blocks are non-zero: s(0) = 1K .

The proposed iterative process is referred to as ”iterative two-stage LASSO” and is

detailed in Algorithm 1 where Ma = IK � a.

The algorithm output ŝ belongs to [0, 1]. To reconstruct x, we need a binary support

vector and we have two options to estimate it from ŝ. The first one, without any prior,

applies on ŝ a threshold fixed to 0.5. The second one exploits the knowledge of the

number of non-zero blocks by selecting the Ka highest values of ŝ.

Note that the alphabet constraint consists in a strong relaxation by the introduction

of a box constraint on the alphabet. In practice, the recovery performance of (7) will

improve as long as the cardinality of real and imaginary parts of A is small.

An interesting solution referred to as reweighted `1-minimization was proposed in

[13] as an intermediate between `0 and `1 minimizations: it performs closer to `0 min-
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imization while remaining convex as `1-norm based criteria. Therefore, based on [13],

we propose in this paper the ”Iterative Reweighted two-stage LASSO algorithm” where

reweighted `1-norm minimization is applied in second stage for support detection. It is

described in Algorithm 2 (i−th iteration). W is a diagonal matrix with diagonal entries

w1, w2, . . . , wK . Initial weights are set to w
(0)
k = 1, k = {1, 2, . . . ,K}.

Algorithm 2 Reweighted Iterative two-stage LASSO

Initialize:

ŝ(0) = 1K

for i =1 . . .Niter do

Stage (1)



â(i) = arg min
a
||y −HDŝ(i−1)a||2

s. t.


min<{A} ≤ < (a) ≤ max<{A}

min={A} ≤ = (a) ≤ max={A}

Stage (2)



ŝ(i) = arg min
s
||y −HMâ(i)s||2

s. t


||W (i)s||1 =

∑K
k=1 w

(i)
k |sk| ≤ δ

0 ≤ s ≤ 1

Update w
(i+1)
k = 1

|s(i)
k
|+ρ

6: end for

Non-zero weights w
(i+1)
k are updated as in [13]. The parameter ρ ensures that a

decision taken at one step can be questioned at next step i.e. a zero-valued component in

s(i) could turn into a non-zero estimate at next step. We consider the same optimization

of ρ as in [13]:

ρ = max{|s(i−1)|(Ka+1), 10−3}, (10)

where |s(i−1)|(Ka+1) represents the (Ka+1)-th element of the vector that orders (|s(i−1)|)

in decreasing order of magnitude. It requires the estimation of Ka, which can be obtained

thanks to an energy detector. The purpose of ρ is to avoid the divergence of the norm

due to high weight values caused by extremely low components of the support vector.

Let us note that Algorithm 2 only represents a variation of the one proposed in [13].

The cost function of (7) is continuously differentiable and constraint sets of Algorithms 1

and 2 are convex. The cost function remains convex with respect to one variable when the

other is held constant. Being alternations of two convex optimizations with independent

constraints, the convergence of Algorithms 1 and 2 is ensured by Propositions 2.5 and
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3.9 in [17].

To give rough estimation of the complexity, we only kept the most complex compu-

tational operations and we neglected the others. For the GOMP algorithm, the overall

complexity is dominated by the LS estimation step, maximum at last iteration and

given by O((KaN)3). Hence, the complexity for the Ka iterations is upper-bounded by

KaO((KaN)3). For the `2/`1 algorithm, the overall complexity is given by O((KN)3).

Finally, for the proposed LASSO-based algorithm, the complexity of first stage is dom-

inated by O((KN)3), whereas for second stage, it is dominated by O(K3). Therefore,

its overall complexity is dominated by NiterO((KN)3). In next section, Algorithms 1

and 2 are applied in the context of sporadic communications.

4. Application to Sporadic Multiuser Communications

Multi-user detection (MUD) based on CS (CS-MUD) was recently proposed in [18, 19]

in the context of sporadic machine type communications (MTC) to jointly detect user

activity and user data. In sporadic MTC, K users can either send a small frame to an

aggregation point (in that case, the user is said active) or remain idle. If more than one

user is active, collisions occur at the aggregation point. We consider the linear model

given in (1) to describe multi-user sporadic communications.

Recovery of sparse sequences requires a minimum number of observations [20] to

estimate sparse vectors with overwhelming probability. A solution to increase the number

of observations is to spread each symbol period using spreading sequences [21]. In that

case, the spreading goal is obviously not orthogonal multiple access. In the following,

we consider spreading sequences of length Ns smaller than the number of users which

yields an underdetermined multiuser detection problem. Therefore, the system matrixH

includes all the frequency-selective Rayleigh fading channels and the spreading sequences

of each user. Hence, matrix H ∈ Cm×n with n = KN and m = NsN . The aggregation

point has no knowledge whether the k−th user is active or not during a given time-slot.

Therefore, user activity has to be jointly detected with transmitted data and algorithms

proposed in Section 3 apply to this context. As in [18, 19], we consider that the number of

active users Ka is perfectly estimated by an energy detector. Detection (either Algorithm

1 or Algorithm 2) is first carried out with δ fixed so that (8) is satisfied. The perfect

knowledge of Ka is exploited first to fix ρ in (10) and secondly at the iterative process
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output by setting the Ka maximum values of ŝ to 1 and the remaining ones to 0. Then,

we decide x̃ = QA (Dŝâ).

In the simulations, we assume a low activation probability (pa < 0.5). The activity

of each user is randomly sorted according to pa, such that E(Ka) = Kpa. The multipath

fading channel is modeled by L = 6 independent Rayleigh-distributed taps. The total

number of users is set to K = 80. Each pseudo-random sequence length is Ns = 25. An

active user transmits N = 30 information symbols per frame which belong to alphabet

A such that the variance of the symbols is equal to 1. The performance are given as a

function of the signal-to-noise ratio (SNR) which equals

SNR =
paK

σ2
η

.

Proposed algorithms are compared to the GOMP and to the `2/`1 minimization algo-

rithm. Since no analytical solution is available [22] for problem (7), the convex opti-

mization toolbox (CVX) [23] is used to execute the algorithms. ”It. 2-stage LASSO”

(resp. ”Reweight. It. 2-stage LASSO”) refers to Iterative two-stage LASSO algorithm

(resp. Reweighted Iterative two-stage LASSO algorithm).

4.1. Symbol Error Rate

The symbol error rate (SER) is illustrated in Fig. 1 for BPSK modulation with

pa = 15% (Fig. 1a) and for 16-QAM modulation with pa = 10% (Fig. 1b). Proposed

algorithms are carried out with Pc = 0.99 and 40 iterations.

As benchmark, we propose two oracle algorithms which have perfect knowledge of

the support vector s.

For both of them, the observation vector equals y = Hsxs+η, where xs combines all

non-zero blocks xk of x for which sk = 1, andHs is the concatenation of the sub-matrices

of H which have the same indices as the non-zero blocks. The first oracle referred to as

oracle-LS is only based on least-squares estimation of data: x̂s =
(
HH

s Hs

)−1
HH

s y.

The second oracle referred to as oracle-BLS (bounded least squares) exploits the

finite alphabet constraint thanks to bounded-variable convex constraints and estimates
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xs as follows: 

x̂s = arg min
xs

||y −Hsxs||2

s. t

min<{A} ≤ < (xs) ≤ max<{A}

min={A} ≤ = (xs) ≤ max={A}

(11)

The oracle-LS bound is above the oracle-BLS bound since the latter considers the

alphabet constraint. Improvement offered by proposed algorithms is significant. An

important gain appears for SNR higher than 12 dB and 27 dB for BPSK and 16-QAM

respectively. Iterative two-stage LASSO performs close to oracle-LS, while Reweighted

Iterative two-stage LASSO outperforms oracle-LS and achieves a SER close to the oracle-

BLS one.

4.2. Support Detection

The probability that an inactive user is detected as active and vice versa is expressed

as E[‖s − s̃‖22] = 1
K

∑K
i=1 |si − s̃i|2 where s̃ denotes the decided support given by s̃ =

Q{0,1}(ŝ). This activity-detection error rate is illustrated in Fig. 2 for BPSK modulation

with pa = 15% (Fig. 2a) and for 16-QAM modulation with pa = 10% (Fig. 2b).

We observe an error floor for the GOMP algorithm and also a lower one for the `2/`1

minimization algorithm. Proposed iterative two-stage LASSO algorithms outperform

the other two with no error floor observed in the activity-detection error rate and with

a better performance for the reweighted version.

5. Conclusion

In this paper, we proposed a new iterative `1-minimization algorithm that exploits the

finite alphabet knowledge and iterates between data estimation and activity detection.

Its parameter only depends on the activation probability. We introduced an improved

version by reweighting `1-norm of the support vector. Both algorithms are evaluated in

the context of sporadic multiuser communications. They perform better than GOMP

and `2/`1-minimization algorithms without error floor observed in the activity-detection

error-rate. In the future, we will investigate the robustness towards estimation of the

active user number and to channel estimation (with the help of additional pilot symbols).

Proposed algorithms would iterate between channel estimation and support detection.
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Figure 1: SER comparisons for BPSK and 16-QAM modulations with K = 80 users and Ns = 25.
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Figure 2: Activity-detection error rate for BPSK and 16-QAM modulations with K = 80 users and

Ns = 25.
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