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Abstract—In Content Delivery Networks (CDN), Quality of
Experience (QoE) provides two major performance indicators
that are availability and continuity of service. As a consequence,
network robustness has become a major concern for network
operators. TDF operates a traditional transport network for
video and audio transport through multicast. Any failure on the
network causes a recovery time implying loss and an impact in the
content viewing. This illustrate that service continuity is a direct
consequence of network availability. This work aims to propose
a Software Defined Networking (SDN) architecture [1] in which
a central controller uses its knowledge of the performance and
bandwidth allocation to compute redundant disjoint multicast
trees. Two maximally independent trees carrying the same stream
over the network are deployed. When a failure occurs, at least
one of the trees is still active, eliminating any discontinuity on the
content viewing. This paper is focused on the Path Computation
Element (PCE), which is based on previous works and the
Suurballe-Tarjan algorithm [2]. Two algorithms are presented in
this paper, which both fulfill the requirement of the architecture.

Index Terms—Routing, Disjoint trees, QoE, Seamless, Multi-
cast, Real-time stream, Delay Constrained, SDN.

I. INTRODUCTION

In Content Delivery Networks (CDN), robustness is one of
the main problematic, as it is directly responsible for network
availability and thus service continuity.

TDF is a French network operator, mainly providing trans-
port for real-time audio and video streams nationwide. Today,
one of its most important activity is audiovisual transport,
streaming most of DTT channels (Digital Terrestrial Televi-
sion) and national radios from studios to broadcasting antennas
all over the territory. TDF operates its own network which is
independent from the Internet, but can be considered a CDN.

The carried traffic is a real-time stream. As a consequence,
data cannot be re-transmitted in case of loss and must be
transported as fast and as steady as possible. Any method
associated with TCP cannot be used in this case. Also, any loss
in the network may cause a multiplied impact in the content
viewing, depending on the receiving equipment: Quality of
Experience (QoE) [3] is one of TDF’s main concern. As
service continuity is a consequence of network availability,
Quality of Service (QoS) [4] is to be considered for QoE issues
to be solved: commitments on availability, latency, jitter, and
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Fig. 1. Maximally independent delay constrained trees

loss are specified for each business customer in the Service
Level Agreement (SLA).

To ensure robustness in case of failure, traditional IP solu-
tions rely on rerouting based on the Interior Gateway Protocol
(IGP). TDF current solution is the standard Multicast VPN
(MVPN) [5] over MPLS on a traditional IP network. MVPN is
composed of two protocols IGMP and PIM that both relies on
the IGP. Those protocols ensure the building of a multicast tree
and its resiliency through rerouting. Such resiliency schemes
necessarily imply micro-cuts of the service, and thus impact
on the content viewing. End equipment are able to buffer and
absorb a part of the rerouting time, which must be inferior to
the buffer size plus the delay of the path. But end equipment’s’
buffers are very small due to the real-time constraint, and only
rerouting performance can be improved, which is very costly.

Inspired from Seamless Protection Switching (SPS) [6],
we aim to propose a new architecture based on redundancy
for reliable transport. SPS is a standard defining how two
redundant streams should be combined into a single coherent
stream, without any cut if any stream fails. Indeed, redundancy
and specifically seamless switching can tend to the micro-cuts
issue while assuring the continuity of service in case of failure.

The main idea of the proposed architecture is to build two
maximally independent redundant trees from the source of the
stream to the destinations as illustrated in Fig. 1.

Both of the trees are active and carry the data to the
destination. Basically, the destination is capable of swapping
seamlessly from one path stream to the other. This way,



whenever a failure occurs, only one path is impacted per
destination. There is no backup tree: both of them are active
at the same time. The main drawback is the bandwidth
utilization: carrying twice the data on disjoint trees means
using much more network resources. As a consequence, one
of the main goals is to minimize the total bandwidth utilization
of the two trees.

As it is presented, the architecture is a proactive protection,
implying offline computation of the trees. The complete ro-
bust scheme also ensure each tree robustness, accounting for
multiple network failures.

Software Defined Networking (SDN) [1] is a new paradigm
in which networks activities are separated in the control plane
and the data plane. A controller handles decisions while
network nodes only perform forwarding. This way, any func-
tionality can be implemented seamlessly through controller
programming, and various algorithms can be implemented in
a centralized fashion. Fig. 2 illustrates the architecture of this
paper’s solution. The network is separated between three main
planes : Control plane, responsible for decision elements, the
Management plane, responsible for managing the network,
and the Data plane which applies Control plane decisions
and forwards traffic accordingly. An SDN controller usually
contains Control and Management plane, while network nodes
only support Data plane.

This paper is focused on the Path Computation Element
(PCE) of the presented architecture. It is organized as follow:
in Section II industrial constraints are described and transposed
into a graph theory formulation. Section III reviews the related
works on multicast reliability and the multi-tree computation
problem. In Section IV, two algorithmic approaches are pre-
sented. Finally, both algorithms are experimentally evaluated
in Section V.

II. MIDCMPT PROBLEM

A. Problem statement

Multicast is a method to send data to a group of receivers
in a single transmission, rather than multiple transmissions.
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Fig. 2. Architecture Overview

To perform multicast over a given network, the creation of a
tree is needed. Network topology can be modelled as a graph,
and tree computation is a well-known field of graph theory.
In simple cases, Spanning Trees are usually easy to compute
and efficient enough.

TDF’s constraint are the following: the data is a real-time
continuous stream, and as such should be carried as fast as
possible without loss. Also, network bandwidth should be
managed: the network should be able to carry the streams and
every other customer’s traffic. The network is not dedicated
to this single usage. As a consequence, minimising the total
bandwidth usage is a major concern.

Links that do not have enough bandwidth for the stream are
removed from the problem. Each edge of the graph receives a
weight of 1: intuitively, saving network resources is equivalent
to using as less links as possible. But this weighting scheme
does not account for existing traffic nor network heterogeneity.
A naive approach would be to use bandwidth consumption as
weight, but given the heterogeneity of the network, it should
be considered to prioritise some links : for example, a 10 Gb/s
backbone link used at 10% should be less costly than a half full
1 Gb/s access link, even though the bandwidth consumption
is greater.

As stated before, the real-time streaming constraint implies
a constrained delay between the source and each destination.
Each edge of the graph is set with the maximum link delay
measured over a significant period. This ensures that over the
real network, constraint is not violated.

At any time, any destination should be reached by two
disjoint paths carrying the same stream, to ensure that in
case of failure the stream reaches destination. This is called
path diversity. More redundancy could be considered : if a
destination si reached by more than two path, it is even less
likely to be unreachable in case of link failure. But in the
proposed architecture, all paths carry the stream, and thus
consume bandwidth. Using more than two paths is too costly
in network usage compared to the robustness gain.

Given the gathered data for the studied network, links are
more likely to fail than nodes. Paths are then only required
to be edge-disjoint. Node-disjointedness is stronger, because
node-disjoint paths are inherently edge-disjoint. Nevertheless,
the proposed algorithm can ensure node-disjointedness.

Given real network topologies, disjoint paths are not always
possible. For geographic reasons, some areas may not be
reachable by two distinct paths. This means a Single Point
of Failure exists for such areas of the network, and cannot
be bypassed. As a consequence, disjointedness is not required
to be strict. The problem is then stated as finding Maximally
Independent Delay Constrained Minimal Pair of Trees (MID-
CMPT).

B. NP-hardness

The MIDCMPT problem is NP-hard and this section
focuses on its proof. First, the Maximally Independent Delay
Constrained Paths problem (MIDCP) is shown to be NP-hard
by reduction to the Maximally Independent Paths problem



(MIP). Then, MIDCP is generalised to MIDCMPT. Node and
edge-disjointedness are similar from the problem formulation
point of view.

The MIDCP problem can be formulated as follows : for
a graph G0, find a pair of (s,t)-paths such as those path
are maximally independent, delay constrained and lightest
possible. An auxiliary graph G1 is created by removing from
G0 all edges belonging only to (s,t)-paths violating the delay
constraints. One can solve the MIDCP problem over G0 by
solving the MIP problem over G1. Since the MIP problem is
known to be NP-hard [7], then by reduction the MIDCP is
NP-hard.

MIDCP is a specific case of the MIDCMPT problem. Using
the following MIDCMPT formulation, it appears that MIDCP
is the N = 1 case : find a pair of trees from a source to N
destinations such as those trees are maximally independent,
delay constrained and lightest possible. By generalisation of
MIDCP which is NP-hard, the MIDCMPT problem is NP-
hard.

III. RELATED WORKS

A. On Multicast reliability

Network survivability has been studied in [8] within the
same context, providing tools for modelling MVPN solutions
and evaluating its reliability. It shows that even though im-
provement of the traditional architecture is possible, impact
still exists.

In [9], several paths are deployed proactively on network
nodes, and activated quickly in case of failure, thanks to
OpenFlow Fast Failover groups [10]. This solution improves
service availability. However, this scheme uses multiple paths,
which is not as bandwidth-efficient as a multicast distribution.

[11] proposes a scheme based on multiple trees to ensure
reliable multicast distribution in a datacenter. The main point
is to avoid loss and enable rapid path rerouting. Constraints
and goals may differ from our problem, but the approach is
similar, though our proposed scheme uses simultaneously the
two multicast trees.

A genetic algorithm is proposed in [12] to deploy two
spanning trees on Networked Controlled Systems to ensure
communication reliability. The usage of a similar method will
be considered in future works.

B. On MIDCMPT computation

To the best of our knowledge, no method has yet been
proposed to compute MIDCMPT. To solve this problem, many
heuristics have been proposed such as in [13], and even an
exact solution in [14].

[15] provides an algorithm to compute two trees in such a
way that a node will always be reachable through one of the
trees in an edge redundant network. It can account for costs
and for a delay constraint. The first drawback of this work
is that it is based on undirected graph, and cannot account
for different costs on each direction. Given the industrial
context of unidirectional transmission, network links are to
be considered directed. The second drawback is that this

algorithm works on an edge redundant graph, which means
that, for any given pair of vertices, there exists at least two
strictly independent paths between those vertices. In practice
this is not the case.

[16], [17], [18] intended to provide a new algorithm, based
on directed graphs and resulting in a close to optimal solution.
This method does not account for delay constraint and works
on graphs with specific properties. Author’s previous work
intended to propose a new version of this algorithm, delay
constrained and graph agnostic. Adaptation of [16], [17], [18]
was not trivial, had a high computational cost and results
showed that the algorithm often did not provide valid solutions.

IV. PROPOSED ALGORITHMS

A. Red Tree First - RTF

The concept of this algorithm is quite simple: a first
delay constrained tree is computed iteratively using a delay
constrained shortest path algorithm. Then a second tree is
computed accounting for the first tree.

1) Delay constrained shortest path algorithm: Two delay
constrained shortest path algorithm are selected for this work
: Lagrange Relaxation based Aggregated Cost (LARAC) [19]
based on Dijkstra algorithm [20] and Constrained Bellman-
Ford algorithm (CBF) [21] based on Bellman-Ford algorithm
[22].

The LARAC procedure can be described as follows : for a
given delay constraint, Dijkstra algorithm is applied iteratively
to reweighted versions of the graph until weight and delay
conditions are met. The weighting depends on previously
computed paths, weight and delay.

The CBF algorithm is a breadth-first search, discovering
paths with increasing delay while recording the shortest path
to each node visited, until the exploration delay exceeds the
delay constraint.

2) RTF explanation: The Red Tree First (RTF) procedure
consists in computing one tree first, then the second one. A
tree is computed as follows : for each destination not yet
reached, a delay constrained shortest path algorithm is applied
from source. Only the lightest path found is added to the tree.
Every edge of the graph belonging to the tree receives a null
weight. Delay is not altered. This operation is repeated until
all destinations are reached by this first tree. Once the tree
complete, all edges of the graph belonging to the tree receive
a maximal weight. This maximal weight is the total weight of
the graph. The second tree is then calculated using the same
process over the modified graph.

RTF can also aim for maximal node-disjointedness. Before
the second tree computation, all incoming edges of nodes
belonging to the first tree must receive the maximal weight.

This procedure tends to find lightest trees under delay
constraint. Independence is not guaranteed, as the lightest path
is not always part of the maximally independent pair of paths.
Nevertheless, by weighting the edges of the first tree with the
total weight of the graph, the procedure ensures that those
links will be used as last resort to build the second tree. This



is easily proven, as any other path is lighter than the complete
graph.

This scheme ensures that two trees are found, fitting the
delay constraint. Independence and cost are accounted for,
but not a priority. The proposed RTF procedure is detailed
in Algorithm 1, and illustrated in Fig. 3.

Algorithm 1 Red Tree First algorithm
Input: A directed graph G = (V,E) weighted with cost C

and delay D, a source s, a set of destinations T ,
a delay constraint ∆.

Output: Two delay constrained maximally edge-disjoint
lightest trees Ar, Ab from s to every t ∈ T .

1: Tr ← T
2: while Tr 6= ∅ do
3: Pmin ← E
4: for t ∈ Tr do
5: Pt ← LARAC(s, t,∆)
6: if C(Pt) ≤ C(Pmin) then
7: Pmin ← Pt

8: tmin ← t
9: end if

10: end for
11: Tb ← Tr − {tmin}
12: Ar ← Ar ∪ Pmin

13: for e ∈ Pmin do
14: C(e)← 0
15: end for
16: end while
17: for e ∈ Ar do
18: C(e)←

∑
i∈E C(i)

19: end for
20: Tb ← T
21: while Tb 6= ∅ do
22: Pmin ← E
23: for t ∈ Tb do
24: Pt ← LARAC(s, t,∆)
25: if C(Pt) ≤ C(Pmin) then
26: Pmin ← Pt

27: tmin ← t
28: end if
29: end for
30: Tb ← Tb − {tmin}
31: Ab ← Ab ∪ Pmin

32: for e ∈ Pmin do
33: C(e)← 0
34: end for
35: end while

B. Iterative SHERPA - IS

The second proposed algorithm is based on a multipath al-
gorithm SHaring-Edges Restrained PAths (SHERPA) [23]. IS
computes iteratively pairs of paths using SHERPA, and assigns
them to the trees depending on the maximum independence
affectation.
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1) SHERPA: This algorithm is to be published by the
authors in [23], but this section describe the main idea. In
a graph G = (V,E), for a given pair (s, t) ∈ V × V , the
SHERPA algorithm finds two delay constrained maximally
edge-disjoint paths from s to t. It is based on the Suurballe-
Tarjan algorithm [2], which does not account for delay con-
straint and ensures only strict disjointedness. In short, the
alterations to this original algorithm are: the replacement of
the shortest path algorithm by a delay constrained algorithm;
a reweighting scheme instead of the deletion of some links to
provide relaxed disjointedness.

Based on Suurballe-Tarjan algorithm variation for node-
disjointedness, SHERPA also propose a variation to find delay
constrained maximally node-disjoint paths. This variation can



be used in IS to find for node-disjoint trees.
2) IS explanation: The IS procedure iterates SHERPA

algorithm instances as follows : for each destination not yet
reached by the trees, SHERPA algorithm is applied from
the source to find a pair of Maximally Independent Delay
Constrained Lightests Paths. Each path is assigned to a tree,
depending on which affectation provides maximal indepen-
dence. When no decision can be made for a given destination
(i.e. provided independence is equal for both affectations), it
is skipped and treated later. If no decision can be made for
any of the remaining destinations, one random affectation is
made, and the process restarted for every other not reached
destinations. This process is repeated until all destinations are
reached. Note that the order in which destinations are treated
does not matter on the final result.

Algorithm 2 Iterative SHERPA algorithm
Input: A directed graph G = (V,E) weighted with cost C

and delay D, a source s, a set of destinations T ,
a delay constraint ∆.

Output: Two delay constrained maximally edge-disjoint
lightest trees Ar, Ab from s to every t ∈ T .

1: Ar ← ∅
2: Ab ← ∅
3: previous← |T |
4: while T 6= ∅ do
5: if |T | = previous then
6: u← rand(T )
7: P1, P2 ← SHERPA(s, u,∆)
8: Ar ← Ar ∪ P1

9: Ab ← Ab ∪ P2

10: end if
11: previous← |T |
12: for t ∈ T do
13: P1, P2 ← SHERPA(s, t,∆)
14: if |(Ar ∪P1)∩ (Ab ∪P2)| > |(Ar ∪P2)∩ (Ab ∪P1)|

then
15: Ar ← Ar ∪ P1

16: Ab ← Ab ∪ P2

17: T ← T − {t}
18: else if |(Ar∪P1)∩(Ab∪P2)| < |(Ar∪P2)∩(Ab∪P1)|

then
19: Ar ← Ar ∪ P2

20: Ab ← Ab ∪ P1

21: T ← T − {t}
22: end if
23: end for
24: end while

Node disjointedness can be achieved by using the node-
disjoint variation of SHERPA algorithm, and to check for com-
mon vertices instead of common edges for path assignation.

The proposed IS scheme ensures maximal path diversity for
every destination. Path cost is minimized, but total tree cost
is not guaranteed to be minimized, as path affectation only

depends on path diversity. The complete procedure is detailed
in Algorithm 2, and illustrated in Fig. 4.
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C. Validity of the solutions

Nothing guarantees the absence of cycle or the uniqueness
of path from source to a vertex in a tree. That is to say
a solution provided by one of the algorithms is a pair of
valid trees. The only guarantee at this point is that the delay
constraint is respected on at least one of the paths for each
destination.

To ensure the validity of the results, two steps are necessary
: removing cycles, and selecting unique paths.

Cycles can be easily found through Depth First Search
(DFS). When an already visited node is met by the DFS,



this means the last edge belongs to a cycle, goes towards the
source, and should be removed. The DFS is then restarted.
A specific case is met when the cycle is between two nodes,
with an edge in each direction. These 2-length cycles are first
treated as any other cycle, but kept in memory. It has been
observed in practica that such cases necessitates a specific
treatment. After treating all cycles, a procedure must be
applied to each 2-length cycle met to select which direction
must be kept. Algorithm 3 details the procedure. Basically,
either one direction is needed to keep the tree continuous,
or the shortest delay path between the two nodes is kept, to
ensure that the delay constraint is not violated. This scheme
always works if a single 2-length cycle is met, but might fail
when multiple 2-length cycle appear.

Algorithm 3 2-length cycles elimination procedure
Input: A directed graph G = (V,E) weighted with cost C

and delay D, a source s, a set of destinations T ,
a delay constraint ∆. A pseudo-tree A ∈ E without cycle.
A list B of 2-length cycles.

Output: A pseudo-tree A without cycle.
1: PA(v) denotes the predecessors of v in set of edges A
2: for (x, y) ∈ B do
3: A← A \ (x, y), (y, x)
4: if |PA(x)| = 0 then
5: A← A+ (y, x)
6: else if |PA(x)| = 0 then
7: A← A+ (x, y)
8: else
9: sx ← Shortest delay path from s to x

10: sy ← Shortest delay path from s to y
11: dx ← D(sy) +D((y, x))
12: dy ← D(sx) +D((x, y))
13: if dx < dy then
14: A← A+ (y, x)
15: else
16: A← A+ (x, y)
17: end if
18: end if
19: end for

Once cycles are removed, to ensure the validity of the
results, unique path to destinations must be selected. For any
vertex with more than two predecessor in a tree, the lightest-
delay path from source is selected and only the matching
predecessor is kept. All other unnecessary edges are removed.
Algorithm 4 details the procedure.

In summary, to obtain a valid solution one must follow the
process:

• DFS to find and break cycles while keeping in memory
2-length cycles met;

• Treat 2-length cycles using Algorithm 3;
• Eliminate multiple paths using Algorithm 4.

Algorithm 4 Multiple path elimination procedure
Input: A directed graph G = (V,E) weighted with cost C

and delay D, a source s, a set of destinations T ,
a delay constraint ∆. A pseudo-tree A ∈ E without cycle.

Output: A valid tree A from s to every t ∈ T .
1: Function single path(v)
2: PA(v) denotes the predecessors of v in set of edges A
3: for p ∈ PA(v) do
4: d[p]← 0
5: c← p
6: while c 6= s do
7: if |PA(c)| > 1 then
8: single path(c)
9: end if

10: We have PA(c) = {b}
11: d[p]← d[p] +D(b, c)
12: c← b
13: end while
14: end for
15: u← minp∈PA(v)(d[p])
16: for p ∈ PA(v) \ {u} do
17: A← A \ {(p, v)}
18: end for
19: end Function
20:
21: Let M be the set of vertices with more than one prede-

cessor in A
22: while M 6= ∅ do
23: single path(rand(M))
24: M is re-estimated
25: end while
26: Let LA ∈ V be the set of leaves of A
27: N ← LA \ T
28: while N 6= ∅ do
29: for n ∈ N do
30: Let En ∈ E be the set of edges to vertexs n
31: A← A \ En

32: end for
33: Let LA ∈ V be the new set of leaves of A
34: N ← LA \ T
35: end while

V. ALGORITHM EVALUATION

A. Experimentation Scheme

The two proposed algorithms are here evaluated in terms of
performance and scalability.

1) Problem generation: Random graphs are generated
given a number of nodes following an Erdõs-Rényi model.
Three types of instances will be studied : small graphs n = 20,
medium graphs n = 100 and TDF’s network scale large graph
n = 800.

Random links are added between connected component
to ensure the connectivity of the whole graph. It could be



argued that this is not the best model for networks. Statistical
significance is discussed later.

The probability p of edge creation is chosen according to the
expected number of edges. For small graphs, different degrees
will be used. Sparse and dense graphs will be generated with
p = 0.1 and 0.6 for n = 20. Medium graphs will be generated
with p = 0.01 for n = 100. For large graph, around 1600
edges are wanted, which matches p = 0.002, to reflect a
topology fo the same scale as TDF’s network.

Edges are randomly assigned a class to reflect the hetero-
geneity of the topology, as stated in II. Each class matches an
intervals for random delay and a weight.

One node is randomly selected as source and a set of differ-
ent nodes as destinations. Around 10% of nodes are selected
as destinations. Such random selection is not representative
of a hierarchical network. On a Internet network, source and
destinations are usually on the edge of the network while on
an operator network such as the studied one, source is located
on the network’s core while the destinations are on the edge.

Network core is usually a highly connected part of the
network while network’s edge are less connected.

Using a heuristic such as the one proposed in [24], it is
possible to identify the ”denser” region of the graph, that can
be assimilated to the network’s core. If the source is selected
in this region while the destinations are selected outside of it,
the problem is closer to the studied case. One could go even
further and use classification or partition methods, but problem
generation is not the core of this work.

To determine the delay constraint value, an assumption is
made : the network is designed such as all nodes are reachable
from source under delay constraint. Among the shortest-delay
paths to every node, the one with the higher value still fits the
delay constraint. It is a lower bound of the delay constraint,
and it is chosen as constraint for the corresponding graph.

This way, a problem is guaranteed to have at least one
solution, where the two trees are strictly identical and match
the shortest-delay tree from source to each destination.

2) Indicators and significance: The observed performance
indicators are :
• Computation time;
• Success : is a valid constrained tree found;
• Tree sharing: the proportion of shared edges of the

smaller tree, as it will be the higher proportion;
• Which algorithm gives a better result: this is estimated

thanks to an objective function defined in equation (1).
Let β denote the number of common edges between the

trees. Objective function is defined by :

F(Ar, Ab) = C(Ar) + C(Ab) + β ∗ 2
∑
i∈E

C(i) (1)

It is easy to prove that this objective function aims for
greater independence before lighter trees. All tree found by
the algorithms match the delay constraint, that’s why it does
not appear in the function.

Experiments were led on a 2 core 4 Thread 2.9GHz CPU
and 16 Go RAM machine, code implemented in Python 2.7.

TABLE I
ALGORITHMS PERFORMANCE (INTERVALS AT 99%)

PER INSTANCE SIZE

Instance Size (n/p) 20 20 100 800
0.1 0.6 0.01 0.002

Number of edges 45 228 199 1689
± 0.4 1 0.1 2

IS Computation Time (s) 0.008 0.02 0.40 9.45
± 10−4 10−3 10−2 0.3

RTF Computation Time (s) 0.006 0.02 0.22 361
± 10−4 10−4 10−3 8

IS success (%) 99 100 99 90
± 0.3 0 0.3 2

RTF success (%) 99 100 99 80
± 0.3 0 0.3 3

IS Tree sharing (%) 80 27 98 72
± 2 3 0.4 0.4

RTF Tree sharing (%) 80 29 99 72
± 2 3 0.4 0.4

Similar solution found (%) 91 73 93 0
± 2 4 2 0

IS strictly better (%) 7 18 7 7
± 2 0.3 2 2

RTF strictly better (%) 2 9 1 93
± 2 0.2 0.7 2

B. Results

Table. I illustrates mean performance confidence interval at
99% probability for the tested characteristics over different
instances sizes.

Over N problem instance, let X denote the tested perfor-
mance indicator and X its mean. Tested population is random,
of high size and its standard deviation is unknown. For an
small sample 30 < n < 0.05 ∗ N it comes that the 1 − α
confidence interval is defined by :

x− L

2
≤ X ≤ x+

L

2
(2)

L

2
= t1−α2 ,n−1 ∗

√∑n
i=0(xi − x)2

n(n− 1)
(3)

with xi, i ∈ [1;n] the sample values, x the sample mean and
t1−α2 ,n−1 the Student variable.

Confidence intervals of a proportion P of the population
are defined by :

p− L

2
≤ P ≤ p+

L

2
(4)

L

2
= u1−α2 ∗

√
p ∗ (1− p)

n
(5)

with p the sample proportion and u1−α2 the normal variable.
Each instance type was generated and tested 1000 times.

C. Analysis

According to data, both of the algorithm perform well
over small graphs. Few differences are observed, although IS
is slightly better than RTF for a similar computation time.
Overall, computation time and success rate are very satisfying.

On larger graphs, matching topologies of the same scale
as TDF’s network, significant differences can be observed.



First, the computation time is around fourty times higher for
RTF than for IS. This is due to the fact that each iteration,
RTF evaluates multiple possibilities, and its complexity grows
faster than IS. On the other hand, RTF often gives better
results than IS, for a similar tree independence. This means
that the solution found is close to the same local optimum,
but RTF often finds closer results. Finally, success rate drops
significatively for both algorithms.

In any case, both algorithm provide a solution in rea-
sonnable operationnal time. Note that when a solution is not
found, it is because of the appearance of more than one 2-
length cycles in the process that is not yet well accounted for.
A more complex solution could raise the success rate, while
increasing the computation time.

D. Weaknesses of the evaluation

The main weakness of this experimental scheme is the
network model itself. A first approach to improve the scheme
is to make Erdõs-Rényi parameters vary to observe many
network types, but this creates a large number of different tests
types. Plus, as shown in [25], random graphs are not an ideal
way to evaluate algorithm as they may not be representative.
As a consequence, it could be argued that our results are not
completely representative of algorithm performance.

VI. CONCLUSION

In this paper we presented a new SDN architecture for
Seamless Multicast distribution, which is based on redundant
trees to ensure that a real-time stream is carried without inter-
ruption from a source to multiple destinations. We proposed
two centralized algorithms called RTF and IS to compute
maximally edge or node independent delay constrained trees
and evaluated their performance. Both algorithms account for
global bandwidth utilization. We showed that, though these
algorithm do not guaranty an optimal solution, they meet the
requirement of the multiple constraints within reasonable time.
RTF complexity grows faster with higher instances, but it gives
more optimal results in terms of bandwidth consumption.

The mentionned architecture must guaranty continuity of
service in case of failure in order to be more efficient than
traditional solutions in terms of QoE. This paper detailed
the PCE element, and future works will aim to complete
the architecture : trees resiliency, failure recovery behaviour,
management plane elements...
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