G. B. Eggleton, P. Fierer, N. Fraser, T. Hedlund, K. Jeffery et al., , p.602

E. Kandeler, N. Kaneko, P. Lavelle, P. Lemanceau, M. et al., Global soil biodiversity 603 atlas, Global soil biodiversity atlas, 2016.

V. Parisi, C. Menta, C. Gardi, C. Jacomini, and E. Mozzanica, Microarthropod communities as a 605 tool to assess soil quality and biodiversity: A new approach in Italy, Agric. Ecosyst. Environ, vol.606, issue.105, pp.323-333, 2005.

G. Pérès, F. Vandenbulcke, M. Guernion, M. Hedde, T. Beguiristain et al., , p.608

D. Richard, A. Bispo, A. Grand, C. Galsomies, L. Cluzeau et al., Earthworm indicators as 609 tools for soil monitoring, characterization and risk assessment: An example from the national 610 Bioindicator programme, Pedobiologia -Int. J. Soil Biol, vol.54, pp.77-87, 2011.

B. Pey, J. Nahmani, A. Auclerc, Y. Capowiez, D. Cluzeau et al., , p.612

F. Dubs, S. Joimel, and . Others, Current use of and future needs for soil invertebrate functional 613 traits in community ecology, Basic Appl. Ecol, vol.15, pp.194-206, 2014.

V. Pi?l and G. Josens, Earthworm communities along a gradient of urbanization, Environ. Pollut, vol.615, pp.7-14, 1995.

N. Plum, Terrestrial invertebrates in flooded grassland: A literature review, Wetlands, vol.25, pp.721-617, 2005.

J. Ponge, F. Dubs, S. Gillet, J. Sousa, and P. Lavelle, Decreased biodiversity in soil springtail 619 communities: the importance of dispersal and land-use history in heterogeneous landscapes, 2006.

, Biol. Biochem, vol.38, pp.1158-1161

J. F. Ponge, S. Gillet, F. Dubs, E. Fedoroff, L. Haese et al., Collembolan 622 communities as bioindicators of land use intensification, Soil Biol. Biochem, vol.35, pp.813-826, 2003.

M. F. Rosenfield and S. C. Müller, Predicting restored communities based on reference ecosystems 624 using a trait-based approach, For. Ecol. Manage, vol.391, pp.176-183, 2017.

S. Salmon, J. F. Ponge, S. Gachet, L. Deharveng, N. Lefebvre et al., Linking 630 species, traits and habitat characteristics of Collembola at European scale, Soil Biol. Biochem, vol.631, pp.73-85, 2014.

L. Santorufo, J. Cortet, C. Arena, R. Goudon, A. Rakoto et al., An 633 assessment of the influence of the urban environment on collembolan communities in soils using 634 taxonomy-and trait-based approaches, Appl. Soil Ecol, vol.78, pp.48-56, 2014.

L. Santorufo, J. Cortet, J. Nahmani, C. Pernin, S. Salmon et al., , 2015.

, Responses of functional and taxonomic collembolan community structure to site management in

, Mediterranean urban and surrounding areas, Eur. J. Soil Biol, vol.70, pp.46-57

V. Sechi, R. G. De-goede, M. Rutgers, L. Brussaard, and C. Mulder, A community trait-based 639 approach to ecosystem functioning in soil, Agric. Ecosyst. Environ, vol.239, pp.265-273, 2017.

G. Séré, C. Schwartz, S. Ouvrard, C. Sauvage, J. C. Renat et al., Soil construction: A 641 step for ecological reclamation of derelict lands, J. Soils Sediments, vol.8, pp.130-136, 2008.

E. Small, J. P. Sadler, and M. Telfer, Do landscape factors affect brownfield carabid assemblages?, 2006.

, Sci. Total Environ, vol.360, pp.205-222

D. Tilman, Functional diversity, Encyclopedia of Biodiversity, p.121, 2001.

D. Tilman, F. Isbell, and J. M. Cowles, Biodiversity and ecosystem functioning, Nature's Serv, 2014.

, Soc. Depend. Nat. Ecosyst, vol.93, p.112

M. Vandewalle, F. De-bello, M. P. Berg, T. Bolger, S. Dolédec et al., , p.649

R. Harrison, P. A. Lavorel, and S. , Functional traits as indicators of biodiversity response to 650 land use changes across ecosystems and organisms, Biodivers. Conserv, vol.19, pp.2921-2947, 2010.

B. Vanhee, S. Salmon, C. Devigne, A. Leprêtre, L. Deharveng et al., The 'terril' 652 effect: Coal mine spoil tips select for collembolan functional traits in post-mining landscapes of, vol.32, pp.531-547, 2017.

S. Villéger, N. W. Mason, and D. Mouillot, New multidimensional functional diversity indices 658 for a multifaceted framework in functional ecology, Ecology, vol.89, pp.2290-2301, 2008.

Q. Vincent, A. Auclerc, T. Beguiristain, and C. Leyval, Assessment of derelict soil quality, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01691365

, Abiotic , biotic and functional approaches, Sci. Total Environ, pp.990-1002

C. Violle, M. L. Navas, D. Vile, E. Kazakou, C. Fortunel et al., Let the 662 concept of trait be functional! Oikos, vol.116, pp.882-892, 2007.

M. Wong and A. Bradshaw, The restoration and management of derelict land: modern approaches, 2002.

S. A. Wood, D. S. Karp, F. Declerck, C. Kremen, S. Naeem et al., Functional traits in 666 agriculture: Agrobiodiversity and ecosystem services, Trends Ecol. Evol, vol.30, pp.531-539, 2015.

J. P. Wright, W. S. Gurney, and C. G. Jones, Patch dynamics modified by ecosystem engineers. multiple comparisons of rank distribution with Fisher's LSD test), 2012.

, CS=constructed 16 soil; WL=waste landfill soil; CP1=coking plant soil 1; SP=settling pond soil

, CCS=constructed and contaminated soil

, Projection of the coordinates of each soil replicate on the first two main components RLQ1 11 and RLQ2 (A), mapping of Collembola species density coordinates (B), and plot of attributes of each 12 trait linked to abiotic soil parameters (C). PAH=sum of the 16 PAH concentrations; Clay=proportion 13 of clay, vol.2

, WHC=Water Holding 14 Capacity; CEC=Cation Exchange Capacity; C:N=carbon/nitrogen ratio; [Exchangeable cations by 15 cobaltihexamine extraction] Ca=calcium; Na=sodium; K=potassium; Mg=magnesium

, CS=constructed soil; WL=waste landfill soil; CP1=coking plant 1 soil

, CP2=coking plant 2 soil; CCS=constructed and contaminated soil. See Table 2 for the codes of 19 traits/ecological preferences and see Supplementary materials, Appendix A for Collembola species 20 codes