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ABSTRACT
This study examines memory retrieval and syntactic composition using fMRI while participants
listen to a book, The Little Prince. These two processes are quantified drawing on methods from
computational linguistics. Memory retrieval is quantified via multi-word expressions that are
likely to be stored as a unit, rather than built-up compositionally. Syntactic composition is
quantified via bottom-up parsing that tracks tree-building work needed in composed syntac-
tic phrases. Regression analyses localise these to spatially-distinct brain regions. Composition
mainly correlates with bilateral activity in anterior temporal lobe and inferior frontal gyrus.
Retrieval of stored expressions drives right-lateralised activation in the precuneus. Less cohesive
expressions activate well-known nodes of the language network implicated in composition. These
results help to detail the neuroanatomical bases of two widely-assumed cognitive operations in
language processing.

KEYWORDS
memory retrieval, structural composition, syntax, lexical cohesion,
naturalistic comprehension, fMRI

1. Introduction

Our human ability to comprehend natural language relies on two fundamental of cognitive op-
erations. One involves the retrieval of memorised elements, while the other composes those
elements together into novel expressions. Despite a growing body of work on the brain’s lan-
guage network (see e.g. Dronkers, Wilkins, Van Valin, Redfern, & Jaeger, 2004; Fedorenko et al.,
2016; Friederici & Gierhan, 2013; Hagoort & Indefrey, 2014; Pallier, Devauchelle, & Dehaene,
2011) the neural bases of these two operations within this network remain imprecisely specified.

This study disentangles these two cognitive processes with an analysis of fMRI time-courses
observed during an extended episode of naturalistic spoken story understanding. Like prior work,
it suggests a localisation of memory retrieval and composition to largely distinct regions of the
brain. But by linking these operations with quantitatively precise computational models, this
study paves the way for more granular research into the relationship between these operations.
Further, this spatial dissociation is based upon brain responses to a literary narrative, one that
attests a variety of different linguistic phenomena in an ecologically valid setting rather than
one or two constructions repeated out of context.

The processing of retrieving memorised elements is operationalised using a specific type
of word sequence called “multiword expressions.” This term (henceforth abbreviated MWE)
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comes from computational linguistics. Broadly, it refers to word sequences that are better-
treated as a single unit rather than as a structurally-composed combination (Sag, Baldwin,
Bond, Copestake, & Flickinger, 2002). MWE themselves raise a general question about the
balance between productivity and reuse in language processing (Goldberg, 2006; Jackendoff,
2002; O’Donnell, 2015). If they truly lack internal structure, then their processing might proceed
via a single, unitary retrieval operation rather than step-by-step composition. Even if they are
amenable to some sort of internal structure analysis, existing proposals hold that the entire item
is stored and retrieved as a unit.

Adopting this idea as working hypothesis, we assume that MWE comprehension involves
an additional memory retrieval, one that is not involved in non-MWE expressions. No assump-
tions regarding the nature of this retrieval are required, only that the stored element should
correspond to the expression as a whole.

This distinction between retrieval and composition figures centrally in neurocognitive models
of language processing (Bornkessel-Schlesewsky & Schlesewsky, 2009, 2013; Hagoort, 2005, 2016;
Ullman, 2001, 2004, 2015). These models all suppose, to some degree or another, that these
two operations in language processing dissociate at the level of neurobiology. The neurobiological
implications of this claim are discussed in more detail below in §2.5. The present study adds to
prior work by instantiating these two operations in quantitatively precise computational models,
and by probing their neural localisation during a naturalistic task. 1

2. Present Study

We pursue our objective by investigating two specific research questions. The first is to localise
these processes (cf. Yang, Marslen-Wilson, & Bozic, 2017): Which brain structures support
cognitive processes of structural composition and retrieval of stored linguistic elements, in nat-
uralistic language comprehension? The second research question has to do with the retrieval op-
eration specifically: Are some MWEs better candidates for comprehension via direct retrieval
than others?

We investigate these questions using naturalistic spoken story-comprehension, with a view
towards to maximising ecological validity. The stimulus, introduced below in §2.1, is a liter-
ary text annotated with numbers that quantify processing effort associated with each operation
(§2.2 and §2.4). This section finishes by deriving from the existing literature a broad hypothesis
regarding the organisation of these two cognitive processes in the brain (§2.5).

2.1. Naturalistic Stimulus

Participants heard de Saint-Exupéry’s The Little Prince (1943) as translated into English by
David Wilkinson and read out loud by Nadine Eckert-Boulet. The text constitutes a fairly
lengthy exposure to naturalistic language, comprising 15,388 words and lasting over an hour
and a half. This follows Willems’ (2015) encouragement to probe the neural bases of language
comprehension with greater ecological validity.

The MWE that are identified in this text reflect contemporary usage of these expressions,
and they are linguistically diverse (for details see §2.2 and §3.2). To get a sense of how these
MWE attestation frequencies relate to distributional patterns in English more generally, Figure 1
compares attestation counts in the stimulus text to their corresponding frequencies in the 560-
million word Corpus of Contemporary American English (COCA; Davies, 2008). Over half
(56.54%) of the attestations are headed by a verb, and only two items are story-character
names. These attestations are evenly distributed throughout the text with about 100 examples
in each section.

1 While the experience of listening to an audiobook is quite a natural one e.g. for daily commuters, it is not quite
conversational. We put aside the question of which form of language is most basic, contenting ourselves with a comparative

sense of the term “naturalistic.” The implicit comparison is between story-listening and lists of unrelated sentence stimuli,

devoid of literary content.
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Figure 1. MWE frequency comparison. The vertical axis shows counts of multiword expression attestations within the
natural spoken story stimulus text, The Little Prince (LPP). The horizontal axis is organised by log-frequency in the

Corpus of Contemporary English (COCA; Davies, 2008).

2.2. MWEs as Indicators of Memory Retrieval

2.2.1. What are MWEs?

The designation ‘MWE’ is motivated in computational linguistics whenever a sequence of words
is better treated as an indivisible whole, rather than a structure that is composed out of sub-
parts.

This pragmatic criterion (see e.g. Calzolari et al., 2002) picks out a very wide class of
linguistic phenomena. To get a sense of this diversity, Table 1 (after Siyanova-Chanturia 2013)
cites some cases that might plausibly be analysed as MWEs. The specific MWE identification
procedure used in this study is presented further below in §3.2.

fixed phrases per se, by and large
noun compounds black coffee, cable car
verb compounds give a presentation, come along
binomials heaven and hell, safe and sound
complex prepositions in spite of
idioms break the ice, spill the beans

Table 1. A wide variety of linguistic phenomena are plausibly treated as MWEs.

2.2.2. MWE and Compositionality

What unifies cases of MWE is the absence of a wholly compositional linguistic analysis (Sag et
al., 2002). The naturalistic story used as a stimulus in this project attests nearly all of the types
cited in Table 1; a few are shown below in Example (1).

(1) a. So I thought a lot about the adventures of the jungle and in turn, I managed with
a coloured pencil to make my first drawing.
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b. My little fellow, I don’t know how to draw anything except boa constrictors,
closed and open.

c. ‘What are you doing there?’, he said to the drinker who he found sitting in silence
in front of a number of empty bottles and a number of full bottles

d. You must see to it that you regularly pull out the baobabs as soon as they can
be told apart from the rose bushes to which they look very similar to when they
are young.

The syntactic and semantic properties of the boldfaced expressions in (1) indeed resist analysis
by parts; they could be considered in some way as lexicalised.

2.2.3. MWE Processing

To the extent that MWEs are not compositional, their processing may depend more on mem-
ory retrieval than composition. This idea is most clear in the case of idioms where it has been
dubbed the Configuration Hypothesis (CH) by Cacciari and Tabossi (1988).

For the CH, idioms are processed word-by-word, just like any other piece of language, until enough
information has accumulated to render the sequence of words identifiable as — or highly expected
to be — a memorised chunk. Only at this point the idiomatic meaning is retrieved.

(Cacciari, 2014)

Here, the CH is generalised in supposing that all categories of MWE exhibit this greater depen-
dence on memory retrieval. Section 2.5.1, below, reviews experimental evidence regarding the
processing of MWEs. Of course, whether or not retrieval is actually used on a particular occa-
sion may reflect gradations in compositionality. These gradations, as the next section details,
can be quantified precisely.

2.3. Lexical Cohesion of MWEs

The crisp theoretical distinction of the CH between compositional and non-compositional ex-
pressions obscures the somewhat messier reality: expressions fall along a graded spectrum of
compositionality (see Table 2). To quantify this gradient of MWE cohesion, we use a measure
called Pointwise Mutual Information (PMI; Church & Hanks, 1990). PMI is commonly used
in corpus linguistics to identify collocations.2 Intuitively, PMI is high when the word sequence
under consideration occurs more often together than one would have expected, based on the
frequencies of the individual words (Manning & Schütze, 1999, §5.4). More formally, PMI is a
log-ratio of observed and expected probabilities:

PMI = log2

(
O

E

)
(1)

where

O =
count(whole expression)

corpus size

and

2PMI is one of several cohesion metrics that have been advanced in both computational linguistics and corpus linguistics;
Evert (2008) offers a tutorial introduction.
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E =
count(w1) ∗ count(w2) ∗ · · · ∗ count(wn)

corpus sizen

In definition 1 the numerator O is a probability for the n-word collocation, w1w2...wn−1wn. The
denominator E is what one would expect if the occurrences of each word in the collocation were
probabilistically independent.

MWEs that receive a higher PMI score are lexically more cohesive, suggesting less com-
positionality, at least at the superficial level of word co-occurrence. To the extent that their
greater cohesion results in a kind of word-sequence memorisation, these highly-cohesive MWEs
are excellent candidates for a processing account based on memory retrieval. Conversely, low
PMI scores signal a kind of “incohesion.” These expressions might be better accounted-for by
a compositional analysis.

It is important to appreciate that PMI is different from the raw attestation counts that go
into it. This is because PMI reflects the ratio of the attestations of the whole relative to the
attestations of the parts. It was raw counts, rather than the ratio PMI, that were used in a
fMRI study by Yang et al. (2017) that examined memory retrieval in comparison to syntac-
tic complexity. This study found no effects of frequency in the brain beyond the single-word
level. Yang et al. (2017) did observe, however, an effect of syntactic complexity by parametri-
cally varying six types of nominal, verbal and prepositional phrases. The next section presents
an alternative way to investigate this same factor using naturalistic text.

2.4. Bottom-up Parsing as Composition

To study composition itself, some independent characterisation of compositional processes them-
selves are needed. In this study, bottom-up parsing plays that role. The intermediate states of
this parsing strategy quantify the amount of compositional work that an idealised system would
do, in the course of processing the naturalistic stimulus text introduced above in §2.1. While
there exists a large literature on bottom-up parsing within computational linguistics (see e.g.
Hale, 2014) its essential character is easy to grasp.

Bottom-up parsing amounts to a repeated cycle of choice: whether to shift to the next word
or reduce a sequence of transient elements held in memory. As shown in Figure 2, reduce actions
are individuated by particular grammar rules. The number of parser actions required at each
word defines an incremental complexity metric. We use this complexity metric to quantify

PMI multiword expression receiving this score
26.59 heart skipped a beat
23.80 have nothing to do with
21.26 forehead with a handkerchief
21.18 burst into tear
20.17 once upon a time
20.15 boa constrictor
18.85 peal of laughter

-2.34 be order
-2.49 do calculation
-2.72 be object
-2.98 be hundred
-3.15 a well
-3.50 drink anything
-3.63 have plan

Table 2. Graded spectrum of compositionality revealed by pointwise-mutual information.
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composition effort in the brain, following prior work in neurolinguistics (Brennan et al., 2012;
Brennan & Pylkkänen, 2017; Brennan, Stabler, Van Wagenen, Luh, & Hale, 2016; Nelson et al.,
2017) and psycholinguistics (Frazier, 1985).

Figure 2. Panel (A) depicts hierarchical structure for John loves Mary to be recognised via processes of syntactic com-
position with the word-by-word parser action counts given in orange. Panel (B) shows the sequences of parser actions (i.e.

shift and reduce) that would build the colour-coded tree nodes during bottom-up parsing.

2.5. Hypotheses regarding Retrieval of MWEs and Composition

With operational definitions sketched-out for both memory retrieval (§2.2) and composition
(§2.4), this section turns to what is already known about their processing in the brain. Syn-
thesising several different literatures, a general prediction emerges that these two processes are
subserved by different brain areas.

2.5.1. MWE Processing is Different: Experimental Evidence

Prior work supports the claim that MWE comprehension is distinct from other language pro-
cessing such as structural composition and involves additional memory retrieval. For instance,
it is well-established at the behavioural level that MWEs are produced and understood faster
due to their frequency, familiarity, and predictability (Siyanova-Chanturia & Martinez, 2014).
This would follow if MWEs were remembered as chunks, in the sense of Miller (1956) that was
later formalised by Laird, Rosenbloom and Newell (1986; 1987).

Eye-tracking and EEG work further documents this processing advantage across a
wide range of MWE sub-types, e.g. binomials (Siyanova-Chanturia, Conklin, & Schmitt, 2011),
phrasal verbs (Yaneva, Taslimipoor, Rohanian, & An Ha, 2017), complex prepositions (Moli-
naro, Canal, Vespignani, Pesciarelli, & Cacciari, 2013; Molinaro, Vespignani, Canal, Fonda,
& Cacciari, 2008), nominal compounds (Molinaro & Carreiras, 2010; Molinaro, Carreiras, &
Duñabeitia, 2012), lexical bundles (Tremblay & Baayen, 2010; Tremblay, Derwing, Libben, &
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Westbury, 2011), and idioms (Laurent, Denhières, Passerieux, Iakimova, & Hardy-Baylé, 2006;
Rommers, Dijkstra, & Bastiaansen, 2013; Siyanova-Chanturia, Conklin, & Van Heuven, 2011;
Strandburg et al., 1993; Underwood, Schmitt, & Galpin, 2004; Vespignani, Canal, Molinaro,
Fonda, & Cacciari, 2010).

2.5.2. Neural Basis for Retrieving MWEs and Composition

The hypothesis that MWEs involve additional memory retrieval reflects trends in both Con-
struction Grammar and Connectionism (see e.g. Ellis, 2008). In these quarters, however, the
relevant ‘memory’ does not receive a precise psychological or neural characterisation. It may be
that memory for MWE fall into a distinct theoretical category “between” episodic memory and
general semantic memory (Renoult, Davidson, Palombo, Moscovitch, & Levine, 2012). Memo-
ries in this category are encoded on the basis of repeated personal experience, an idea that is
certainly plausible for MWEs. Neuroanatomical sites for the category of memory that Renoult
et al. (2012) discuss include medial temporal regions and the Precuneus. This last suggestion
converges well with PET results on single word retrieval (Halsband, Krause, Sipilä, Teräs, &
Laihinen, 2002).

Regarding composition operations, one prominent line of work implicates frontal regions,
such as the pars triangularis and pars opercularis of the inferior frontal gyrus (Friederici &
Gierhan, 2013; Hagoort, 2016; Snijders et al., 2009; Zaccarella & Friederici, 2017). Other lines
of investigation implicate anterior temporal regions, based on deficit-lesion data (Dronkers et
al., 2004) and text comprehension tasks (Ferstl, Neumann, Bogler, & Von Cramon, 2008). These
anterior temporal areas are sensitive to parametric variation of phrase size, which would follow
if they were somehow representing composed structures (Bemis & Pylkkänen, 2011a; Brennan
et al., 2012; Pallier et al., 2011; Pylkkänen, 2016). These latter findings, although, conflict
with patient studies showing that atrophy to anterior temporal regions does not systematically
impair processing of syntactically complex sentences (Wilson et al., 2014a). This tension between
functional and deficit/lesion results remains to be resolved.

This array of empirical work, in combination with the neurocognitive models of language pro-
cessing discussed below (§2.5.3) serves to motivate the present investigation into the brain bases
for MWE processing and compositional processing.

2.5.3. Neurocognitive Models of Language and Localisation

Current neurobiological models for language suggest that retrieval and composition should be
sub-served by different brain areas. These models do however differ both in their conceptuali-
sation of these operations, and on their anatomical localisation.

The Declarative-Procedural model (Ullman, 2001) for instance, is founded upon a distinction
that contrasts memory-related with non-memory-related processing. Ullman (2015) links rule-
based mechanisms to frontal regions and sub-cortical structures, while memory for words is
supported by medial temporal regions.

In Hagoort’s Memory, Unification and Control framework (2016), composition falls under
the scope of the Unification operation and is assigned to inferior frontal areas. While operat-
ing under different assumptions, this localisation is in general agreement with Zaccarella and
Friederici (2017) who propose that hierarchical processing is subserved by a sub-part of the left
inferior frontal gyrus. Regarding the Memory aspect of their model, Hagoort and colleagues
agree partly with Ullman, associating that function (among others) to posterior temporal re-
gions (Hagoort, 2009; Hagoort & Indefrey, 2014).

The Dual Streams Model (Hickok & Poeppel, 2007) similarly locates the Lexical Inter-
face, where individual words would be processed, to posterior middle temporal gyrus. Syntac-
tic phrases would be composed, part-by-part, by a combinatorial network within the anterior
temporal lobes.

Another perspective is offered by the Extended Argument Dependency Model (eADM;
Bornkessel-Schlesewsky & Schlesewsky, 2009, 2013), that divides up language processing in
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a different way. In this model sequential information (for instance about word order) is handled
by a dorsal stream, while dependency information (as expressed through case-marking) is han-
dled by a ventral stream. If MWE comprehension is sequential processing in this sense, then
structures along this dorsal stream, including the inferior parietal lobule, should be involved.
On the other hand, composition should activate temporal regions along the ventral stream.

These models’ localisation claims contrast in detail with each other, and with an important
body of evidence from patient work (e.g. Dronkers et al., 2004; Wilson et al., 2014b; Wilson,
Galantucci, Tartaglia, & Gorno-Tempini, 2012, inter alia). Despite this tension, they agree on
the common proposal that retrieval and composition should each be independently localisable.
It is this point of agreement that motivates the present study.

3. Methods

A spoken narrative serves as the stimulus. Participants hear this narrative over headphones
while they are in the scanner (e.g. Brennan et al., 2012; Willems, Frank, Nijhof, Hagoort, &
van den Bosch, 2015). The sequence of neuroimages collected during their session becomes the
dependent variable in a regression against word-by-word predictors, derived from the text of
the story. The overall approach to deriving time series predictions regarding the comprehension
of this auditory stimulus is shown in Figure 3.

3.1. Subjects and Design

Participants were fifty-one volunteers (32 women and 19 men, 18-37 years old) with no history
of psychiatric, neurological, or other medical illness or history of drug or alcohol abuse that
might compromise cognitive functions. All strictly qualified as right-handed on the Edinburgh
handedness inventory Oldfield (1971). They self-identified as native English speakers and gave
their written informed consent prior to participation, in accordance with Cornell University IRB
guidelines.

3.2. Stimulus and MWE Identification

The audio stimulus was a literary text, Antoine de Saint-Exupéry’s The Little Prince. We
applied two different approaches to MWE identification, which together yield 669 distinct
MWE types for a total of 1292 attestations in the stimulus text. This section explains the
two identification approaches.

The first approach uses lgtagger (Constant & Sigogne, 2011), a freely-available program
that combines two submethods:

(1) string-based matching to look up MWE in external dictionaries
(2) a tagging model, based on conditional random fields and trained on hand-checked examples

Regarding submethod 1, the external dictionaries are: the Unitex lexicon (Paumier, Naka-
mura, & Voyatzi, 2009), the SAID corpus (Kuiper, McCann, Quinn, Aitchison, & van der Veer,
2003), the Cambridge International Dictionary of Idioms (White, 1998), and the Dictionary of
American Idioms (Makkai, Boatner, & Gates, 1995).

Regarding submethod 2, conditional random fields are used to guess MWE marks like those
shown in the final column of Table 3. N. Smith (2011, §3.5) offers a general introduction to the
technique. The key idea here is to construe a word’s MWE status as a latent variable that is
related to the surface string via a collection of weak clues, the “features.” Here the training ex-
amples come from MWE annotations in the English Universal Dependencies English Web Tree-
bank (Silveira et al., 2015). This annotated data comprises several web-related genres including
weblogs, newsgroups, emails, reviews, and Yahoo! answers. The conditional random field makes
its marking decisions based on feature templates that specify, for example, particular lexical
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Figure 3. Deriving an expected blood-oxygen level dependent (BOLD) signal from a naturalistic text. (A) shows a segment
of the spoken stimulus, with word boundaries in light blue. (B) highlights multiword expressions (MWEs), which may be

retrieved directly from memory during comprehension and (C) depicts the phrase structure of the example sentence, which

is composed part-by-part during comprehension. In (D) the value of these word-by-word predictors are shown together.
The orange values reflect steps taken between each word by a bottom-up (BU) parser. The purple values reflect PMI scores,

which quantify the cohesion of MWEs like has to and look after. Panel (E) shows the expected BOLD response, after these

predictors are convolved with a haemodynamic response function (HRF).

Idx Word form Lemma POS MWE
1. I i PRP -
2. was be VBD -
3. thinking think VBG -
4. of of IN -
5. the the DT +
6. other other JJ +
7. day day NN +
8. ...

Table 3. Training data for MWE identification systems. Each word of the sentence is on a separate line with its lemma
and its POS tag. + and − indicate whether the word is part of a MWE or not.

items, capitalisation, or part of speech tags. A complete table of these templates is presented in
Constant and Tellier (2012). The approach is limited to contiguous MWEs and identifies mainly
fixed expressions such as complex function words and nominal MWEs. Crucially, this way of
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identifying MWEs is blind to hierarchical syntactic structure.
The second approach uses a transition based system (Al Saied, Candito, & Constant, 2017).

This system is a variant of the well-known Nivre parser (Constant & Nivre, 2016), in which
abstract “actions” update an abstract computational state that moves through the text, emitting
MWE marks as a side-effect. The choice of which action to take is made by a classifier, here a
support vector machine (for textbook introductions see e.g. Abney 2007, §6.4 or Murphy 2012,
§14.5). There are actions that Add or Remove words from the computational state, as well as
actions which Mark candidates as MWEs. This last type is actually divided into two cases,
one of which composes candidate MWEs in a binary fashion, and another which marks these
binary elements in a way that produces output. Figure 4 shows how this transition-based system
would apply to the example “see to it.”

The input to this classifier includes word form, lemma and part-of-speech information as
shown in Table 3, as well as dictionary-based features and features that relate to previous actions
(“history-based”). The classifier’s output is a selection of one particular action. This second way
of identifying MWEs is similarly denied access to any hierarchical syntactic information.

The training data for this transition-based system come from the Children’s Book Test (Hill,
Bordes, Chopra, & Weston, 2015), which is close to the genre of the stimulus narrative. Training
examples were generated by string-matching based on the external dictionaries cited above.
Compared to the conditional random field-based approach, this second approach seems better-
able to find verbal MWE.

The MWEs used in the fMRI study reported here were identified by applying both of the
approaches described above to the stimulus text. The union of their outputs yielded a time series
of indicator variables as shown in Panel C of Figure 5. This time series has the value 1 on words
that are final in a MWE, and 0 otherwise.

PMI scores for each MWE define a gradient metric and were determined using equation 1.
The probabilities used in this calculation were estimated using the Corpus of Contemporary
English (COCA; Davies, 2008). The observed probability O of entire MWEs was estimated by
querying the 2018 version of COCA, which contains 560 million words. The expected probabili-
ties E are based on an earlier COCA release that comprises 450 million words. These estimates
are based on counts of lemmas, rather than inflected words. This use of lemmas serves to focus
the analysis on the cohesion of the expression rather than its morphology.

3.3. Annotating compositional structure

Compositional processing was modeled as bottom-up parsing, as introduced above in §2.4. The
tree structures were obtained using Stanford parser (D. Klein & Manning, 2003) and follow the
conventions of the Penn Treebank (Marcus, Marcinkiewicz, & Santorini, 1993). They capture
constituency relationships, including phrase type and embedding, but do not explicitly mark
long-distance dependencies. The complexity metric is defined as the number of reduce actions
that would be taken during bottom-up parsing of these trees. Since narrative stimulus does
not readily lead to mis-understandings or “garden-path” effects in the sense of Bever (1970) we
restrict ourselves to just the globally-correct parser action sequence.

Figure 5 illustrates the two retrieval estimators and the one compositional estimator for a
single sentence from The Little Prince. Correlation matrices for all estimators are given in the
Appendix.

3.4. Data Presentation

After giving their informed consent, participants were familiarised with the MRI facility and
assumed a supine position on the scanner gurney. The presentation script was written in Psy-
choPy (Peirce, 2007). Auditory stimuli were delivered through MRI-safe, high-fidelity head-
phones (Confon HP-VS01, MR Confon, Magdeburg, Germany) inside the head coil. The head-
phones were secured against the plastic frame of the coil using foam blocks. Using a spoken
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RemoveAdd Mark 

Add "to" to the state

Remove "that" from the state     

Next lemma is "to"

Next POS is "TO"

Next word is "to" 

Preceding actions: add, remove add 

POS after next is PRP 

POS is VB and next lemma is "to" 

POS is VB and next POS is TO 

Next POS is VB and its next is "it" 

POS is VB and the POS after next is IN 

Next word is dictionary word 

Next POS is "IN"

Preceding action: add 

Previous word is dictionary word 

Word after next is dictionary word 

POS after next  is PRP 

Next word is dictionary word 

Preceding three actions: add 

Preceding two actions: add 

Preceding action: add 

Lemma is "that" 

Next word is dictionary word 

Next POS is RB 

Preceding action: mark, add 

Word is "that" 
Dictionary-based features

Linguistic features 

History-based features 

Mark "see to it" as expression 

(C)

(A)

must

see

to

it

that

you

..

You

Next POS is PRP 

Current POS is IN 

Word is dictionary word 

(B)

Figure 4. A transition-based approach to finding the multiword expression see to it from example (1-d). Identification
involves adding see, to and it to consecutive computational states, creating a binary element and marking this element as

a multiword expression. For each state, the classifier must choose the appropriate action among the four available actions.
Panel (A) shows the effect of some features on choosing the action Add instead of the action Remove for the word “to”.
Panel (B) shows the effect of choosing Mark instead of Remove for the composed element “see to it”. Panel (C) show the
effect of some other features on choosing the action Remove instead of Add for the word “that”. These feature templates

help the classifier choose the right action. For display purposes we show feature weights as they would be used in a simpler
Logistic Classifier, rather than the actual support vector-machine (SVM) that is used in the model. In this simplified setup,

decisions are made by passing the summed feature weights – the coloured bars – through a logistic function. The SVM
decision rule is more complicated. For details, see Al Saied et al. (2017).
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Figure 5. Comparing the word-by-word predictors on a single sentence: (A) depicts the syntactic structure of a single
sentence of the naturalistic stimulus text, as recovered by the Stanford parser, (B) gives the bottom-up parser action count

with respect to this tree, represented in orange and annotated at the offset of each word in the story, (C) is the categorical
multiword expression predictor, represented in blue, where 0 or 1 is tagged at the offset of a word if it is the final word of a

MWE, (D) is the gradient multiword expression predictor, represented in dark blue, and similar to the previous predictor

the offset of the final word in a MWE is tagged with the corresponding PMI score, quantifying its lexical cohesion.

recitation of the US Constitution, an experimenter increased the volume until participants re-
ported that they could hear clearly. Participants then listened passively to the audio storybook
for 1 hour 38 minutes. The story was divided into nine sections and at the end of each section
the participants were presented with a multiple-choice questionnaire with four questions (36
questions in total), concerning events and situations described in the story. These questions
served to confirm participants’ comprehension. They were viewed via a mirror attached to the
head coil and answered through a button box with their right hand. The entire session lasted
around 2.5 hours.

3.5. Data Acquisition

Imaging was performed using a 3T MRI scanner (Discovery MR750, GE Healthcare, Milwaukee,
WI) with a 32-channel head coil at the Cornell MRI Facility. Blood Oxygen Level Dependent
(BOLD) signals were collected using a T2 -weighted echo planar imaging (EPI) sequence (rep-
etition time: 2000 ms, echo time: 27 ms, flip angle: 77deg, image acceleration: 2X, field of view:
216 x 216 mm, matrix size 72 x 72, and 44 oblique slices, yielding 3 mm isotropic voxels).
Anatomical images were collected with a high resolution T1-weighted (1 x 1 x 1 mm3 voxel)
with a Magnetisation-Prepared RApid Gradient-Echo (MP-RAGE) pulse sequence.

4. Data Analyses

4.1. Preprocessing

FSL’s Brain Extraction Tool (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012;
S. M. Smith et al., 2004) was used for skull-stripping with a fractional intensity threshold
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setting of 0.5. Subsequent preprocessing steps were carried out using AFNI version 16 (Cox,
1996). Anatomical and functional images were co-registered using the in-built AFNI function
3dseg, images were normalised to the MNI–152 template, and images were resampled to 2mm
isotropic voxels.

We used multi-echo independent components analysis (ME-ICA) (Kundu et al., 2013;
Kundu, Inati, Evans, Luh, & Bandettini, 2012) to improve the signal-to-noise ratio in these
data. ME-ICA splits the T2∗ signal into BOLD-like and non BOLD-like components. Removing
these non-BOLD components mitigates noise due to participants’ head motion, physiology and
scanner conditions such as thermal changes (Kundu et al., 2017). Indeed, there were no exclu-
sions based on degree of head movement. Nor was any high-pass filtering or smoothing applied
at this stage.

4.2. Statistical Analysis

The research questions layed out above in §2 motivate two statistical analyses. The first anal-
ysis localises composition and memory-retrieval operations during naturalistic listening. The
second analysis investigates multiword expressions along a quantitative gradient of cohesion.
Both analyses employ the General Linear Model, and were carried out using SPM12 (Fris-
ton, Ashburner, Kiebel, Nichols, & Penny, 2007). The predictors were convolved using SPM’s
canonical HRF.

4.2.1. Analysis 1: With Categorical Predictors

We regressed the word-by-word predictors described below against fMRI timecourses recorded
during passive story-listening in a whole-brain analysis. Along with the parser action count and
MWE indicators of theoretical interest, four “nuisance” variables of non-interest were entered
into the GLM analysis, including a unigram word frequency predictor based on attestations in
movie subtitles (Brysbaert & New, 2009). This enables the effects of MWE, Parser-action count,
and MWE cohesion to be assessed in way that is distinct from single-word frequency effects.
We also included two variables that account for prosodic effects: the RMS amplitude and the
fundamental frequency of the auditory stimulus. These control variables serve to improve the
sensitivity, specificity and validity of activation maps (Bullmore et al., 1999; Lund, Madsen,
Sidaros, Luo, & Nichols, 2006). The predictors entered into Analysis 1 are summarised in Table
4. Figure 5 shows the theoretical predictors’ time series for a particular stimulus sentence.

Bottom-up parser action count Number of reduce actions taken since the last word (§2.4)
Categorical MWE predictor 1 at the last word of a MWE, 0 otherwise (§2.2)
Word rate Indicator for spoken word offset
Word frequency log-frequency in movie subtitles (Brysbaert & New, 2009)
f0 fundamental frequency of the narrator’s voice, reflects pitch
RMS amplitude intensity, an acoustic correlate of volume

Table 4. Predictors used in Analysis 1

4.2.2. Analysis 2: With Gradient Predictors

Analysis 2 uses the same predictors as in Analysis 1, except that the categorical indicator of
MWE presence is replaced with a gradient predictor. As explained above in §2.3, this predictor
rates the propensity of a MWE to be memorised or not using a standard measure of colloca-
tion strength called pointwise mutual information (PMI). The same MWEs that were annotated
with a value of “1” in Analysis 1 are in Analysis 2 marked with their PMI score. This is shown
in the bottom row of Figure 5.

Note that parser action count is not correlated with the categorical nor with the gradient
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MWE predictor (r = 0.09 in both cases). Correlation matrices for all terms entered into the
regression analyses are given in the Appendix.

4.2.3. Group-level Analysis

In the second-level group analysis, each contrast was analysed separately at the group-level. An
8 mm FWHM Gaussian smoothing kernel was applied on the contrast images from the first-level
analysis to counteract inter-subject anatomical variation. All the group-level results reported in
the next section underwent FWE voxel correction for multiple comparisons which resulted in
T-scores > 5.3.

5. Results

Behavioural results of the comprehension task showed attentive listening to the auditory story
presentation. Across 51 participants, average accuracy on the comprehension questions was 90%
(SD = 3.7%). All whole-brain effects reported survived a p < 0.05 Family-Wise-Error threshold
at the voxel level. Tables introduced below use brain region labels from the Harvard-Oxford
Cortical Structure Atlas.

5.1. Analysis 1: Results with Categorical Predictors

5.1.1. Results for Composition

Bottom-up parser action count shows a broad activation pattern both in right and left hemi-
sphere. The peak activation is right lateralised in the anterior temporal lobe within a main
cluster of activation which extends through the middle and superior temporal gyri. While ante-
rior temporal activation is bilateral, both middle temporal gyrus and posterior superior temporal
gyrus are only right lateralised. The second strongest cluster of increased activation is observed
in the left inferior frontal gyrus stretching over pars orbitalis and triangularis and extending
to the anterior insula and the putamen. A similar increased activation is observed in the right
inferior frontal gyrus.

Additional activation clusters were seen in areas including the prefrontal cortex, supplemen-
tary motor areas, the cerebellum, the left temporal-parietal junction, as well as inferior temporal
lobes. These are all detailed in Table 5 and Figure 6.
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Regions for Bottom-up Parser Action Count Cluster size MNI Coordinates p-value T-score
(in voxels) x y z (corrected) (peak level)

R Anterior Temporal 4816 52 6 -20 0.000 13.20
R Middle Temporal Gyrus 50 -20 -10 0.000 11.31
R Supramarginal Gyrus/Superior Temporal Gyrus 60 -40 -10 0.000 10.11

L Inferior Frontal Gyrus Orbitalis/Triangularis & anterior Insula (BA47) 2461 -36 18 -14 0.000 10.40
L Temporal Pole -50 6 -26 0.000 8.30
L Putamen -30 8 -4 0.000 6.99

R Supplementary Motor Area/Superior Frontal Gyrus (BA9) 6495 10 18 62 0.000 9.35
R Medial Superior Frontal Gyrus (BA9) 12 58 32 0.000 8.62
L Superior Frontal Gyrus -8 18 66 0.000 8.24

L Cerebellum - Crus I 448 -24 -74 -30 0.000 8.96
R Cerebellum - Crus I 941 26 -74 -36 0.000 8.15

R Cerebellum 36 -60 -32 0.021 5.16
L Middle Occipital Gyrus/Fusiform Gyrus 1084 -34 -78 12 0.000 7.59

L Fusiform Gyrus/Temporal Occipital Cortex -30 -58 -10 0.000 7.19
L Occipital Fusiform Gyrus -28 -70 -14 0.010 5.85

R Precentral Gyrus 159 42 0 48 0.000 7.57
L Supramarginal Gyrus/Parietal Lobe (BA40) 665 -54 -56 30 0.000 7.35

L Parietal Lobe -48 -66 50 0.032 5.45
L Supramarginal Gyrus -52 -58 50 0.036 5.41

R Temporal Occipital Cortex/Fusiform Gyrus (BA19) 164 30 -50 -10 0.001 6.75
L Inferior Frontal Gyrus Orbitalis/Frontal Pole (BA11) 252 -44 46 -12 0.001 6.61

L Frontal Pole -36 60 -6 0.013 5.75
L Middle Frontal Gyrus (BA9) 252 -42 24 44 0.001 6.49
L Precuneus 154 -10 -52 38 0.003 6.25
R Middle Occipital Gyrus 160 28 -72 22 0.003 6.19
L Caudate 54 -14 16 10 0.005 6.07

Table 5. Significant clusters of increasing activation for bottom-up parser action count after FWE voxel correction for

multiple comparisons with p < 0.05 and cluster-extent threshold (k > 50). Peak activation is given in MNI Coordinates,

and brain region labels come from the Harvard-Oxford Cortical Structure Atlas.

Regions for Multiword Expression Cluster size MNI Coordinates p-value T-score
(in voxels) x y z (corrected) (peak level)

R Precuneus 209 6 -70 56 0.000 7.15
R Precuneus 18 6 -48 50 0.019 5.63

Table 6. Significant clusters of increasing activation for multiword expressions after FWE voxel correction for multiple

comparisons with p < 0.05. Peak activation is given in MNI Coordinates.

5.1.2. Results for MWE Presence

The categorical MWE predictor gives rise to two clusters of activation both in the right pre-
cuneus cortex, as presented below in Figure 6 and Table 6.

5.2. Analysis 2: Results with Gradient Predictors

Analysis 2 investigates memory retrieval further by rating how cohesive each MWE is. This is
done using pointwise mutual information, introduced above in §2.3. Increasing MWE cohesion,
as seen through the positive correlation with PMI, yields a single cluster in the right precuneus.

Left-lateralised activity in superior frontal gyrus, angular gyrus, pars triangularis, posterior
middle temporal gyrus, and frontal pole was observed in proportion to decreasing lexical cohe-
sion, as seen through the negative correlation with PMI scores. These are detailed in Table 7
and in Figure 7.
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Figure 6. Whole brain contrast images with significant clusters are projected onto a template brain (Holmes et al., 1998):

Panel (A) shows us the significant clusters Bottom-up parser action count in orange; Panel (B) shows the significant clusters
for Multiword expressions in blue. All images are underwent FWE voxel correction for multiple comparisons with p < 0.05.

A cluster-extent threshold k > 50 is applied for display purposes.
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Regions for PMI Cluster size MNI Coordinates p-value T-score
(in voxels) x y z (corrected) (peak level)

Correlated with increasing MWE cohesion
R Precuneus 244 6 -68 56 0.000 7.33
Correlated with decreasing MWE cohesion

L Superior Frontal Gyrus 2039 -18 32 52 0.000 8.39
L Precentral Gyrus (BA9) -44 8 40 0.000 7.26
L Middle Frontal Gyrus -38 22 46 0.000 6.89

L Angular Gyrus 688 -42 -58 34 0.000 7.27
L Inferior Parietal Lobule -48 -46 50 0.000 5.76

L Inferior Temporal Gyrus 320 -60 -44 -4 0.000 7.25
L Inferior Frontal Gyrus Pars Triangularis 211 -46 30 18 0.000 6.41
L Middle Temporal Gyrus 152 -56 0 -32 0.000 6.49
L Frontal Pole (BA10) 50 -6 64 20 0.001 5.88
R Superior Frontal Gyrus 35 14 52 28 0.001 6.15
L Inferior Frontal Gyrus orbitalis 33 -38 48 18 0.001 5.55
R Inferior Temporal Gyrus 21 58 -10 -32 0.001 5.78
R Superior Frontal Gyrus/ SMA (BA6) 15 12 24 58 0.001 5.94

Table 7. Significant clusters for the increasing and decreasing cohesion measure of MWEs after FWE voxel correction

for multiple comparisons with p < 0.05. Peak activation is given in MNI Coordinates.

Figure 7. Significant clusters for the increasing and decreasing cohesion measure of MWEs after FWE voxel correction
for multiple comparisons with p < 0.05. Increasing cohesion measures are represented in blue and decreasing cohesion

measures are represented in orange.

6. Discussion

This study investigated the neural substrates of two processes in language comprehension: re-
trieval and composition of stored linguistic elements. Departing from prior work, we distinguish
these operations using computational methods and a naturalistic stimulus. Multiword expres-
sions identified in The Little Prince using the methods of Al Saied et al. (2017) and Constant
and Sigogne (2011) serve as a hypothesis about points in the narrative where extra memory re-
trievals would occur.

6.1. Lexical Retrieval and MWEs

Significant activation in the precuneus for MWEs in both Analysis 1 and Analysis 2 offers
initial support for the idea that this region subserves memory retrieval of these stored elements.
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6.1.1. Precuneus and Retrieval of MWEs

Both the categorical Analysis 1 and the gradient Analysis 2 indicate the centrality of the pre-
cuneus for MWE-related memory processes. This area features a graded effect such that it is
more active for increasingly cohesive MWEs, as estimated by the PMI metric. As discussed
above in §2.3, highly-cohesive MWEs are excellent candidates for a processing account based
on direct retrieval from memory.

The involvement of the precuneus in the sort of memory retrieval prompted by MWEs
is consistent with studies attesting its participation in larger memory networks, e.g. for ver-
bal material (Halsband et al., 2002). The functional characterisation of the precuneus as part of
a network sub-serving memory tasks, has been reported for different memory-based processes,
such as verbal memory (Halsband et al., 2002), spatial memory (Wallentin, Weed, Østergaard,
Mouridsen, & Roepstorff, 2008), episodic memory (Andreasen et al., 1995), memory-related
imagery (Fletcher et al., 1995; Mashal, Vishne, & Laor, 2014). Notably, some studies found
that the Precuneus is active in non-imagery related episodic memory for musical sequences or
abstract words (e.g. Platel et al., 1997).

The precuneus has also been identified as a part of the Default Network, perhaps playing
a role in a Dorsal-Medial subsystem of that network (Andrews-Hanna, Smallwood, & Spreng,
2014). This subsystem is said to support story comprehension among other aspects of self-
generated thought. Although the precuneus has been designated as part of the Protagonists
Perspective Interpreter Network (Mason & Just, 2006) and attested in naturalistic reading by
Wehbe et al. (2014), an interpretation of the results of this particular study in terms of reference
to story characters is implausible. This is because less than 2% of the MWEs in the stimulus
narrative are names of story characters.

More broadly, the postero-medial portion of the parietal lobe has been widely linked to
processing of complex lexical information by previous studies. Its sensitivity to the number
of complements of a verb was reported by Shetreet, Palti, Friedmann, and Hadar (2007) in
the medial precuneus and the anterior cingulate cortex (see also den Ouden, Fix, Parrish, &
Thompson, 2009; Shetreet, Friedmann, & Hadar, 2010). The precuneus has also been linked to
lexical processing of information of a relatively high complexity (Shetreet, Friedmann, & Hadar,
2009). These results converge with a strand of the fMRI literature over the past decade that
has characterised precuneus as a language-relevant region.

6.1.2. Incohesive MWEs and Broca’s Area

While highly cohesive expressions evoke a focal pattern of activation that is distinct from clas-
sical left-hemisphere language areas, the cortical sites that showed a sensitivity to a decrease
in MWEs’ cohesion strength include the left superior frontal gyrus and also encompass several
areas of the perisylvian language network. Notably the left inferior frontal gyrus, or Broca’s
area (pars triangularis and pars orbitalis), and also anterior and posterior regions of the left
temporal gyrus. These perisylvian areas have been connected with compositional processes (e.g.
Pallier et al., 2011), and this is consistent with the leading idea that less-cohesive expressions
are more likely to require compositional processes. Indeed a similar set of regions are activated
in response to the Bottom-up parsing predictor, as discussed further in the next sub-section.

6.2. Parser Action Count as Composition

Word-by-word composition effort, quantified in terms of bottom-up parser actions, correlates in
Analysis 1 with a highly bilateral pattern across several areas in the language network. Notably,
both anterior-frontal and anterior-temporal regions are involved bilaterally.
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6.2.1. Anterior Frontal and Anterior Temporal regions

Inferior frontal regions encompassing different sub-parts of the inferior frontal gyrus and an-
terior insula are commonly attributed a role in compositional processes (Friederici & Gierhan,
2013; Hagoort, 2016; Snijders et al., 2009; Zaccarella & Friederici, 2015), and our findings are
consistent with that work. Interestingly, prior work using methods most similar to ours (bottom-
up parsing, a naturalistic stimulus) have not highlighted the inferior frontal gyrus (Brennan et
al., 2012, 2016). We hesitate to draw strong inferences from comparing “significant” to “non-
significant” results, but this discrepancy may reflect on the increase in statistical power afforded
by our current study, which uses a stimulus that is over seven times longer that used by Brennan
and colleagues, and also reports data from almost twice as many participants.

The balance of activation that we observe in response to increasing parser action count is
consistent with Ullman’s Declarative-Procedural model. It shows a predominately anterior dis-
tribution in left hemisphere, alongside smaller activation clusters in the inferior parietal lobe
and temporo-occipital-parietal junction. Further, the observed activation of putamen within the
large bilateral cluster in inferior frontal gyrus and anterior insula conforms to Ullman’s predic-
tion that rule-governed language use is instantiated in a Fronto-basal ganglia network (Ullman,
2004, 2015).

The composition effect observed bilaterally in anterior temporal lobe is consistent with
previous work on compositional in naturalistic narrative (Brennan et al., 2012). It confirms and
extends a broad range of prior findings, including those from simple two-word phrases (Bemis
& Pylkkänen, 2011b), from parametric variation of constituent size (Pallier et al., 2011), and
comparisons of simple sentences to unstructured lists of words (Humphries, Binder, Medler, &
Liebenthal, 2006; Rogalsky & Hickok, 2009; Stowe et al., 1998; Vandenberghe, Nobre, & Price,
2002; Xu, Kemeny, Park, Frattali, & Braun, 2005). Our result also conforms with evidence that
anterior temporal lesions impair “basic levels of constituent-structure processing” (Dronkers et
al., 2004, p. 161).

Recent neuroimaging work correlating brain activity with processing-complexity metrics
across grammar types and parsing strategies has convergently pointed to the anterior temporal
complex (Brennan et al., 2016; Li & Hale, To Appear; for a review see Brennan, 2016). The pre-
cision of this localisation has also been supported by results using intracranial recording (Nelson
et al., 2017).

The results reported here, along with previous findings, underline the involvement of anterior
temporal lobe in basic composition processes (Friederici & Gierhan, 2013; Hickok & Poeppel,
2007). Yet, along-side many of the findings just reviewed, our results stand in contrast to the
apparent stability of compositional processes following anterior temporal atrophy (e.g. Wilson
et al., 2014a, 2016). The present study does not resolve the tension between these two liter-
atures. We speculate that such a resolution might involve more detailed consideration of the
specific mechanisms that contribute to observed neural activation patterns, and perhaps how
compensatory processes respond to neuronal atrophy.

The unexpected right lateralisation of posterior temporal activation may suggest that the
way the human brain processes linguistic stimuli within a contextually rich setting — one more
similar to the everyday language environment — shows a strongly bilateral involvement of
the language network. Future work that parametrically varies contextual richness, from more
isolated to more naturalistic stimuli, may shed light on this speculation.

6.2.2. Left Posterior Temporal regions and Parser Action Count

The operationalisation of compositional processing in terms of bottom-up parser actions high-
lights the language network to a large extent. However, we did not find a significant correlation
between this metric and activity in left posterior temporal areas. Our result contrasts with
posterior temporal effects of composition that are reported in some prior imaging studies (e.g.
Brennan et al., 2016; Pallier et al., 2011; Snijders et al., 2009; Vandenberghe et al., 2002) and
are also highlighted in studies of primary progressive aphasia (Wilson et al., 2012). This absence
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of evidence should be treated carefully; caution is especially warranted as different studies take
different perspectives on composition itself.

The phrase-structures used in our analysis only capture some aspects of composition, and so
a more comprehensive view of this aspect of language processing may shed light on discrepancies
between studies. For example, the LPTL composition effect reported by Brennan et al. (2016)
did not appear when analyzing the same types of tree structures used in the present analysis,
but only from tree structures that explicitly encode long-distance dependencies and other more
abstract aspects of grammar. More broadly, one can speculate that the absence of activation
in our study might be a consequence of the unlexicalised character of the bottom-up parsing
metric. It counts distances, for instance along the spine of a tree as in Figure 3 (C), but it
treats all nodes as equal, ignoring lexical information except at the preterminal level. Subjects
and direct objects receive the same score if they close off the same number of constituents.
This conception of composition leaves out many classical distinctions that are known to affect
cerebral activity, such as semantic selection, argument structure (Frankland & Greene, 2015;
Thompson et al., 2007), long-distance dependencies (Ben-Shachar, Palti, & Grodzinsky, 2004;
Santi & Grodzinsky, 2010; Shetreet & Friedmann, 2014), and case-checking (Nieuwland, Martin,
& Carreiras, 2012).

Such a more comprehensive perspective may also shed light on another aspect of the present
results. While parser action count does not correlate with left posterior temporal activation, we
do see such a correlation for decreasing MWE cohesion (see Section 6.1.2). Such a correlation
is consistent with the hypothesis that less coherent expressions load more heavily onto certain
compositional operations, and such compositional operations evoke, at least in some cases,
posterior temporal activity.

Overall the results support the idea that composition and retrieval of stored linguistic el-
ements like MWEs involve different parts of the language network. They also confirm that
bilateral anterior frontal regions play an important role in linguistic composition during natu-
ralistic spoken story comprehension.

6.2.3. Composition and the Cerebellum

An often reported but less-discussed area in language processing is the Cerebellum. In this
study its relationship to parser action count in Crus I suggests its involvement in compositional
processes bilaterally. A growing number of studies have provided evidence for cerebellar involve-
ment in non-motor language functions (see Stoodley & Schmahmann, 2009 for a meta-analysis),
revealing interesting patterns of co-activation with classical left prefrontal language areas and
right cerebellar hemisphere during language tasks and comprehension (Fedorenko, Duncan, &
Kanwisher, 2012), or during the processing of complex syntactic structures (Christensen, 2008;
Fabre, 2017; Shetreet & Friedmann, 2014). Specifically, Crus I and Lobule VII are typically
proposed as members of Prefrontal-cerebellar connectivity loops (Stoodley & Schmahmann,
2009).

Moreover, an emerging view of perceptual and cognitive processing in the Cerebellum puts
special emphasis on sequencing and predictive processes (Leggio et al., 2008; Molinari et al.,
2008), which are presumably also required in syntactic sentence parsing operations. Although no
special modelling of predictive processing was undertaken in this study, bottom-up approaches
such as the LR parser do include predictive information in their control state (see e.g. Shieber
& Johnson, 1993; Stabler, 1991).

6.2.4. Composition of Form and of Meaning

The foregoing discussion has remained neutral as to whether activation within the anterior
temporal lobe and other brain areas that correlate with bottom-up parsing reflects syntac-
tic processing, or compositional semantic processing. Syntactic structure-building is transpar-
ently associated with bottom-up parser action count (panel B of Figure 5) that is itself defined
in terms of syntactic phrases such as NP, VP and S. However, our approach is not able to rule
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out a semantic explanation. A semantic role would follow within approaches to natural language
grammar that adopt the “rule-to-rule” assumption (Bach, 1976). Following the seminal work of
Montague (1974) these theories of linguistic competence suppose that syntactic rules generally
are paired with corresponding semantic rules. This organisation of grammar, which is introduced
briefly in Barker and Jacobson (2007), typifies Combinatorial Category Grammar (Steedman,
2000), Generalized/Head-driven Phrase-Structure Grammars (E. Klein & Sag, 1985) and cer-
tain forms of Minimalism (see e.g. Kobele, 2006, §2.2). A consensus from these conceptions of
grammar is that aspects of linguistic performance that correlate with syntactic processing will
necessarily also correlate with semantic processing.

Of course, the particular rules being processed do matter, and in this case the rules are
plainly syntactic in nature. To tease apart semantic from syntactic explanations, future work
could develop an alternative grammar, unlike the Penn Treebank phrase structures used here,
and evaluate whether this alternative semantically-based theory offers a better explanation of
the observed fMRI timecourses. Such an approach may be particularly fruitful in constructions
where an additional semantic rule of “coercion” applies, unaccompanied by a corresponding
syntactic rule (Pylkkänen, 2008). These considerations, regarding the kinds of rules that are
used during comprehension, are in any event quite orthogonal to questions about their order
application (Hale, 2014)

7. Conclusion

Analysis of MWEs and parser action counts in naturalistic spoken story comprehension supports
the localisation of memory retrieval to the precuneus in a way that trades-off with the other well-
known language regions such as inferior frontal gyrus and anterior temporal lobe. This trade-off
seems to reflect the degree to which particular MWE form a cohesive unit. These findings are
broadly consistent with several contemporary neurocognitive models of language processing,
such as the proposals of Hagoort (2016), Friederici and Gierhan (2013) and Ullman (2015).

Apart from the light that they shed on the neural bases of these two language-related
cognitive processes, these results also demonstrate the benefits of using combining computational
methods for the automatic annotation of narrative texts. Such methods can be leveraged to tease
out distinct sub-processes of complex cognitive processes, like language understanding, using
experimental setups with greater ecological validity. As such they pave the way for increasing
synergy between computational linguistics and the cognitive neuroscience of language.

Acknowledgements

The authors would like to thank Adam Mahar, Skyler Yeatman, Jaelyn Moore, Jacob Collard,
Katey Huddleston, and Marissa Holl at Cornell University for assisting us with data collection.

Disclosure statement

We have reported all measures, conditions and data exclusions. The sample size was enlarged
by a factor of 2 compared to previous work with similar regressors.

Funding

This material is based upon work supported by the National Science Foundation under Grant
Number 1607441 (USA). We also gratefully acknowledge support from the French National
Research Agency (ANR) under grant ANR-14-CERA-0001.

21



References

Abney, S. (2007). Semisupervised learning for computational linguistics. CRC Press.
Al Saied, H., Candito, M., & Constant, M. (2017, April). The ATILF-LLF system for the

PARSEME Shared Task: a Transition-based Verbal Multiword Expression Tagger. In Proceedings of
the 13th workshop on multiword expressions (mwe 2017) (pp. 127–132). Valencia, Spain: Association
for Computational Linguistics. (https://github.com/hazemalsaied/ATILF-LLF-MWE-Analyser)

Andreasen, N. C., O’Leary, D. S., Cizadlo, T., Arndt, S., Rezai, K., Watkins, L., . . . Hichwa, R. (1995).
Remembering the past: two facets of episodic memory explored with positron emission tomography.
The American journal of psychiatry , 152 (11), 1576.

Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated
thought: Component processes, dynamic control, and clinical relevance. Annals of the New York
Academy of Sciences, 1316 (1), 29–52.

Bach, E. (1976). An extension of classical transformational grammar. In Problems of linguistic metatheory
(p. 183-224).

Barker, C., & Jacobson, P. (2007). Introduction: Direct compositionality. In Direct compositionality.
Oxford University Press, UK.

Bemis, D. K., & Pylkkänen, L. (2011a). Simple composition: A magnetoencephalography investigation
into the comprehension of minimal linguistic phrases. The Journal of Neuroscience, 31 (8), 2801–2814.

Bemis, D. K., & Pylkkänen, L. (2011b). Simple composition: A magnetoencephalography investigation
into the comprehension of minimal linguistic phrases. The Journal of Neuroscience, 31 (8), 2801–2814.

Ben-Shachar, M., Palti, D., & Grodzinsky, Y. (2004). Neural correlates of syntactic movement: Con-
verging evidence from two fMRI experiments. Neuroimage, 21 (4), 1320–1336.

Bever, T. G. (1970). The cognitive basis for linguistic structures. In J. Hayes (Ed.), Cognition and the
development of language (pp. 279–362). New York: Wiley.

Bornkessel-Schlesewsky, I., & Schlesewsky, M. (2009). The role of prominence information in the real-
time comprehension of transitive constructions: A cross-linguistic approach. Language and Linguistics
Compass, 3 (1), 19–58.

Bornkessel-Schlesewsky, I., & Schlesewsky, M. (2013). Reconciling time, space and function: A new
dorsal–ventral stream model of sentence comprehension. Brain and Language, 125 (1), 60–76.

Brennan, J. R. (2016). Naturalistic sentence comprehension in the brain. Language and Linguistics
Compass, 10 (7), 299–313.

Brennan, J. R., Nir, Y., Hasson, U., Malach, R., Heeger, D. J., & Pylkkänen, L. (2012). Syntactic
structure building in the anterior temporal lobe during natural story listening. Brain and Language,
120 (2), 163–173.

Brennan, J. R., & Pylkkänen, L. (2017). MEG evidence for incremental sentence composition in the
anterior temporal lobe. Cognitive Science, 41 (S6), 1515–1531.

Brennan, J. R., Stabler, E. P., Van Wagenen, S. E., Luh, W.-M., & Hale, J. T. (2016, May). Abstract
linguistic structure correlates with temporal activity during naturalistic comprehension. Brain and
Language, 157-158 , 81-94.

Brysbaert, M., & New, B. (2009). Moving beyond Kučera and Francis: A critical evaluation of current
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Appendix A. Unthresholded maps

Statistical maps are available at
https://neurovault.org/collections/BXCZVBRS/

Appendix B. Correlation matrices

Regressors’ correlation matrices for the models in Analysis 1 and 2 are reported below:

Figure A1. Correlation matrix (Pearson’s r) of the convolved regressors included in the GLM model reported in Analysis

1.

Figure A2. Correlation matrix (Pearson’s r) of the convolved regressors included in the GLM model reported in Analysis

2.
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Appendix C. Full cluster list for bottom-up parsing regressor

Significant clusters for Bottom-up parser action count (abbreviated table provided in §5.1):

Regions for Bottom-up Parser Action Count Cluster size MNI Coordinates p-value T-score
(in voxels) x y z (corrected) (peak level)

R Anterior Temporal 4816 52 6 -20 0.000 13.20
R Middle Temporal Gyrus 50 -20 -10 0.000 11.31
R Supramarginal Gyrus/Superior Temporal Gyrus 60 -40 -10 0.000 10.11

L IFG Orbitalis/Triangularis (BA47) & Anterior Insula 2461 -36 18 -14 0.000 10.40
L Temporal Pole -50 6 -26 0.000 8.30
L Putamen -30 8 -4 0.000 6.99

R Supplementary Motor Area/Superior Frontal Gyrus (BA9) 6495 10 18 62 0.000 9.35
R Medial Superior Frontal Gyrus (BA9) 12 58 32 0.000 8.62
L Superior Frontal Gyrus -8 18 66 0.000 8.24

L Cerebellum – Crus I/II 448 -24 -74 -30 0.000 8.96
R Cerebellum – Crus I/II 941 26 -74 -36 0.000 8.15

R Cerebellum 36 -60 -32 0.021 5.16
L Middle Occipital Gyrus/Fusiform Gyrus 1084 -34 -78 12 0.000 7.59

L Fusiform Gyrus/Temporal Occipital Cortex -30 -58 -10 0.000 7.19
L Occipital Fusiform Gyrus -28 -70 -14 0.010 5.85

R Precentral Gyrus 159 42 0 48 0.000 7.57
L Supramarginal Gyrus/Parietal Lobe (BA40) 665 -54 -56 30 0.000 7.35

L Parietal Lobe -48 -66 50 0.032 5.45
L Supramarginal Gyrus -52 -58 50 0.036 5.41

R Temporal Occipital Cortex/Fusiform Gyrus (BA19) 164 30 -50 -10 0.001 6.75
L IFG Orbitalis/Frontal Pole (BA11) 252 -44 46 -12 0.001 6.61

L Frontal Pole -36 60 -6 0.013 5.75
L Middle Frontal Gyrus (BA9) 252 -42 24 44 0.001 6.49
L Precuneus 154 -10 -52 38 0.003 6.25
R Middle Occipital Gyrus 160 28 -72 22 0.003 6.19
L Caudate 54 -14 16 10 0.005 6.07
R/L Anterior Cingulate Gyrus (BA24) 49 0 22 22 0.011 5.82
L Cerebellum 21 -6 -58 -40 0.018 5.64
L Superior Parietal Lobule (BA7) 5 -32 -58 62 0.024 5.54
R Lateral Occipital Cortex (BA19) 12 40 -64 -8 0.027 5.51
R Cerebellum – Vermis 4-5 6 4 -48 -8 0.038 5.39
R Putamen 3 32 -8 -6 0.041 5.37
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