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We present an empirical case study which connects psycholinguistics with the field of cultural
evolution, in order to test for the existence of cultural attractors in the evolution of quotations.
Such attractors have been proposed as a useful concept for understanding cultural evolution
in relation with individual cognition, but their existence has been hard to test. We focus on
the transformation of quotations when they are copied from blog to blog or media website:
by coding words with a number of well-studied lexical features, we show that the way words
are substituted in quotations is consistent (1) with the hypothesis of cultural attractors, and (2)
with known effects of the word features. In particular, words known to be harder to recall in
lists have a higher tendency to be substituted, and words easier to recall are produced instead.
Our results support the hypothesis that cultural attractors can result from the combination of
individual cognitive biases in the interpretation and reproduction of representations.

1 Introduction

The reciprocal influence between cognition and culture
has a long history in both social science and psychology.
While this question has been the subject of intense debate
in the social sciences in the 20th century, today’s discussion
is mostly structured by proponents from cognitive science,
who construe culture as an evolutionary process analogous
and parallel to biological evolution. That analogy can be
traced a long way back, with milestones such as Kroeber’s
works (1952), Dawkins’ Memetics (1976), and later the de-
velopment of Dual Inheritance Theory by Boyd and Rich-
erson (1985) and Cavalli-Sforza and Feldman (1981) among
others. More recently, Dan Sperber has drawn on this prin-
ciple to explicitly connect anthropology and cognitive sci-
ence through the theory of Epidemiology of Representations
(Sperber, 1996), and the study of cultural evolution has been
growing steadily since.

The collection of works by Aunger (2000) (in particular
Bloch, 2000, and Kuper, 2000) has shown how memetics
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cannot account for the levels of transformation culture un-
dergoes as it is transmitted. Mesoudi and Whiten (2008)
discuss the uses of transmission chain experiments to test
what dual inheritance theory can explain about cultural evo-
lution. Morin (2013) and Miton, Claidiere, and Mercier
(2015), by carefully compiling a series of anthropological
works, demonstrate how cognitive biases have influenced the
evolution of cultural artifacts over several centuries. Kirby,
Cornish, and Smith (n.d.; 2008) have shown how evolution-
ary pressures lead to the emergence of structured and expres-
sive artificial languages in simulations and laboratory exper-
iments. Such transmission chain experiments have also been
explored in non-human primates by Claidiere, Smith, Kirby,
and Fagot (2014).

The theory of Epidemiology of Representations proposes
a unifying framework for all these works by recasting them
as questions of spread and transformation of representations:
these are alternatively located in the mind (“mental repre-
sentations” in Sperber’s terminology), or in the outer world
(“public representations”) as expressions of mental represen-
tations in diverse cultural artifacts (pieces of text, utterances,
pictures, building techniques, etc.). A human society is then
modeled as a large dynamical system of people constantly in-
terpreting public representations into mental representations,
and producing new public representations based on what they
have previously interpreted. Two key points are that (a) trans-
mission is not reliable (representations change significantly
each time they are interpreted and produced anew, as op-
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posed to e.g. memetics), and (b) the reciprocal influences of
cognition and culture can be captured by studying the evolu-
tion of public representations themselves, which is what the
above-cited studies are doing.

The theory makes an additional strong hypothesis, which
this paper focuses on: as transformations accumulate, some
representations evolve to be very stable and spread through-
out an entire society without changing any more (they are
called “cultural representations”, because they characterize
a given culture). This process should manifest itself as at-
tractors (called “cultural attractors”) in the dynamical sys-
tem that models cultural evolution, that is: there should be
areas of the representation space where cognitive effects in
transformations bring representations closer to a given stable
asymptotic point.’

This hypothesis, a cornerstone of the theory because of
the intelligibility it gives to cultural evolution, has been hard
to test in concrete situations as quantitative data on out-of-
laboratory cultural artifacts is not easy to collect. One ap-
proach, as mentioned above, has been the meta-analysis of
large bodies of anthropological studies (see Miton et al.,
2015, for instance). This paper exemplifies a second ap-
proach, taking advantage of the ever-increasing avalanche
of available digital footprints since the 2000’s. Indeed,
tools and computing power to analyze such data are now
widespread, and the body of research aimed at describing
online communities and content is growing accordingly. For
instance, the propagation of cultural artifacts across social
networks has been studied in blogspace (Gruhl, Guha, Liben-
Nowell, & Tomkins, 2004) and in emails (Liben-Nowell &
Kleinberg, 2008); Cointet and Roth (2009) described the re-
ciprocal influence between the social network topology and
the distribution of issues; Leskovec, Backstrom, and Klein-
berg (2009) detailed the characteristic times and diffusion cy-
cles both within these social networks and with respect to the
topical dynamics of news media, and Danescu-Niculescu-
Mizil, Cheng, Kleinberg, and Lee (2012) studied the char-
acteristics of particularly memorable quotes that circulate in
those networks. We believe these works can connect the field
of cultural evolution with psycholinguistics to advance the
testing of cultural attractors.

To show this we analyze how quotes in blogs and media
outlets are modified when they are copied from website to
website. These public representations should normally not
change as they spread on the Web (as opposed to more elab-
orate expressions or opinions, not identified as quoted ut-
terances), but empirical observation shows that they are in
fact occasionally transformed (Simmons, Adamic, & Adar,
2011): authors spontaneously transform quotes, not only
cropping them but also replacing words. For instance the
quote “we will not be scared of these cowards” (a substring of
a quote from former Pakistani President Asif Ali Zardari) is
also found as “we will not be afraid of these cowards”. More

meaningful changes often happen too, such as the transfor-
mation of McCain’s “I admire Senator Obama and his ac-
complishments” during the 2008 US presidential campaign,
into “I respect Senator Obama and his accomplishments”.
Since authors are implicitly required to copy quotes exactly,
we can assume that most transformations, especially simple
ones such as those shown above, are the result of automatic
(i.e. hard to control) low-level cognitive biases of the authors.

We thus ask the following question: given such represen-
tations that seem to evolve precisely because of the kind of
automatic cognitive biases evoked in the theory of epidemi-
ology of representations, do cultural attractors appear, and if
so how do cognitive biases participate in them? We chose
to restrict our analysis to substitutions (i.e., one word being
replaced by another), both to keep the analysis tractable and
because of missing information in our data set.> While this
limits the scope of our results to the particular data set we
use, the methodological point we also make is left intact.
By characterizing words using 6 well-studied features, we
identify what makes a substitution more likely, and how a
word changes when it is substituted. This exploratory ap-
proach uncovers a number of transmission biases consistent
with known effects in linguistics. While the transformations
we describe are not the only ones at work in this data set, our
analysis also indicates that feature-specific attractors could
exist because of the substitution process. This study can be
viewed as analyzing part of the transmission step operating in
transmission chains of artificial languages like those studied
by Kirby et al. (2008), yet with natural language out of the
laboratory.

The next section describes our hypotheses along with a
review of the psycholinguistics literature. Then, we describe
the data set and detail the various assumptions that were
made in order to analyze it. Next, we introduce the measures
we built to observe cognitive biases operating in quote trans-
mission. Finally, we discuss the relevance of these results for
the study of cultural evolution, followed with general guide-
lines for further work.

2 Related work

The study of cultural evolution on the part of cognitive
science emerged only recently. While formal models of cul-
tural transmission appeared with the development of dual in-
heritance theory (Boyd & Richerson, 1985; Cavalli-Sforza &

! Attractors need not be points in fact, they can also be sub-
areas; in that case any transformation brings representations in the
area closer to (or confined to) the target sub-area.

2As explained further down, source-destination links between
quotes must be inferred from the data set, an operation which is
much more reliable if we restrict our analysis to substitutions. This
also impedes us from observing the effect of accumulated trans-
formations in the long term, limiting our results to a view of the
individual evolutionary step.
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Feldman, 1981) and have included the notion of cultural at-
tractor since then (Claidiere, Scott-Phillips, & Sperber, 2014;
Claidiere & Sperber, 2007), collecting data to test and iter-
ate over such models has been more challenging. The first
above-mentioned method consists in rebuilding the history
of a given type of representation by compiling anthropologi-
cal or historical works on the subject (as for instance Morin,
2013, and Miton et al., 2015, have done). A second ap-
proach uses cultural evolution experiments in the laboratory,
with an array of methods reviewed by Mesoudi and Whiten
(2008). Transmission chains, in particular, have been used
extensively to study the evolution of human language (see
Tamariz & Kirby, 2016, for a review). Other recent exam-
ples include studies of the evolution of simple audio loops
through consumer preference (MacCallum, Mauch, Burt, &
Leroi, 2012), the emergence of structure in visual patterns
transmitted by baboons (Claidiere, Smith, et al., 2014), and
the amplification of risk perception through chains of casual
conversation (Moussaid, Brighton, & Gaissmaier, 2015).

Research on online content points to a third approach to
this question. By investigating the transformations of quota-
tions in a large corpus of US blog posts and online news sto-
ries initially collected and studied by Leskovec et al. (2009),
Simmons et al. (2011) and later Omodei, Poibeau, and Coin-
tet (2012) show that even for quotations, a type of public
representation that should change the least when transmitted
on the Web, it is still possible to witness significant transfor-
mations. These studies focus on the influence of the quota-
tion source (e.g. news outlet vs. blog) or of the surrounding
public space (e.g. quotation frequency in the corpus), and
suggest diffusion-transformation models to capture the dy-
namics of the population of quotations. But the cognitive
features which may determine or, at least, influence these
transformations, are overlooked. On the other hand cogni-
tive and linguistic features have been used in diffusion stud-
ies not involving transformation: Danescu-Niculescu-Mizil
et al. (2012), for instance, show that particularly memorable
quotations (taken from movie scripts in this case) use more
distinctive words and have more common syntax than less
memorable quotations; they are also the quotes that adapt
best to new contexts of use. One source of ideas to study the
transformations of such quotes, then, might be the psycholin-
guistic literature studying word and sentence recall.

Potter and Lombardi (1990) suggest that immediate recall
of sentences is based on the retention of an unordered list
of words which is then regenerated as a sentence at the mo-
ment of production. Priming recall with other words can lead
to replacement in the recalled sentence if the primed words
are consistent with the overall meaning of the sentence. Re-
generated syntax can also be influenced by priming recall
with another syntactic structure (Potter & Lombardi, 1998),
or with verbs whose category constraints call for a different
structure (Lombardi & Potter, 1992).

Compared to full sentences, recall of word lists provides
a situation that is easier to fully explore and has been ex-
tensively studied. In particular, the Deese, Roediger, and
McDermott paradigm (introduced by Deese, 1959, and later
popularized by Roediger & McDermott, 1995) has shown
that it is possible to construct lists of words which reliably
create the false memory of an external word related to those
in the list. This is done by using lists of words produced
by free association from the target intrusion word; the in-
truding recall then happens with probability nearly propor-
tional to the average semantic association strength between
the intruding word and the words in the list. A sizable lit-
erature studies this type of task with varying complexities in
the design of the lists, a good review of which is given by
Zaromb et al. (2006). One notable effect is that the semantic
relations between words greatly influence, and correlate to,
the order in which words are recalled (Howard & Kahana,
2002; Tulving, 1962), and that this reordering of items im-
proves subjects’ repeated recalls (Tulving, 1966). The fre-
quency and type of intrusions in lists of random words are
also influenced by associations created by the presentation
of previous lists (Zaromb et al., 2006). Indeed, the question
of how such temporal associations (contributing to contex-
tual information retrieval in recall) interact with the prior se-
mantic associations of subjects (contributing to associative
information retrieval) is at the core of many of these studies.

These effects do not transpose simply to sentence recall
however, as not only syntax but also effects of attention come
into play for both retrieval and encoding. Jefferies, Lam-
bon Ralph, and Baddeley (2004), for instance, show that at-
tention is central to the encoding and retention of unrelated
propositions, on top of more automatic syntactic and seman-
tic processes. This involvement of executive resources also
seems to contribute to the much greater memory span sub-
jects exhibit for sentences compared to word lists (see Jef-
feries et al., 2004, again, for more details).

Given this complexity we decided to focus on more aggre-
gate measures, where variations of the conditions in which
sentences are read and produced have a chance of being sta-
tistically smoothed out.® If a cognitive bias in the substitu-
tion of words manifests itself with simple measures, then it
will be worth applying predictive models of the substitution
process in further research.

Lexical features, then, are obvious well-studied word
measures that can be analyzed in aggregate. Indeed

3 Aside from our lack of control on the precise conditions of en-
coding and recall in our data set, the analysis techniques mentioned
above are better suited to data consisting of a high number of mea-
sures over a smaller number of lists (in which case it makes sense
to ask e.g. what proportion of intrusions come from prior lists). As
is explained further down however, our data set is shaped the op-
posite way: a great number of sentences, with only very few to no
measures at all on each sentence.
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word frequency (see Yonelinas, 2002, for a review), age-
of-acquisition (Zevin & Seidenberg, 2002), number of
phonemes (see for instance Nickels & Howard, 2004; Rey,
Jacobs, Schmidt-Weigand, & Ziegler, 1998), and phono-
logical neighborhood density (Garlock, Walley, & Metsala,
2001) to name a few, all have known effects on word recog-
nition or production. More complex features based on word
networks built from free association or phonological data
have also been analyzed: Nelson, Kitto, Galea, McEvoy, and
Bruza (2013) for instance, show the importance of clustering
coeflicient in such a semantic network by studying the role
it plays in a variety of recall and recognition tasks (extralist
and intralist cuing, single item recognition, and primed free
association). Chan and Vitevitch (2010) show that pictures
are named faster and with fewer mistakes when they have
a lower clustering coeflicient in an underlying phonological
network. Griffiths, Steyvers, and Firl (2007) analyze a task
where subjects are asked to name the first word which comes
to their mind when they are presented with a random letter
from the alphabet. The authors show that there is a link be-
tween the ease of recall of words and their authority position
(pagerank) in a language-wide semantic network built from
external word association data (Austerweil, Abbott, & Grif-
fiths, 2012, further develop this tool to give a parsimonious
account of the fact that related words are often retrieved to-
gether from memory).

On the whole, research on lexical features hints towards
two antagonistic types of effects (also known as the “word-
frequency paradox”, Mandler, Goodman, & Wilkes-Gibbs,
1982). On one hand, part of the literature shows that recall
is easier for the least “awkward” words; those whose age of
acquisition is earlier, length is smaller, semantic network po-
sition is more central — this is particularly true in retrieval,
that is in tasks where participants are asked to form sponta-
neous associations or utter a word in response to a given sig-
nal. On the other hand, when the task consists in recognizing
a specific item in a list, “awkward” words are actually more
easily remembered, possibly as they are more informative
and plausibly more discernible (see again Yonelinas, 2002,
for a review). The jury is still out as to whether reformu-
lation alteration, that is spontaneous replacement of words
when asked to rewrite a given utterance, is rather of the for-
mer or latter sort. We also aim to shed some light on this
debate, considering oddness as a dimension of the purported
fitness of utterances.

3 Methods

We rely on a text corpus made of quotations extracted
from online blog posts, and focus on their evolution. Quo-
tations appeared to be a perfect candidate to propose a first
measure of automatic cognitive bias in cultural transmission.
First, they are usually cleanly delimited by quotation marks,
which greatly facilitates their detection in text corpora. Sec-

ond, they stem from a unique original version, and are ide-
ally traceable back to that version. Third, and most impor-
tantly, their duplication should a priori be highly faithful,
apart from cases of cropping: not only should transforma-
tions be of moderate magnitude, but when specific words are
not perfectly duplicated, it is safe to assume that the varia-
tion is due to involuntary cognitive bias — as writers may
expect any casual reader to easily verify, and thus criticize,
the fidelity to the original quotation.

We could therefore study the individual transformation
process at work when authors alter quotations, by examin-
ing the modified words in each transformation. Since our
approach is exploratory however, we do not know at the out-
set which precise effect of cognitive bias we are looking for.
Indeed, the data we use does not come from a controlled ex-
periment in the laboratory, designed to elicit a particular ef-
fect: they are recordings of real life interactions, with all the
complexity and uncertainty of conditions this entails. Our
goal, therefore, is to show that cognitive biases have mea-
surable effects in this setting even if they are part of a larger
complexity (the detailed prediction and deconstruction of the
cognitive processes responsible for them being left to further
research). If this is confirmed, we will have successfully
tested fundamental cognitive biases with out-of-laboratory
data, opening a path to explanations of actual (vs. simulated)
cultural evolution with tools from cognitive science. Aiming
to exhibit such subtle biases in complex data is the main rea-
son we chose to use aggregate measures that have a chance of
smoothing out the possible variations of experimental condi-
tions in the data set.

To keep the analysis tractable, we focused on quotation
transformations consisting of the substitution of a word by
another word (and only those cases) in order to unambigu-
ously discuss single word replacements. This restriction also
allows us to more reliably infer the information that is miss-
ing in our data set, as explained in the “Substitution model”
section. To quantify these substitutions we decided to as-
sociate a number of features to each word, the variation of
which we can statistically study.

The next subsections describe the data set and the mea-
sures we used to assess this cognitive bias.

3.1 Corpus-based utterances

We used a quotation data set collected by Leskovec et al.
(2009), large enough to lend itself to statistical analysis. This
data set consists of the daily crawling of news stories and
blog posts from around a million online sources, with an
approximate publication rate of 900k texts per day, over a
nine-month period of time from August 2008 to April 2009
(Leskovec et al., 2009).* The authors automatically extracted

“The original article (Leskovec et al., 2009) does not provide
further details on the source selection methodology.
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quotations from this corpus. Each quotation is a more or less
faithful excerpt of an utterance (oral or written) by the quoted
person; for instance:

The Bank of England said, “these operations
are designed to address funding pressures over
quarter-end.”

Then, the authors gathered quotations in a graph and
connected each pair that differed by no more than one
word or that shared at least ten consecutive words (they
tested this procedure with a number of different parameters,
see Leskovec et al., 2009, for more details). We find for ex-
ample the following variation of the above quote:

“these operations are intended to address fund-
ing pressures over quarter-end.”

Next, they applied a community detection algorithm to that
quotation graph to detect aggregates of tightly connected,
that is sufficiently similar, groups of quotations (see again
Leskovec et al., 2009, for more details). This analysis yielded
the final data we had access to, with a total of about 70,000
sets of quotations; each of these sets ideally contains all vari-
ations of a same parent utterance, along with their respective
publication URLs and timestamps (since the procedure can-
not be perfect, sets of quotations contain occasional rogue
unrelated variations that should have been discarded or as-
signed to another set).

Manual inspection of this data set revealed that it con-
tains a significant number of everyday language quotations
(such as “it was much better than I expected”, “did that just
happen”, as well as many simple expletive-based sentences).
Their presence is largely due to random variations around ca-
sual expressions, while we are interested in transformations
of news-related quotes causally linked to an original, identi-
fiable utterance. To filter them out, we exclude quotes with
less than 5 words or whose occurrences span more than 80
days (indicating causally unrelated occurrences), as well as
quotes not written in English. Clusters that are emptied by
this procedure are therefore excluded. If, after this screen-
ing, a cluster’s occurrences still span more than 80 days (be-
cause of short-lived but unrelated quotes far apart in time),
we also exclude it. We eventually keep 50,427 clusters (out
of 71,568; i.e. 70.5%), containing a total of 141,324 unique
quotes (out of 310,457; i.e. 45.5%) making up about 2.60m
occurrences (out of 7.67m; i.e. 33.9%).> Even if we lose
some real event-related utterances which are present in clus-
ters lasting more than 80 days (one such lost quote, for in-
stance, is “the city is tired of me and the organization and
I have run our course together”), we check that our filtering
approach fulfills its goals by coding a random sub-sample of
100 clusters: 35 of them are rejected by the filter, with 15
false negatives (rejected clusters that should have been kept)
and 9 false positives (clusters kept when they should have

been rejected), giving a precision score of 0.862 and a recall
score of 0.789. Furthermore, all but one of the 9 false posi-
tives are left with a single non-rejected quote, meaning those
clusters are ignored by our substitution analysis; this brings
the effective precision of our filter to 0.982.6

3.2 Word-level measures

3.2.1 Lexical features

We first introduce some lexical measures on words.

¢ Word frequency: the frequency at which words appear
in our data set, known to be relevant for both recognition and
recall (Gregg, 1976),

o Age of Acquisition: the average age at which words are
learned (obtained from Kuperman, Stadthagen-Gonzalez, &
Brysbaert, 2012), known to have different effects than word
frequency (Dewhurst, Hitch, & Barry, 1998; Morrison & El-
lis, 1995),

¢ Phonological and Orthographic Neighborhood Den-
sity (obtained from Marian, Bartolotti, Chabal, & Shook,
2012), also known to be relevant for word production (Gar-
lock et al., 2001),

e The average Number of Phonemes and Number of
Syllables for all pronunciations of a word (obtained from the
Carnegie Mellon University Pronouncing Dictionary, Weide,
1998)7, as well as Number of Letters, as a proxy to word
production cost,

e The average Number of Synonyms for all meanings of
a word (obtained from WordNet, 2010) as an a priori indica-
tor of how easy it would be to replace a word.

We also consider grammatical types within quotations
by detecting Part-of-Speech (POS) categories with TreeTag-
ger (Schmid, 1994); we distinguish between verbs, nouns,
adjectives, adverbs, and closed class-like words.

Aside from these raw features, the systemic dimension of
vocabulary (Cornish et al., n.d.) has led authors to develop
measures based on the full topology of networks built from
free association data or phonological similarity. Several such
measures have been shown to be involved in recall, recogni-
tion, and naming tasks (Chan & Vitevitch, 2010; Griffiths et
al., 2007; Nelson et al., 2013).

5The significantly larger loss in occurrences indicates that, on
average, the clusters we lose contain more occurrences than those
we keep, which is to be expected for everyday language utterances.

SA similar analysis was made for language detection, which is
part of the cluster filtering: out of 100 randomly sampled quotes, 17
are rejected because their detected language is not English, with no
false positives and 6 false negatives, giving a precision score of 1
and a recall score of 0.933. Of the 6 false negatives, 4 had less than
5 tokens and would have been excluded by the cluster filter anyway.

"The CMU Pronouncing Dictionary is included in the NTLK
package (Bird, Klein, & Loper, 2009), the natural language pro-
cessing toolkit we used for the analysis.



6 SEBASTIEN LERIQUE

To compute these features we relied on the free associa-
tion (FA) norms collected by Nelson, McEvoy, and Schreiber
(2004), which record the words that come to mind when
someone is presented with a given cue. As Nelson et al.
explain, “free association response probabilities index the
likelihood that one word can cue another word to come to
mind with minimal contextual constraints in effect.”” Sim-
ilar to what Griffiths et al. (2007) did, we first considered
the directed weighted network formed by association norms,
where nodes are words and edges are directed from cue to
target word, with a weight equal to the association strength
(that is the probability of that target word being produced
when this particular cue is presented). This network is of
particular interest since it lets us define features that reflect
the associations driving false memories in word lists (Deese,
1959), a phenomenon which may be involved in the transfor-
mation of quotations.

We used three standard measures on the FA network:

o Incoming degree centrality, measured by the number
of cues for which a given word is triggered as a target, and a
corresponding generalized measure, node Pagerank (Page,
Brin, Motwani, & Winograd, 1999), which has already been
used on the FA network by Griffiths et al. (2007). In the
present case these two polysemy-related measures are quasi-
perfectly correlated.?

e Betweenness centrality, another measure of node cen-
trality describing the extent to which a node connects oth-
erwise remote areas of the network (Freeman, 1977). This
quantity tells us if some words behave as unavoidable way-
points on association chains connecting one word to an-
other.”

e Clustering coefficient, which measures the extent to
which a node belongs to a local aggregate of tightly con-
nected nodes (Watts & Strogatz, 1998), computed on the
undirected weighted version of the FA network.!? This tells
us if a word belongs more or less to a group of equivalent
words (from a free association point of view).

3.2.2 Variable correlations

Several of these features are strongly related and can be
grouped together. To make correlation values as well as fu-
ture comparisons more reliable, we log-transformed features
that have marked exponential distributions (i.e. a few words
valued orders of magnitude higher than the vast majority of
other words).

The pairwise correlations in the initial set of features ap-
pears in Fig. 1. By looking at absolute values, three sub-
sets of highly correlated features can be easily identified: (a)
number of letters, phonemes, and syllables with pairwise cor-
relations greater than .75; (b) orthographic and phonological
neighborhood densities, with a correlation of .8; (c) age of
acquisition, betweenness, degree, and pagerank centralities,
with absolute pairwise correlations at .41, .59, .6, .61, .63 and

log(<#synonyms>)
log(orthographic nd)

OOOO log(betweenness)
QOQO log(clustering)

#letters
log(degree)
log(frequency)

2N\
\ \ <#phonemes>
; \ \ \ <#syllables>

g \ Q QQ age of acquisition

#letters
<#phonemes>
<#syllables> 075 0.83
age of acquisition 033 o038

log(<#synonyms>) 001 -0.05 -0.04

log(betweenness)  -021 -021 -019 -041 001 / Q , OO & O
log(clustering) 011 009 011 016 001 -035 / QQQQQ
log(degree)  -033 -032 -029 -0.6 -005 063 -04 / 0 O / O
log(frequency)  -019 013 -013 -04 -007 031 -036 05 / OOO
log(orthographic nd) 0.69 -0.65 -0.62 -029 002 018 -013 025 0.1 / O /
log(pagerank)  -0.33 033 -0.3 -0.59 -0.04 061 -0.24 085 043 029 / O

log(phonological nd) 071 -0.75 -069 -03 002 021 -012 027 009 08 031 /
Figure 1. Spearman correlations in the initial set of features

.85. Applying a feature agglomeration algorithm targeted at
6 groups refined this observation by producing identical (a)
and (b) groups, a (c) group without betweenness centrality
which was instead assigned to a group (d) with clustering co-
efficient, and the remaining features (frequency and number
of synonyms) as singletons.'!

Since our data is about written transformations, number of
letters and orthographic neighborhood density are the natural
representatives of groups (a) and (b) respectively. Given the
importance of age of acquisition in the lexical feature liter-
ature, we chose it to represent group (c). Finally we used

8Note that in-degree does not take the weights of links into ac-
count, as it counts 1 for each incoming link. Pagerank on the other
hand, does take the weights into account.

°For this measure, weights are interpreted as inverse cost: the
stronger a link, the easier it is to travel across it. A stronger link
will be favored over weaker links in the computation of the shortest
path between two words.

The Clustering coefficient is formally defined as the ratio be-
tween the number of actual versus possible edges between a node’s
neighbors; this is poorly defined in the case of directed networks,
which led us to ignore the direction of links in the network for this
measure (if two words are connected in both directions, the weights
of both links are added to make the final undirected link’s weight).

" Agglomerating into less than 6 groups merged groups (a) and
(b), which we excluded to keep neighborhood densities in their own
group; agglomerating into more than 6 groups separated age of ac-
quisition from group (c), which we excluded given its high corre-
lation values to the rest of group (c). We used scikit-learn’s Fea-
tureAgglomeration class for this procedure (Pedregosa et al., 2011).
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clustering coefficient to represent group (d) since it has al-
ready been used in previous studies. The final set of features
we will discuss in the rest of the paper, as well as their cross-
correlations, can be seen in Fig. 2. 12

log(<#synonyms>)

OOQ log(orthographic nd)

log(frequency)

2 \ O age of acquisition
\OO log(clustering)

log(frequency) /

QO #letters

age of acquisition 0.4

log(clustering) -0.36

#letters  -019 033 o011 / %
log(<#synonyms>)  -007 003 001 001 /Q

log(orthographic nd) 01 -029 -013 -069 002 /

Figure 2. Spearman correlations in the filtered set of features

3.3 Substitution model

We finally need a substitution detection model, for the
quotation data we use presents a challenge: quote-to-quote
transformations and substitutions are not explicitly encoded
in the data set. More precisely, each set of quotations bears
no explicit information about either the authoritative original
quotation, or the source quotation(s) each author relied on
when creating a new post and reproducing (and possibly al-
tering) that source. In other words we face an inference prob-
lem where, given all quotations and their occurrence times-
tamps, we must estimate which was the originating quotation
for each instance of each quotation.

We therefore model the underlying quotation selection
process by making a few additional assumptions. Given a
particular occurrence of a quotation, the first issue is de-
ciding whether that occurrence is a strict copy of an ear-
lier occurrence, or a substitution from another quotation, or
maybe a substitution or copy from quotes appearing outside
the data set, that is from a source external to the data col-
lection perimeter. The second issue is deciding which source
originated such a substitution when several candidate sources
are available.

Let us give an example: say the quotation “These accusa-
tions are false and absurd” (g) appears in two different blogs
on January 19, and the slightly different quotation “These ac-
cusations are false and incoherent” (¢’) appears in another
blog on the 20th of January. The second occurrence of ¢
can safely be assumed to be a faithful copy of the first one
the same day. And since ¢ is fairly prominent when ¢’ first
appears, we could assume that the author of ¢’ on the 20th
based herself on ¢, as is shown with a dashed line in Fig. 3.
Now say a third version, “These allegations are false and

incoherent” (¢”’) also appears once on January 19 and once
on January 20 after ¢’. Here, g and ¢ differ by two sub-
stitutions, so we discard the possibility that one was written
based on the other (see below for further details). g” is only
one substitution away from ¢’ however, so we could also con-
sider the first occurrence of ¢” as a potential source for g’ on
the 20th. Conversely, the occurrence of ¢’ on the 20th could
be considered as a substitution from ¢’, or as a faithful copy
from its initial occurrence on January 19. (Options shown in
Fig. 3.)

Quote occurrences

1 word
~

1 word
\

Jan 19 Jan 20 Jan 21

Figure 3. Possible paths from occurrence to occurrence.
q, ¢’ and ¢” are three quotation variants belonging to the
same cluster. ¢ and ¢” differ by two words, but ¢’ differs
from both g and ¢”” by one word. The second occurrence
of g can safely be considered a faithful copy of the first, but
the occurrences of ¢’ and ¢” are uncertain: while the first
occurrence of ¢’ is most likely a substitution from ¢, it could
also stem from ¢”’; conversely, the second occurrence of g”
could also be a substitution from ¢’ instead of being a faithful
copy of its first occurrence.

One way to settle these questions is the following: group
quote occurrences into fixed bins spanning At days (1 day
in the implementation), each one representing a unit of time
evolution; when a quotation ¢’ appears in bin 7 + 1, it is
counted as a substitution if it differs from the most frequent
quote of the preceding bin 7 (or a substring thereof) by only
one word; if not, ¢’ is not considered to be an instance of
substitution. Fig. 4a shows the inferences made by such a
model. The assumptions it embeds, however, are a subset of
a much wider set of possibilities, each leading to alternative
inferences.

2Note that feature values stem from different data sets which
do not always encode the same words. Indeed, we have data on
frequency for about 33.5k words, on age of acquisition for 30.1k
words, on clustering coefficient for 5.7k words, number of syn-
onyms 111.2k, and orthographic density 17.8k words. Quite often
then, not all features are available for a given word in our data set;
however this is not problematic since the analysis is done on a per-
feature basis, and not all words need be encoded in all features.
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Figure 4. Substitution models. Substitutions inferred by four models in the situation introduced by Fig. 3. Each of these
models uses bins spanning 1 day aligned to midnight (see the main text for a complete description of parameters). In the top
left panel (a), g holds the majority in the first bin and is considered the unique basis for ¢’ in bin 2. ¢’ and g” have equal
maximum frequency in bin 2 however, so both are sources of substitutions towards bin 3. In the top right panel (b), quotes
that appear in the preceding bin cannot be the target of a substitution; this removes two substitutions compared to panel (a). In
the bottom left panel (c), the majority constraint is lifted compared to panel (a), making ¢” in bin 1 a candidate source for g’
in bin 2. In the bottom right panel (d), the majority constraint is also lifted compared to panel (a) (adding the same ¢’ — ¢’
substitution as in panel (c)), and the excluded-past constraint is added as in panel (b) (removing the two same substitutions
from bin 2 to bin 3 as in panel (b)). If the bins were extended to the beginning of the quotation family, the excluded-past
constraint would also remove the ¢ — ¢ substitution from bin 2 to bin 3. In all four panels, a background rectangle or square
indicates the quotation is the source of a substitution. A thick border on that rectangle or square indicates the quotation was

selected because it has maximum frequency.

We identified four binary parameters that differentiate po-
tential models, such that the resulting 16 combinations cover
most of the reasonable answers to inference uncertainties.
The first two parameters define the preceding time bin from
which authors could have drawn a source when producing a
new occurrence: (1) bin positions, which can be aligned to
midnight (as in the model presented above) or kept sliding
(for each occurrence, use a bin that ends precisely at that oc-
currence); (2) bin span, which can be Ar = 1 day (as in the
model above) or can be extended up to the very first occur-
rence in the quotation family. The other two parameters con-
figure rules on the selection of source and destination quotes
of a substitution: (3) candidate sources can be restricted to
the most frequent quotations in the preceding time bin (as
in the model above), or not (in which case all quotations in
the preceding bin are candidate sources); (4) candidate des-
tinations can be restricted to quotations that do not appear
in the preceding bin, or without restriction (as in the model
above). A substitution model, then, is the given of a value
for each of those parameters; it considers valid all the sub-
stitutions (and only those) where the source and destination
follow the rules set out by the parameters. If a destination
has substitutions from multiple sources we count a single

effective substitution where, for each feature, the value for
the effective source word is the average of the values of the
candidate source words.

Put shortly a model defines how many times, and under
what source and destination conditions, quote occurrences
can be counted as substitutions. Fig. 4 shows the inferences
made by the four models that use bins spanning 1 day aligned
to midnight: later occurrences of ¢’ and ¢’ are counted as
substitutions in Fig. 4a and Fig. 4c, whereas in Fig. 4b and
Fig. 4d they are not.

The results reported and discussed in the following sec-
tions are valid for all 16 models, and the graphics we present
were produced by the model first introduced above. Finally,
note that this inference procedure is one of the reasons we
restricted our analysis to single-substitutions: looking for
more complex transformations would (a) exponentially in-
crease the number of candidate sources for a destination oc-
currence, which correspondingly reduces the confidence in
inferences made, and (b) greatly increase the complexity of
the transformation models used to make these inferences.!?

3We checked that this restriction does not bias the results dis-
cussed below by extending our protocol to two-substitution trans-
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In practice for the model first introduced above, from
the 2.60m initial occurrences spread over 50,427 quotation
families, with significant redundancy (many quotes are in-
deed simple duplicates), we mine 40,868 substitutions. From
these substitutions we remove those featuring stopwords, mi-
nor spelling changes (e.g. center/centre), abbreviations (e.g.
November/Nov or Senator/Sen), spelled out numbers, words
unknown to WordNet, and deletions in substrings (which can
appear as substitutions of non-deleted words); this eventually
yields 6,177 valid substitutions.'*

4 Results

Substitutions usually replace a word with another seman-
tically related word: manual observation of a random sub-
set of 100 substitutions shows that, compared to the word it
replaces, the new word often achieves a similar meaning in
the context of its sentence while still slightly changing the
implications or the attitude expressed by the author.'> The
following examples illustrate this phenomenon:

e “This is {socialism — welfare} for the rich”,

o [The] “perverse logic of {clashes — confrontation} and
violence”,

e “This {crisis — problem} did not develop overnight and
it will not be solved overnight”.

Our question concerns the low-level properties of these
substitutions: we ask (a) which words are targets of the sub-
stitutions and (b) what change these words are subjected to.
To this end, we build the following two observables for each
word feature. First, we measure which word features are
more or less substituted compared to how often they would
be if the process were random, in order to capture the suscep-
tibility for words to be the target of a substitution in a quote.
Second, we measure the change in word feature upon sub-
stitution, looking at the variation of a given feature between
start and arrival words. Since sentence context is also central
to this process, we extend these two observables by applying
them to feature values relative to the distribution of feature
values in the sentence in which a word appears.

Note that since we only consider substitutions and not
faithful copies, we measure the features of an alteration
knowing that there has been an alteration, that is we do not
take invariant quotations into account. Indeed, in the for-
mer case we know there has been a human reformulation,
whereas in the latter case we cannot know whether there has
been perfect human reformulation or simply digital copy-
pasting of a source (“CtrL-C/CTRL-V”). Moreover, perfect
human reformulation possibly involves different practices
than those involved in alteration — for instance drafting be-
fore publishing, double-checking sources, proof-reading —
and may not be representative of the cognitive processes
at work during alteration. The two situations are different
enough to be studied separately, and we focus here on the
latter.

4.1 Susceptibility

We say that a word is substitutable if it appears in a quote
which undergoes a substitution, whether the substitution op-
erates on that word or on another one. For a given group of
words g, say all nouns, or all words in a particular range of
values for a feature (e.g. words 2 to 4 letters long), suscep-
tibility is computed as the ratio of sg, the number of times
words of that group are substituted, to sg, the number of times
words of that group would be substituted if substitutions fell
randomly on substitutable words.'® That is:

In other words, susceptibility measures how much more
or less a group of words g actually gets substituted compared
to picking targets at random in quotes undergoing substitu-
tions. By applying this measure to Part-of-Speech (POS) cat-
egories and feature bins (e.g. for a feature ¢ and a bin [a; b],
g = {wlp(w) € [a;b]}), susceptibility measures the bias in
the selection of start words involved in substitutions, i.e. it
measures the preferential selection of some word properties
for substitution.

formations; the results were unchanged.

“Manually coding a random subset of 100 substitutions to eval-
uate this last filter showed that 84 were true negatives, 5 were false
positives, and 11 true positives, giving a recall score of .688. Preci-
sion was evaluated over a random subset of 100 kept substitutions,
showing a score of .87. Finally, note that excluding minor spelling
changes does not bias our use of orthographic neighborhood density
as a feature: out of the first 100 substitutions coded for recall, those
with Levenshtein distance equal to 1 (which is what orthographic
neighborhood density codes, Marian et al., 2012) were all typos
or UK/US spelling changes, neither of which are relevant for this
study.

SHowever, the substituted and substituting words are not so of-
ten direct synonyms: only a third of all substitutions travel less than
3 hops on the hyponym-hypernym network defined by WordNet (di-
rect synonyms count as 0 hops on this network), meaning that at
least two thirds involve non-synonyms. A similar phenomenon is
observed on the FA network, where about 104 clusters have substi-
tutions traveling only 1 hop, 110 traveling 2 hops, 137 traveling 3,
72 traveling 4, and 13 traveling 5.

'6s2 is computed by summing, over all quotes undergoing a sub-
stitution, the ratio of the number of words in a quote that are from
group g to the number of words in the same quote that could have
been the substitution’s target. If, for instance, half the content words
of a given quote are nouns, such a quote contributes .5 to the total
59,5+ Further, to avoid possible autocorrelation effects due to sub-
stitutions belonging to the same cluster (which are likely not sta-
tistically independent and may lead to overly optimistic confidence
intervals), we scale s, and sg to count one for each cluster. That is,
each quote cluster has a maximum contribution of 1, computed as
the average contribution of all substitutions in that cluster.
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Figure 5. POS-related results: categories are simplified
from the TreeTagger tag set: C means Closed class-like (see
main text for details), / means adjective, N noun, R adverb,
and V means verb. The top panel shows the actual spps and
sgos counts. The bottom panel shows the substitution sus-
ceptibility opps, which is the ratio between the two previous
counts. Confidence intervals are computed with the Good-
man (1965) method for multinomial proportions.

Fig. 5 gathers the results for POS groups. A Goodman-
based multinomial goodness-of-fit test (Goodman, 1965)
shows that these categories have a significant effect on sus-
ceptibility (p < .05 in all substitution models), but this seems
mostly due to the Closed class-like'’ and Adverb categories.
Indeed, detailing which categories are out of their confidence
region under H, shows that susceptibility for closed class-
likes is significantly below 1 (confirmed in all substitution
models), as is that for adverbs in 13 of the 16 substitution
models; none of the other categories are significantly differ-
ent from H; (except nouns which appear significantly above
1 in a single substitution model). While we acknowledge the
low susceptibilities of adverbs and closed class-likes, these
categories concern less than 7% of all substitutions under Hj
(and even less in the actual data); it seems, then, that POS
categories do not capture any strong bias in the selection of
substitution targets.

The results for word features presented in Fig. 6, on
the other hand, show marked effects for several features.
Word frequency, Age of acquisition, and Number of let-
ters each exhibit significant susceptibility variations (Good-
man goodness-of-fit with p < .05 in all substitution models,
p < .001 in most) consistent with known effects of those fea-

tures on recall. High-frequency words, much easier to recall,
are substituted about half as much as they would be at ran-
dom; conversely low-frequency words, harder to recall, are
substituted about 50% more than random. Age of acquisition
and Number of letters show the opposite pattern, consistent
with their negative correlation to word frequency (—.4 and
—.19): words learned before 5 or 6 years old, or made of
less than 5 letters, are substituted less than random, whereas
words learned after 10 years old, or made of more than 8
letters, are substituted far more than random. Orthographic
neighborhood density also shows a slight effect (significant
at p < .05 in 15 of the 16 substitution models): words with
very sparse neighborhoods are more substituted than random
(which may seem counter-intuitive, but is probably because
over 70% of those words have 7 letters or more). Clustering
coefficient shows no effect on susceptibility, and neither does
Number of synonyms: in particular, words with many syn-
onyms do not attract substitutions more than random (in fact,
half the substitution models show they have a slight tendency
to be substituted less than random).

On the whole, the trends observed are consistent with
known effects of word frequency, age of acquisition, and
number of letters, indicating that the triggering of a substi-
tution could behave quite similarly to word recall in standard
tasks.

4.2 Variation

We now examine how words are modified when they are
substituted, that is how their features change upon substitu-
tion. Considering a word w substituted for w’, we measure
how a feature ¢ of w varies when it is replaced with w’, that
is we look at ¢(w’) as a function of ¢(w). Averaging this
value over all start words such that ¢(w) = f yields the mean
variation for that feature value f, that is:'8

V() = (bW s ioom=1)

"The Closed class-like category gathers all the POS groups rep-
resenting closed class words (coordinating conjunctions, preposi-
tions, subordinating conjunctions, modals and possessive endings).
These groups, essentially made of stopwords, feature very low
counts for both s (substitutions falling on stopwords are filtered
out) and s° (stopwords are never counted as substitutable). While
the susceptibility reported for the remaining words is left unbiased
(as s and s° are equally affected), they represent a very small por-
tion of all substitutions, which led us to group them together. Fi-
nally, we added to this meta-category the few POS groups that cover
words entirely excluded from the analysis (foreign words, punctu-
ation symbols and interjections), only sporadically present because
of tagging fluctuations; hence the name Closed class-like.

18Similarly to what we do for susceptibility, we avoid possible
autocorrelation effects by averaging start- and arrival-word features
of substitutions from the same cluster into a single aggregate sub-
stitution per cluster.
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Figure 6. Substitution susceptibility for feature values: susceptibility to substitution versus feature value of a candidate
word for substitution (binned by quartiles), with 95% asymptotic confidence intervals (Goodman-based multinomial).

We are interested in comparing the value of vy(f) to f
itself, as this shows whether there is an attraction (or a repul-
sion) effect towards (respectively from) some values of each
feature. In other words, plotting the y = x line, we can see
if substitutions tend to attract words towards some typical
feature value or not — a standard procedure in the study of
dynamical systems.

We also introduce two null hypotheses, Hy and Hyg, to
compare the actual variation of a word’s feature to expected
variations under unbiased transformations. H, models the
situation where the arrival word w’ is randomly chosen from
the whole pool of words available in the data set for that fea-
ture.'® In this case, since ¢(w’) becomes a constant value in
the above averaging (by definition w’ does not depend on w
anymore), the baseline variation under H,, may be rewritten
as:

V() = (¢)
FHyo models the situation where the arrival word w’ is chosen
among immediate synonyms of the start word w, i.e. an ar-
rival word chosen among semantically plausible though still
random words. In this case Vgo does depend on f:%°

78 () = (GONMessnion gy

This approach yields a fine-grained view of how word fea-
tures evolve upon substitution, on average, with respect to (a)
the original feature (vs. y = x), (b) a random arrival (vs. vg),

and (c) an unbiased semantically plausible arrival (vs. vgo).

Results are gathered in Fig. 7. A first observation is that all
graphs show the existence of a unique intersection of v4 with

y = x, and the slope of v, is smaller than 1 in absolute value,
independently of the feature considered. This means that for
each feature ¢, whichever the value ¢(w) of the disappearing
word, the appearing word’s feature value ¢(w’) will, on aver-
age, be closer to that feature’s intersection of vy withy = x2
In other words, beyond individual variation patterns, the sub-
stitution process exhibits a unique attractor for each feature.
Note that this is also true under Hy or Hyo (both null hypoth-

"9For instance, when considering the feature “Clustering coeffi-
cient”, the arrival word is randomly chosen among words present in
the data set of FA norms.

20The actual implementation has an additional level of averag-
ing since WordNet, used to get a word’s synonyms, defines several
meanings for a single given word, which we have no means of dis-
ambiguating. Therefore:

0 = ({09 D cpon)

memeanings(w) >{w\(b(w)=f}

2I'This reasoning is standard in the analysis of dynamical systems
(where the same transformation is applied to the whole system over
and over), and becomes obvious when one manually simulates a
substitution on the graph by picking a start value, using the v, curve
to obtain the corresponding arrival value, and comparing it to the
start value: the arrival value is always closer to the intersection with
y = x, meaning that that intersection is an attractor point for the
substitution process. If the slope of v, were greater than one (in
absolute value), the arrival value would always be farther from the
intersection than the start value was, making the intersection with
y = x a repulsor point. This is how the number of intersections
with y = x and the slope of v, at those intersections characterize the
behavior of substitutions.
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Figure 7. Feature variation upon substitution: v, average feature value of the appearing word as a function of the feature
value of the disappearing word in a substitution (binned by quartiles), with 95% asymptotic confidence intervals based on
Student’s t-distribution. The overall position of the curve with respect to the dashed line representing H, (constant v9) indi-
cates the direction of the cognitive bias compared to a purely random variation. The position with respect to the dash-dotted
line representing Hoo (vgo) indicates the bias compared to a semantically plausible random variation obtained by choosing a
random synonym of the disappearing word. The intersection with y = x marks the attractor value. The fact that all curves have
slopes smaller than 1 in absolute value means that the substitution operation is contractile on average: it brings each feature

closer to its own specific asymptotic range.

esis curves have single intersections with y = x with slopes
smaller than 1): the substitution process naturally leads to an
attraction even under reasonable random conditions.

Second, the comparison with vg and v%° shows that there

are two classes of attractors, depending on whether:
1. there is a triple intersection (of y = x, v, and vg or vgo);

0
¢

The first class (Number of synonyms and Orthographic
neighborhood density) are features for which the substitution
process only brings words slightly closer to vg (for Number

2. or v, always remains above or below v§ and v’.

of synonyms) or v (for Orthographic neighborhood den-
sity), and no uniform bias can be observed. The second class
(comprising Word frequency, Age of acquisition, Clustering
coeflicient, and Number of letters) are features for which the
substitution process has a clear bias, positive or negative,
with respect to both the purely random situation (H) and

the semantically plausible random situation (Hy).

0
4

and vgo, exhibits a strong bias towards more frequent words.
This, in turn, is consistent with the hypothesis that substi-
tution is a recall process, since common words are favored
over awkward ones. Age of acquisition, Clustering coef-
ficient and Number of letters, on the other hand, exhibit a
clear negative bias for the substitution process (except for

Word frequency, with v, always significantly above v

high clustering values or very high number of letters). The
three curves are significantly below their respective vg and
Vgo curves for most start values, which is consistent with the
literature on recall: words learned earlier, with lower cluster-
ing coefficient or with fewer letters are easier to produce than
average (Baddeley, Thomson, & Buchanan, 1975; Nelson et
al., 2013; Zevin & Seidenberg, 2002). All these effects are
significant with two-tailed #-tests at p < .05 (and more of-
ten p < .001) and were verified across the 16 substitution
models.

To make sure our observations are not the product of cor-
relations or interactions, we model the variations of the 6 fea-
tures as a linear function of the start word’s feature values:

pW') — (W) = A+ B - $(w)

where ¢ is the vector of all 6 features of a word, A is an
intercept vector, and B is a 6 X 6 coefficients matrix. This
regression achieves an overall R? of .33. The corresponding
matrix of coefficients B is shown in Fig. 8: aside from Age
of acquisition and Clustering coefficient on which word fre-
quency has a slight effect, the variation of all other features
depends solely on the disappearing word’s same feature. In
other words there is little to no interaction between a dis-
appearing word’s features in determining the variations that
that word will undergo when substituted.
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Figure 8. Feature variations regression coefficients:
source feature values (columns) and feature variations (rows)
were normalized to [0; 1] to ensure the coefficients are com-
parable. Significance levels for individual ¢-tests against the
hypothesis of a null coefficient are denoted by stars below the
corresponding coefficient (*** for p < .001, ** for p < .01,
* for p < .05, and nothing when p > .05). Frequency has a
slight effect on Age of acquisition and Clustering coefficient,
with small coefficients compared to the respective diagonal
ones. Aside from those two, only diagonal values are signif-
icantly non null.

To make things concrete, here is an example substitution
taking place in the data set. Around mid-November 2008
several media websites reported the following quote from
Burmese poet Saw Wai (arrested for one of his poems),

“Senior general Than Shwe is foolish with
power.”

and a smaller number of media websites, and blogs, reported
the following,

“Senior general Than Shwe is crazy with
power.”

The word foolish is acquired at an average of 8.94 years old,
appears 675 times in the data set, has a Clustering coefficient
of 8.2 x 1073 and is 7 letters long. The word it was replaced
with, crazy, is acquired on average at 5.22 years old, appears
about 4.1k times in the data set, has a Clustering coefficient
of 1.7 x 1073, and is 5 letters long. Such a change, though
minor in appearance, is a typical example of alteration along
the lines shown by our results.

4.3 Sentence context

The alterations we study are always made in a context, that
is while the author is writing. We wish to ask, therefore, if

log(frequency) age of acquisition

log(clustering)

1 2 3 [t 2 3 41 3 4

2
#letters log(<#synonyms>) log(orthographic nd)

2 3 a1 2 3 a1 2 3 4

Figure 9. Substitution susceptibility for in-quote feature
quartiles: susceptibility to substitution versus quartile of
the feature distribution in the originating quote, with 95%
asymptotic confidence intervals (Goodman-based multino-
mial).

taking that context into account can provide more insight into
the substitution process. To do so we adapt the two observ-
ables presented above to capture some of the relationships
between a word and the sentence it appears in.

Let us start with the first one: given a feature ¢, we define
the context-relative susceptibility to substitution with the fol-
lowing three steps. (1) For each quote in which a substitution
appears, compute the distribution of ¢ values in that quote
(excluding stopwords) and divide it into quartiles. (2) Count
how many times each quartile (first, second, third or fourth)
contains a word that is substituted. This procedure tells us,
for i € {1;2;3;4}, how many times substitutions fall in the i-
th quartile of each in-quote distribution of ¢; in other words it
gives us the numerator s, for the computation of susceptibil-
ity, where g; represents the i-th quartile of the distributions
of ¢ in the quotes. (3) Finally divide each quartile count
by its corresponding 32,» that is the number of times the i-th
quartile would receive substitutions if targets were picked at
random; since the random situation would equally distribute
a fourth of all substitutions to each quartile, we divide by
the number of substitutions divided by 4. Taking for instance
word frequency, this measure tells us if words that have high-
or low-frequency compared to the quote they appear in are
more or less substituted than at random.

Surprisingly the results for this measure are no different
from the context-free measure, as can be seen in Fig. 9: low-
frequency words compared to the sentence are substituted
much more than higher-frequency words, words learned ear-
lier than the rest of the sentence are substituted less than
words learned later, shorter words less than longer words,
and words with scarce neighborhoods slightly more than
words with denser neighborhoods. Clustering coefficient and
Number of synonyms are, here again and across all substi-
tution models, not significantly different from Hy: with or
without context, they do not seem relevant to the selection of
substitution targets.

Feature variation is more easily extended to the context-
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Figure 10. Sentence-relative feature variation: v, , average sentence-relative feature value of the appearing word as a
function of the sentence-relative value of the disappearing word (binned by quartiles), with 95% asymptotic confidence in-
tervals based on Student’s t-distribution. 19 5, and ¢ ¢ are similarly converted to be sentence-relative. Attraction, magnitude
and direction of bias with respect to null hypotheses are similar to Fig. 7. However, attractors are always positioned between

sentence median (y =

0) on one side and v¢ and v¢ on the other side. Clustering coefficient, Number of synonyms and

Orthographic neighborhood density are limit cases, with triple intersections with one of the null hypothesis curves.

relative case. To do so we consider all feature values relative
to the median word feature in the sentence. That is, in all the
equations of the previous subsection we replace ¢(w) with:

¢r(w) =

¢(w) — median {¢p(w)|w € sentence}

vy, v and v each transpose to v, v and v}’ (note that v

now depends on w since it is sentence relatlve, whereas vg

did not).

The results for sentence-relative feature variations are
gathered in Fig. 10. Here too, the behavior is strikingly simi-
lar to the context-free measure: a single attractor is visible for
each feature, and the magnitude and direction of biases are
near-identical to those for the previous measure. The values
of the appearing words give an additional insight into the pro-
cess, however: the attractor value of a feature, at the intersec-
tion of vy, and y = x, is always between the sentence median,
on one side, and vo and Voo on the other side (for Number of
synonyms it is a trlple 1ntersect10n with v ; for Clustering
coefficient and Orthographic nelghborhood dens1ty, a triple
intersection with vOO) Substitutions, therefore, seem to at-
tract words closer to 'the sentence median than what a random
process would do. This is true with respect to both null hy-
potheses (semantically plausible or not) for Frequency, Age
of Acquisition and Number of letters, and true with respect
to at least one of the two null hypotheses for the remaining
features.

On the whole, we observe a clear attraction pattern for
each feature, with two different classes corresponding to the
psychological relevance of each feature for the substitution
process. More awkward words along relevant features (less
frequent, learned later, or made of more letters), both glob-
ally and with respect to the sentence they appear in, are sub-
stituted more often than what would happen if targets were
picked randomly in the sentences; conversely, more com-
mon words are substituted less. Finally, across all features,
substituted words are attracted towards a point closer to the
sentence median than what a random process, semantically
plausible or not, would do.

5 Discussion

We initially aimed to connect the field of cultural evolu-
tion with psycholinguistics by asking if cultural attractors
appear in a corpus of online news-related quotes gradually
transformed by low-level biases. The data set we used im-
posed a few constraints on our analysis: first, it was nec-
essary to infer source-destination links, an operation made
more reliable when restricting the scope of transformations
to very simple cases, which we did by focusing on single
word substitutions. Second, contrary to laboratory experi-
ments which produce data made of many repeated measures
on a small number of cases (e.g. a given list of words), we
have a great number of different cases (one case per cluster in
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which substitutions are found, i.e. 698 cases), with very few
measures on each of them (average 9, median 5). This ren-
dered the prediction of individual words impractical: if we
cannot compute a percentage of explained data for a given
case, any approximate prediction will be heavily underesti-
mated. This last factor, added to the potential for variation
of external conditions when authors wrote the quotes, led us
to use word features to analyze the transformations by aggre-
gating over individual cases.

By characterizing substitutions with 6 features on the dis-
appearing word, we show that authors preferentially substi-
tute words known for being harder to recall: most promi-
nently words with low frequency (Gregg, 1976), learned
later (Dewhurst et al., 1998), or made up of more let-
ters (Nickels & Howard, 2004), both globally and in com-
parison to the sentence they appear in. Further characterizing
the substitutions by examining the variation of word features
from disappearing to appearing words, we show: (a) that the
operation is contractile on average, that is words are brought
closer to an attractor point on each feature; (b) that authors
produce words that are easier to remember than the average
of synonyms of the disappearing word (a fact that is reflected
in the position of the attraction point).

We do not actually observe quotes converging on a global
scale towards attractors in their various dimensions. Indeed
the limits of the data set do not allow us to infer chains of
substitutions, and substitutions themselves are not the only
type of transformation at work in the data set. Nonetheless,
these findings (a) bring light to this simple type of transfor-
mation, and (b) are consistent with known psycholinguistic
effects, with the hypothesis of cultural attractors in represen-
tations from everyday life, and with the lineage specificity
discussed in the iterated learning literature (Claidiere, Smith,
et al., 2014; Cornish et al., n.d.). They are obtained by suc-
cessfully applying knowledge from cognitive science to real-
life complex data, a task that remains a challenge in the study
of cultural evolution. More broadly, we believe that applying
such data mining tools to manage the complexity of real-life
data is a promising approach for the joint analysis of cogni-
tive science and culture.

In the simple case presented here, however, much remains
to be explored. Since it is clear that observing cognitive
biases in such data is now possible, questions addressed in
controlled laboratory situations could be opened by further
research. One question concerns the influence of the context
surrounding a quote, be it in terms of other quotes preced-
ing it temporally or of text surrounding it in a post. A first
step could be the application of results from Zaromb et al.
(2006) who have shown, in the simpler task of recall of ran-
dom word lists, that the source of prior-list intrusions can
be predicted based on the associations those preceding lists
have formed: in our case, a substitution could be triggered
and directed by associations formed by preceding context.

A further step would be to follow what Cornish et al. (n.d.)
have shown about reciprocal influences between context and
transformations (in their case, with transmission chains of
artificial content). Indeed substitutions, and more generally
all transformations, also participate in creating the context
for later quotes. One can ask, therefore, what are the recip-
rocal effects between, on one side, the corpus-level evolution
of quotes through iterated transformations, and on the other
side, a gradual change in the properties of transformations
operated because of the evolution of surrounding context.
Such interactions have been shown to underlie the lineage
specificity observed in transmission chains (Claidiere, Smith,
et al., 2014). Exploring how similar loop interactions happen
in real-life data could indeed be the next step in understand-
ing the coevolution of cultural content and the ways in which
it is transformed. In our particular case, such insight could
shed some light on how the feature attractors examined in
this paper actually emerge, and help assess their potential
role on this coevolution.

6 Concluding remarks

The theory of Epidemiology of Representations proposes
a unifying framework for the study of cultural evolution.
One of its core claims, the existence of cultural attractors,
has been both a challenge to test empirically and a fruitful
line to pursue in the study of cultural evolution. We aimed
to contribute to testing this hypothesis by studying a simple
everyday-life task where individuals are implicitly trying to
reproduce quotations. To some extent, our work amounts to
an out-of-laboratory experiment where we examine the in-
fluence of well-known word features on the accuracy of re-
production of short sentences. Our analysis of substitutions
shows that words are attracted, in each dimension, to feature-
specific values. Furthermore, the features’ known effects in
psycholinguistic experiments are reflected in the biases of
these attraction points, meaning that the evolution of such
quotations can be partially explained by known low-level
cognitive biases. We believe that such an approach, which
combines psycholinguistic knowledge and data mining tools,
can be fruitfully developed to improve the study of cultural
attractors and explore the reciprocal influences of cognition
and culture.

Let us conclude by noting that the question of short- and
long-term cultural evolution, and the approaches to study
them, are becoming increasingly relevant to other fields. In
biology in particular, work on evo-devo and non-genetic in-
heritance has accumulated evidence that is poorly accounted
for by the modern synthesis of biological evolution, and
is creating a demand for new or extended approaches to
joint cultural and biological evolution (see Gilbert, Bosch,
& Ledén-Rettig, 2015, for instance). Such an approach
has long been called upon by anthropologists like Ingold
(1998, 2004), in line with Mauss’ initial works (Mauss,
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1936), and the question is not entirely foreign to the enactive-
representational debate in cognitive science. The study of
cultural evolution will most likely benefit greatly from the
growing interactions between these disciplines.
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