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Abstract— This paper presents a novel method for summa-
rizing and compression of large-scale 3D models into compact
spherical representations. The information is combined into
a set of optimized spheres in order to facilitate its use by
systems with limited resources (smartphones, robots, UAVs,
...). This vision-based summarizing process is applied in a
fully automatic way using jointly photometric, geometric and
semantic information of the studied environment. The main
contribution of this research is to provide a navigability graph
that maximizes the significance of the contents of its nodes while
maintaining the full visibility of the environment. Experimental
results in summarizing large-scale 3D map demonstrate the
feasibility of our approach and evaluate the performance of
the algorithm.

I. INTRODUCTION

Digitize the world into 3D models has been an active
research topic for decades due to the modernization of 3D
sensors. To date, modern mobile scanning systems make
it easy to produce High-quality 3D Point Clouds. In other
respects, the introduction of High-Definition (HD) [21] and
semantic maps have greatly participated in the enhancement
of the accuracy of navigation systems. Such HD maps usually
occupy a large amount of storage space and require a high
processing capacity with severe time constraints. In order to
store and transmit effectively this type of maps by navigation
systems with limited resources (computation / memory), the
size of these maps must be reduced. Hence, we need an
efficient algorithm to summarize and compress a 3D map
while preserving the essential information for navigation.

II. PREVIOUS WORKS

High-quality maps are required for a wide range of ap-
plications, particularly for applications where constant local-
ization or feature tracking is crucial. Hence understanding a
maps structure and evaluating map quality is very useful for
accurate navigation [23]. Furthermore, In some navigation
tasks, setting a full-size map on a mobile device (car,
robot, etc.) poses several difficulties in time and memory
consumption. To solve this problem there are two possible
approaches: map compression or map summarizing using
only significant information. Over the past decade, several
compression approaches have been proposed in the literature.
Several feature-based visual SLAM systems [16], [18] have
been proposed to sample and compress a map. These types
of methods, based on the selection of the keyframe and the
bag of Word concepts. Another compression method has
been proposed in [12]. This method is based on probability

mapping using Octrees to eliminate redundant information.
Another compression algorithms have been proposed in [9],
[10]. They aim to select 3D points from the initial map based
on hundreds of descriptors requiring significant memory size.
A novel compression method has been proposed in [7]. This
method consists in sampling a point cloud by selecting the
features useful for future relocalization. An approach to map
reduction was proposed in [22]. It aims to select only the
places that are particularly suitable for localization using the
location utility metric. To simplify the process of appearance-
based navigation, a selection process is applied to choose
the key/reference features in the environment. For instance,
in visual memory based approaches, a set of relevant and
distinctive areas (images) are acquired and used during
navigation for comparison with the current position. In the
work of Cobzas [6], a panoramic memory of images is cre-
ated by combining acquired images with depth information
extracted from a laser scanner. In this image database, only
the salient information will be retained [4] without degrading
the performance during navigation. In order to build this
image database, some techniques have been developed to
guarantee the maximum efficiency in the choice of useful
information. A spherical representation has been proposed by
M. Meilland et al. [15]. This spherical representation is built
by merging different images acquired by a set of cameras
with the depth information extracted from a laser scanner.
All existing methods for summarizing maps are based mainly
on geometric or photometric characteristics to select the
most salient information. However, these characteristics are
insufficient for good perception and understanding of the
environment. A combination of geometric, photometric and
semantic characteristics when selecting information allows
us to have a compact, precise and useful summary. Our work
aims to perform several navigation tasks using only a map
summary of the environment. This map should be not only
compact but also coherent with the perception of the agent.
To provide this map summary, we propose a new method
dealing with large-scale 3D point clouds. The output of our
summarizing method is a set of spherical images. Our main
contributions are:

∙ We propose an efficient algorithm for summarizing
maps based on geometric, photometric and semantic
characteristics.

∙ We formulate map summarizing process as a multi-
objective optimization problem.



∙ We propose a new scalable representation of summa-
rized map using a navigability graph whose nodes are
augmented and labeled spherical images.

The remainder of this paper is organized as follows. Section
III is dedicated to the problem formulation and presents an
overview of our approach. The complete map summarization
process is described in Sections IV and V. Before conclusion
and perspectives, experimental results and discussions are
presented in Section VI.

III. PROBLEM MODELING

In this article, we aim at summarizing a 3D point cloud to
a compact set of spherical images. Our objective is to reduce
the number of spheres while maintaining a high level of
significant information for navigation and localization. The
final set of spheres must guarantee a compromise between
three objectives:

∙ Maximize the visibility
∙ Maximize the Entropy
∙ Minimize the number of spheres

The first goal is to maximize the visibility 𝑉 of the studied
environment. The visibility of a 3D point 𝑐 corresponds to all
points visible from this point. Geometrically, we can define
the visibility of a point 𝑐 by the set of points, such that for
each point 𝑝, the segment 𝑝𝑐 does not intersect any obstacle.
We define the visibility 𝑉 as: 𝑉 (𝑐) = { 𝑝 ∈ 𝑅3 / 𝑝 is
visible from 𝑐} The second objective is the entropy 𝐸 which
expresses the quantity of visible salient information from a
viewpoint. We define the entropy of a sphere as the amount
of significant information projected onto it [2], [20]. In our
previous work [20] it was found that using this entropy we
are able to select the optimal viewpoint for representing as
best as possible a 3D cloud.

The third objective is the number of spheres which must be
minimized in order to reduce the size (cost) of the summary
map. To modelize this problem, we introduce some notations.
Let us suppose that the 3D map is composed of 𝑁 3D points
with color and semantic information. 𝒞 = {𝑃𝑖(𝑋𝑖, 𝑌𝑖, 𝑍𝑖) →
{𝑅𝑖, 𝐺𝑖, 𝐵𝑖, 𝐿𝑖)}, 𝑖 = 1..𝑁}. We define the navigable areas
Γ as the 2D polygon whose edges represent the borders of the
navigable areas. To reduce the data, we propose to represent
the different information into some augmented spherical
images. To do this, let us consider 𝑎 = (𝑋𝑔, 𝑌𝑔, 𝑍𝑔) a point
in Γ and let us create the augmented 3D spherical image
centered in 𝑎 by projecting 𝑉 (𝑎) in the corresponding sub-
cloud into the unit sphere centered in 𝑎. Thus, this spherical
image contains all the information which can be seen from
𝑎. The goal of this paper is to reduce the number 𝑛 of
augmented spheres needed to describe the 3D maps. Thus,
we want to develop a method for creating a minimal set of
spheres 𝑔𝑛 = {𝑔𝑗 , 𝑗 = 1..𝑛}. These spheres should respect
the previous objectives

min𝑛 𝑔𝑛

such as

{︃
#(∪𝑛

𝑗=1𝑉 (𝑔𝑗)) > 𝛽.𝑁, 𝛽 ∈ [0..1]

𝐸(𝑔𝑗) > 𝜆, 𝜆 ∈ [0..1], 𝑗 = 1..𝑛

(1)

Fig. 1. Optimization process

Where #𝐴 is the cardinality of the set 𝐴.
We then propose to formulate this summary process of a

point cloud as a multi-objective optimization problem. One
of the approaches proposed to solve multi-criteria problems
is the lexicographic approach [11]. This method optimizes
the objectives separately and sequentially and generates an
optimal solution at every sequential optimization stage.

In our case, the objective functions are initially arranged
in importance order. First, we should guarantee that the
full scene was visited when choosing the best viewpoints
by maximizing the visibility. Then we search among these
viewpoints that maximize the entropy. Finally, we minimize
the number of spheres.

Figure 1 shows the different steps of the optimization
process.

A. Visibility Optimization

The first step of the optimization process is the maximiza-
tion of the visibility. In this stage, we must guarantee that
each point of the cloud is visible from at least one point of
view.



The first stage of the problem is solved as follows:

𝑓1 :

⎧⎪⎨⎪⎩
𝒫*
1 = {𝑃 ∈ Γ},

such as
∪𝑃∈𝒫*

1
𝑉 (𝑃 ) = 𝒞

(2)

𝒫*
1 is a path built from a set of points guaranteeing a

maximum visibility of the studied environment. Indeed, each
point of 𝒞 is visible by at least one point of 𝒫*

1 . We propose
to adapt the art gallery problem to maximize the visibility.
The art gallery problem was presented as a question by the
German painter Paul Klee: how much guards do we need to
guard a room ?

This problem consists in finding in a polygon the optimal
number of guards required to view the totality of the polygon.
A variety of this problem is known as the ”Watchman route”.
This problem consists in finding a path inside a polygon
Γ so that each point in Γ will be visible from a certain
point of this path 𝒫*

1 . To guarantee a maximum of visibility
in our 3D scene, we propose to calculate the watchman
route in the polygon Γ that represents the navigable areas
of the scene. Several algorithms have been proposed to
calculate the watchman route by taking as input a group
of target points to visit [5], [8], [17]. The majority of all
these algorithms are looking for the optimal watchman route
that minimizes the total traveled distance. In our case, we
must ensure the visibility of the edges inside the polygon and
also the visibility outside the polygon. With this intention,
we propose to decompose the start polygon into 𝑘 convex
polygons. To simplify the problem, we consider that the
visibility through the exteriors edges of the polygons is
possible and we consider that the interiors edges of the
polygons as obstacles.

To visualize the totality of a convex area, only one point
of view (the center) is sufficient. From this statement, the
path will be built from the points of view 𝑃𝑘 selected in
each convex area. Several algorithms have been proposed to
decompose a polygon in multiple areas. Keil's algorithm [13],
[14]] consists in splitting a polygon into many convex sub-
polygons by eliminating all reflex vertices. In a polygon, a
vertex is called ”convex” if the internal angle of the polygon,
that is, the angle formed by the two edges at the vertex, is
less than 𝜋 radians. otherwise, it is called ”reflex”.

Keil's algorithm works by examining every possible way to
remove the reflexity of these vertices. We suggest the use of
Mark Bayasit's algorithm [1] which is an optimized version
of the Keil's algorithm. The best point of view in a convex
sub-polygon is the center of this convex area. By connecting
each center of the under-polygons with the nearest center,
we will obtain the watchman route 𝑃 *

1 . This path enables us
to guarantee the total coverage of the studied environment.
Figure 2 shows an example of a polygon decomposition in
multiple convex areas and the associated watchman route.
watchman route in a polygon. This set of points 𝑃 *

1 becomes
a new constraint for the optimization of the entropy 𝐸.

Fig. 2. Calculation of watchman route in a polygon

B. Entropy Optimization

We intend to find out among the points on the watchman
route 𝑃 *

1 those which maximize the entropy 𝐸 while en-
suring that the majority of the environment areas are still
visible. The expression of this new problem is:

𝑓2 :

⎧⎪⎨⎪⎩
𝑃 *
2 = {𝑃𝑙 ∈ 𝒫*

1 , 𝑙 = 1..𝑛/ 𝐸(𝑃𝑙) > 𝜆, 𝜆 ∈ [0..1]}
such as
#(∪𝑛

𝑙=1𝑉 (𝑃𝑙)) > 𝛽.𝑁, 𝛽 ∈ [0..1]
(3)

𝑃 *
2 is a set of the points (centers of spheres) allowing to

find a compromise between both objectives that are visibility
and entropy. 𝜆 and 𝛽 are two parameters of regulation of
the two criteria entropy and visibility. In order to treat the
large-scale point clouds, we propose to split the initial one
into several sub-clouds. For each point in 𝑃 *

2 , we define a
cylindrical search window of radius 𝑟. Each window is a
sub-cloud of 𝑃 containing a part 𝒫*

1 of the watchman route.
The entropy criterion is optimized on 𝒫*

1 of each sub-cloud.
The calculation of the entropy 𝐸 was detailed in our previous
work [20]. Our goal is to determine the best set of viewpoints
allowing the capture of a maximum amount of salient points
and guaranteeing a good visibility of the environment.

The entropy optimization is carried out in each sub-cloud
on 𝜋 = {𝑃 ∈ 𝒫*

1}. In each sub-cloud, we aim to find on 𝜋
the set of spheres that maximize the entropy while keeping a
maximum visibility of the scene when we gather the visibility
of all spheres on 𝒫*

1 . First, we evaluate the entropy of the
vertices colored with black in Figure 3 and the middle of each
pair of consecutive vertices. Among every two consecutive
vertices and their centers colored in blue, we only keep two
points having the highest entropy. for every sub-cloud, we
select vertices with entropy higher than 𝜆. In each iteration,
we compute the number of all points visible from the selected
vertices colored in violet. Only the spheres whose union of
their visibility is higher than 𝛽𝑁 are selected. Figure 3 shows
the different steps of this optimization process. The last step



Fig. 3. Entropy Optimization

of optimization is the minimization of the size 𝑛 of 𝑃 *
2 which

represents the number of spheres in 𝑔𝑛.

IV. MINIMIZING THE NUMBER OF SPHERES

In this section, we present the last step of our algorithm
allowing to minimize of the size 𝑛 of 𝑃 *

2 . The output
of this optimization process is the optimal set of spheres
𝑔𝑛 with minimal size 𝑛 allowing a good visibility of the
complete scene and capturing the maximum number of
salient points. In addition, we have proposed to calculate the
similarity between neighbored spheres to eliminate redundant
information. The similarity between two spheres is computed
using their statistical correlation. This correlation expresses
the rate of variation of photometric, semantic and geometrical
information between the compared spheres. In [15], this
parameter is calculated using the Median Absolute Deviation
operator (MAD) which represents the difference (error) of
intensity between the two spheres 𝑆𝑝ℎ𝑜𝑡. Theoretically, two
spheres are considered similar if the value of MAD is lower
than a threshold 𝜎. In the same way, we propose to add a
semantic measure of similarity 𝑆𝑠𝑒𝑚 between two spheres.
This measure consists in calculating the number of similar
pixels with the same labels. We also added a geometrical
similarity measure by using the geometrical descriptor FPFH
[19]. By comparing the histograms of each sphere, we obtain
a measure of geometrical similarity 𝑆𝑔𝑒𝑜𝑚.

𝑆𝑝ℎ𝑜𝑡 = med(|𝑝(𝑥)− med(𝑝(𝑥))|)
𝑆𝑠𝑒𝑚 = med(|𝑠(𝑥)− med(𝑠(𝑥))|)

𝑆𝑔𝑒𝑜𝑚 = med(|𝑔(𝑥)− med(𝑔(𝑥))|)
𝑆 = 𝑚𝑒𝑎𝑛(𝑆𝑝ℎ𝑜𝑡 + 𝑆𝑔𝑒𝑜𝑚 + 𝑆𝑠𝑒𝑚) (4)

In these equations, 𝑝(𝑥), 𝑠(𝑥) and 𝑔(𝑥) are respectively the
vectors containing the errors. The expression of the problem

Fig. 4. Polygon Extraction And Spheres Positioning

is the following:

𝑓3 : {𝑚𝑖𝑛#({𝑃 ∈ 𝑃 *
2 ‖ ∪𝑃 𝑉 (𝑃 ) > 𝛽.Γ, 𝑆 ≤ 0.5, 𝛽 ∈ [0..1]}

(5)
By removing similar spheres that have the same visibility,
we will get an optimal set of spheres.

V. EXPERIMENTAL RESULTS

A. Evaluation

To evaluate the quality of a map and estimate its per-
formances during the localization, several solutions have
been proposed. The solution suggested by Zhen et al. [23]
consists in calculating a requirement called localizability.
This criterion is calculated from the geometric characteristics
in each direction for each point in the map. We also propose
to evaluate the quality of our solution through the calculation
of the recall and the precision as defined in our previous
work [20]. We also calculate the compression rate between
the initial cloud and the final set of spherical images.

B. Results

We have applied our method to a large environment.
This large-scale point cloud contains over 50 millions of
3D labeled points and represents a trajectory of 80 𝑚.
In this dataset, we have 8 classes of labels, namely {1:
man-made terrain, 2: natural terrain, 3: high vegetation, 4:
low vegetation, 5: buildings, 6: hard scape, 7: scanning
artefacts, 8: cars}. An additional label {0: unlabeled points}
unlabeled points. In our summarizing process, points labeled
”buildings”, are considered among the most salient points
for localization. This dataset permitted the evaluation of our
solution's performance by using all semantic, photometric
and geometric characteristics together. Figure 4 shows the
decomposition of the polygon (navigable areas) into several
convex polygons.



Each color represents a different polygon. The output of this
summary process is a compact set of 20 spherical images.
The mean distance between all the spheres is around 4 𝑚.
We have obtained a compression ratio of 90% of this map.
We also tested our algorithm on our own database which
describes a part of Rouen city as shown in figure 5.

Fig. 5. Rouen’s city 3D Point Cloud

It covers a trajectory of 200 𝑚 of a developed urban area
that contains urban structures such as houses, buildings, and
roads. This database is a 3D textured and labeled cloud and
contains over 7 millions 3D point. In this dataset, we have
15 classes of labels, namely {0: Misc, 1: Road,2:RoadMarks,
3: Terrain sidewalk, 4: Building, 5: vegetation, 6: Tree,
7: Pedestrian, 8: cars,9: Bicycle, 10: Motorbike,11: Traffi-
cLight, 12: TrafficSign, 13: Pole, 14: sky}. Each class is
represented by a color code as indicated in the figure 6. As
a result, we have obtained we measured up to 54 spherical
images with a mean distance between all the spheres of
3,7 𝑚. Figure 7 shows an example of RGB-D-L spherical
images. We have obtained a compression ratio of 98% of this
map. Compared to our previous work [3], we measured up
to 3% improvement in the compression performance. Since
the most significant inspiration for spherical representation
comes from work of Meilland et.al [15], we decided to
compare our results with their work. We have found a 2%
improvement in the compression ratio due to the optimal
positioning of spherical view-points in the scene. The final
step is to build the navigability graph by connecting the
spheres inside the navigability polygon with edges. Each
edge is weighted by the distance between the two corre-
sponding spheres as shown in figure 8. This graph can be
used in several applications such as navigation or localisation
of mobile robot thanks to its minimal size and the relevance
of the data it contains. To evaluate our solution, we have
computed Recall and Precision [20]. To do that, we have built
our ground truth dataset. For each point in the first dataset,

Fig. 6. Semantic segmentation

Fig. 7. RGB-D-L Spherical Image

we have attributed a label {0: irrelevant for localization,
1: relevant for localization}. Most of the relevant points
belong to buildings thanks to their geometric shapes. As a
result, we have significantly decreased the size of the map.
Nevertheless, we have succeeded to keep a maximum number
of salient points. We have achieved a Recall of 60% and
Precision of 80 % while guaranteeing maximum visibility
of the environment. All the spheres are positioned in a way
to capture the maximum possible points belonging to the
facades of the buildings. For the first dataset, the obtained
set of spheres allow viewing 80% of the scene (𝛽 = 0.8).
The choice of the 𝛽 has an impact on the compression ratio.
In fact, setting 𝛽 to 1 will favor the visibility on the entropy.
Thus the number of selected spheres will increase to cover
all the environment and thus their global size. The choice
of the 𝜆 has an impact on the relevance of the 3D points
in the summary map and consequently on the recall and
the precision. Indeed if 𝜆 is set to 0.5 at least half the
points will be salient. therefore, we have chosen 𝜆 = 0.7.
For the second dataset, we have computed the Localizability
of each spherical image, as defined in [23], all spheres
are easily localizable since they all have high localizability
values. This ensures a good localization in the sphere graph.
Our algorithm guarantees maximum visibility and entropy of



Fig. 8. Navigability Graph

the studied environment, thus an optimal image registration.
Reducing the size of the initial map allows to gain in term of
memory and time of computation. Indeed we can integrate
easily this minimal graph on navigation system with low
resources or send it over a network from a server to an agent.

VI. CONCLUSIONS
The developed method throughout this paper allows sum-

marizing efficiently a large-scale point cloud. The summa-
rizing process is based on the extraction of several spher-
ical views representing sub-clouds of the initial map. This
spherical representation contains semantic, photometric and
geometric information. This new method of summarizing 3D
maps allows us to facilitate several navigation tasks when ap-
plied in intelligent transportation systems (localization, route
planning, obstacle avoidance, ...) by reducing significantly
the calculation time and the required memory size. We also
believe that using semantic information permits the devel-
opment of a precise summary map by rejecting unnecessary
localization data such as points belonging to dynamic objects
(cars, pedestrians, ... ). In our future work, we aim to extend
our algorithm to treat the case where the navigable areas that
would contain holes. Using the set of spherical views and the
navigable area to produce a navigation graph can facilitate
multiple navigation tasks especially on navigation systems
with limited resources. Using this graph we can propose an
adapted path to be followed by the agent according to its
mobility capabilities (car, pedestrian, bike, mobile robot, ...).
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