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Abstract—Multi-objective optimizations by means of 3D finite element models result in very high computation burden. To have an 
affordable computation cost, the output space-mapping technique is applied with a new method where the scalar correction of the 
model outputs is replaced by a set of corrective functions. This method is used for the bi-objective optimization of a transformer and 
allows finding the complete Pareto optimal set in less than two days on a laptop. 
 

Index Terms—Space-mapping, Multi-objective optimization, 3D finite element model, Transformer. 
 

I. INTRODUCTION 
HE OPTIMAL design of electromagnetic devices is a 
complex and complicated task. A way to formulate the 

problem is to find the trade-off between conflicting goals. 
Solving this problem requires building the Pareto optimal set 
with accuracy. With two objectives, the Pareto optimal set can 
be easily drawn and helps the designer to find a good solution. 
Many methods are able to find the solutions of a bi-objective 
optimization: scalar methods such as the well-known weighted 
sum (WS), ε-constraint methods, etc. [1]; and stochastic 
methods such as non-dominated sorting genetic algorithm II 
(NSGA-II), niched Pareto genetic algorithm (NPGA), etc. [2]. 
Unfortunately, those methods require a very high number of 
model evaluations. This is not compatible with the use of a 3D 
FE magneto-thermal model that requires 2 hours [3].  

The purpose of space-mapping (SM) [4]-[7] is to align a 
coarse model and a fine model to reduce the computation time. 
In electromagnetic, the fine model is a 2D or 3D FEM and the 
coarse model is often a lumped mass or analytical model. The 
Manifold-Mapping [6] and Output Space-Mapping (OSM) [7] 
techniques are the most recent and effective methods. 
Unfortunately, no SM algorithm has been developed or 
adapted to multi-objective optimization problem. The aim of 
this paper is to adapt the OSM to bi-objective optimization 
problems. 

First, the bi-objective optimization of a safety transformer [3] 
is presented and the designer’s dilemma is raised. Section III 
proposes a new method to solve this problem that is applied in 
section IV to the bi-objective optimization of the safety 
transformer. Finally, some concluding remarks are given. 

II.  OPTIMIZATION PROBLEM 
The safety isolating transformer is a one-phase step-down 

transformer. It uses grain-oriented E-I laminations. The 
primary and secondary windings are both wound around the 
frame surrounding the central core (Fig.1).  

It has been selected as a simple practical example capable to 

provide a quantitative evaluation of the savings possible with 
the proposed procedure. 

The bi-objective optimization problem of a safety isolating 
transformer contains 7 design variables. There are three 
parameters a, b, c for the shape of the lamination, one for the 
frame d, two for the section of conductors S1, S2, and one for 
the number of primary turns n1. The geometrical parameters 
and section of conductors are shown in Fig. 1. 

The bi-objective optimization problem is expressed as: 
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There are 6 non-linear inequality constraints in this 
problem. The copper and iron temperatures Tco, Tir should be 
less than 120°C and 100°C, respectively. The magnetizing 
current Iμ/I1 and drop voltage ∆V2/V2 should both be less than 
10%. Finally, the filling factors of both coils f1 and f2 should 
both be lower than 0.5. The objective functions are to 
maximize the efficiency η and to minimize the total mass Mtot 
of iron and copper materials. All electric and thermal 
quantities are computed at full-load. 

T

 

  
 

Fig.1. Bi-objective optimization problem of a safety isolating transformer
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A. Coarse and fine models 
The multi-physical phenomena within the transformer are 

electric, magnetic and thermal. They are modeled by a 
lumped-mass (coarse) model (LM) and a 3D finite element 
(fine) model (3D FE) [3]. 

The LM model is built with the assumption that the voltage 
drop due to the magnetizing current is neglected. Therefore 
the maximal induction depends on the primary voltage. The 
computational time of the coarse model is very short (50 ms 
on an Intel Pentium M 2.13 GHz laptop). 

The 3D FE magneto-thermal model is built with the 
assumption that all magnetic and electric quantities are 
sinusoidal. The iron loss is computed with Steinmetz formula 
described in [3] and the leakage inductances are calculated 
with the magnetic energy. Full-load and no-load simulations 
are used to compute all characteristics of the safety isolating 
transformer. The 3D FE model with magneto-thermal 
coupling requires a very expensive computational time (about 
2 hours on an Intel Pentium M 2.13 GHz laptop). 

B. Designer’s dilemma 
Generating 100 optimal solutions of the Pareto optimal set 

by means of the 3D FE model requires 10 000 hours while 5 
minutes only are needed with the LM model. In fact, as 
solving 3D FE model is very expensive only six points are 
computed and considered as a reference set (Fig. 2). The 
points are found by using the mono-objective OSM technique 
to reduce the computation time. The LM model is used to 
build an extended Pareto optimal set in a short time. It is 
obvious that this last optimal set is far from the reference set. 

A first solution to this dilemma is to interpolate the 
reference set. Unfortunately, no information on the design 
parameters can be obtained because the interpolation can only 
be made in the objective space. 

Therefore, the authors propose to adapt OSM technique for 
bi-objective optimization problems in order to generate an 
extended and accurate Pareto optimal set in less than 100 
hours. 

III. ADAPTED SPACE-MAPPING TECHNIQUE 

A. Bi-objective optimization algorithm 
According to the state of the art, the ε-constraint method is a 

useful approach to build a Pareto optimal set [1]. Moreover, 
this method may reach Pareto optimal solutions in the non-
convex region. The ε-constraint method consists to transform 
the multi-objective problem in a single-objective problem. 
Among the objectives, one is kept and the others are 
transformed in inequality constraints: 

 0ands.t.min ≤≤= ≠
∈

(x)k(x)f(x)fx fjijiXx
* ε  (2) 

where if  is the objective kept, ijf ≠  are the other objectives, 

fk  are the ordinary constraints, and jε  are the threshold 

values. By varying jε between min
jε and max

jε , the whole 

Pareto optimal set may be found. Two mono-objective 

optimizations are computed to determine the upper and lower  
threshold values. min

jε  is found by minimizing ijf ≠  and 
max
jε is found by minimizing if . Using the ε-constraint 

method with the coarse model, a Pareto front with 100 points 
is quickly built and shown in Fig. 2. 
 

B. Space-mapping techniques 
Space mapping techniques aim to use both coarse and fine 

models to reduce the computational time and increase the 
accuracy of the obtained solution [4]-[7]. 

In general, the coarse computationally cheaper model is 
denoted by mRzc ∈)(  with nRZz ⊂∈ , and the fine 

computationally expensive model is denoted by mRxf ∈)(  

with nRXx ⊂∈ . In practical engineering, the coarse and fine 
model spaces are often the same, i.e. nRXxz ⊂∈≡ . The 
non-linear constraints computed by the coarse and the fine 
models are )(zkc  and )(xk f , respectively. The set of 

variables *x  represents the solution of a given optimization 
problem:  

 0minarg ≤−=
∈

(x)ks.t.yf(x)x f
Xx

*  (3) 

where mRy∈  denotes a vector of design specifications and 
can be zeros in the case of a minimization. In practice, solving 
(3) is very expensive. Therefore, the faster optimization 
problem based on the coarse model is preferred: 

 0)(..)(minarg* ≤−=
∈

zktsyzcz c
Zz

 (4) 

One approach of SM techniques, called Output Space-
Mapping (OSM) [7] consists to modify the coarse model by 

Fig.2. Pareto optimal set using the coarse and fine models 
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adding some corrective coefficients pR⊂Θ∈θ , p is the 
number of responses (objectives and constraints) computed by 
the fine model, in order to align the results of the coarse model 
with those of the fine model. The coefficients are updated at 
each iteration to minimize the discrepancy between both 
models: 
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Then, they are introduced in the coarse model to compute a 
new solution )1( +jx  for the next iteration: 
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∈
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After that, a simulation with )1( +jx  by the fine model is 

performed to compute the fine responses )( )1( +ixf  and 

)( )1( +ixk f . The algorithm stops when all the corrective 

coefficients are unchanged from one iteration to the next one. 

C. Corrective spline functions 
A corrective coefficient is introduced for each objective and 

constraint therefore the corrected coarse model has the 
following expression: 
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In the case of a mono-objective optimization only a set of p 
scalar coefficients is searched (p is the number of objectives 
and constraints computed with the fine model). 
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where the indices f and c denote the fine and coarse model 
respectively. 

In the case of a multi-objective optimization, the p 
corrective coefficients’ values must be changed for each 
solution from the Pareto set, i.e. for each value of the 
threshold value ],[ maxmin εεε ∈ . So that these p coefficients 
are replaced by p corrective functions of ε: 
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where S(ε) is a spline cubic interpolation function. The spline 
cubic functions avoid the oscillations that appear in the 
polynomial interpolation approach when the order is high. 

Since the mapping functions are defined, they are used by 
the multi-objective algorithm to correct the coarse model and 
to obtain a new Pareto optimal set. 

The following section presents the proposed algorithm that 
combines OSM and ε-constraint algorithm. 

D. Proposed algorithm 

At the beginning of the algorithm (j = 0), all the corrective 
coefficients are initialized to unity: 

 I=)0(θ     (10) 

At each iteration, a multi-objective optimization is 
performed by using the ε-constraint method and the corrected 
coarse model in order to obtain a new Pareto optimal set in a 
short time: 
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Then, (2j +1) solutions *x  belonging to the Pareto optimal 
set are chosen in order to compute the responses of the fine 
model )( *

ixf  and )( *
if xk . Note that only 2j-1 points are new. 

To establish the corrective functions at the next iteration, the 
new points are at the center of the intervals, in the same way 
as the Dichotomy method. 

If the following condition is checked, the algorithm stops: 
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where τ  is the required accuracy. If the corrected coarse 
model responses are not close enough to the fine model ones, 
the algorithm continues by updating the corrective functions 
(8) with the new points. 

To summarize, the algorithm carries out the following main 
steps: 

0. initialization: j = 0, θ(0)=I 
1. build a Pareto optimal set by using the ε-

constraints method and the corrected coarse model 
c(x, θ(j)) to solve (11) 

2. choose 2j + 1 points on the Pareto optimal set. 
3. evaluate the fine model with the chosen points to 

compute f(x) and kf(x) 
4. update the p corrective functions θ(j+1)(ε). 
5. if (12) stop the algorithm else j = j + 1, go to 1. 

IV. APPLICATION CASE 
The bi-objective optimization problem of the safety 

isolating transformer presented in section II is solved with the 
proposed algorithm. 

For this optimization problem, two constraints (filling 
factors f1, f2) among six and one objective (total mass Mtot) 
among two are not evaluated by the 3D FE model. Indeed, 
both filling factors and the total mass are analytically 
computed. So that, five responses η, Tco, Tir, Iμ/I1, and ∆V2/ V2 
need 3D FE computation, i.e. only five values of corrective 
coefficients [θ1, θ2, θ3, θ4, θ5] are computed for each threshold 
value ],[ maxmin εεε ∈ . 

The losses 1- η are c1 in (11) and the total mass Mtot is c2. 
Therefore, the bi-objective optimization problem (1) becomes 
a set of 30 mono-objective optimization problems with one 



additional constraint on the total mass Mtot: 
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At initialization (j = 0), the coarse model is not corrected 
yet and the corrective functions are all equal to one. Two 
points at min

jε and max
jε  are computed with the fine model to 

test the stop criteria and build the corrective functions for the 
next iteration. At iteration 1, the corrective functions are now 
linear (Fig. 4) and a new optimal set is obtained. In Fig. 4, the 
corrective function is given only for the efficiency of the 
transformer, i.e. θ1. 

At each iteration, one new point is added at the middle of 
each couple of points, resulting in 2j-1 new points amongst a 
total of (2j + 1) points, i.e. 3D FE model evaluations. 

Fig. 3 shows the Pareto optimal set obtained by using the 
corrective functions. 30 points are given at each iteration. 

At the end of the optimization, a Pareto optimal set very 
close to the reference set is found. 

Finally, only 17 3D FE simulations are needed to obtain an 
accurate Pareto optimal set. The computational time of the 
proposed algorithm is approximately 34 hours (1.4 day) on an 
Intel Pentium M 2.13 GHz laptop. The reference Pareto 
optimal set requires 60 hours (2.5 days) on the same machine. 
To have an accurate Pareto optimal set by using the 3D FE 
model only, approximately 10,000 hours (14 months) are 
required. All the computed points are shown with circles in 

Fig. 4. 

V. CONCLUSION 
The output space-mapping technique is adapted to provide a 

practical way to build an accurate Pareto optimal set in bi-
objective optimization using full 3D coupled finite element 
model and keeping the computational time in an acceptable 
limit. In addition to the 3D FE model, a simpler one provided 
with corrective coefficients has been used. Cubic spline 
interpolation functions are used to predict the values of the 
corrective coefficients. By using these corrective functions, 
the ε-constraints bi-objective optimization algorithm gives an 
extended and accurate Pareto optimal set in less than 2 days. 
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Fig.4. Corrective functions for the efficiency at each iteration. 

Fig.3. Pareto optimal set obtained at each iteration 
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