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ENRICHED TWO DIMENSIONAL MIXED FINITE ELEMENT MODELS FOR

LINEAR ELASTICITY WITH WEAK STRESS SYMMETRY

PHILIPPE R. B. DEVLOO, SÔNIA M. GOMES, THIAGO O. QUINELATO, AND SHUDAN TIAN

Abstract. The purpose of this article is to derive and analyze new discrete mixed approximations for
linear elasticity problems with weak stress symmetry. These approximations are based on the application

of enriched versions of classic Poisson-compatible spaces, for stress and displacement variables, and/or on

enriched Stokes-compatible space configurations, for the choice of rotation spaces used to weakly enforce stress
symmetry. Accordingly, the stress space has to be adapted to restore stability. Such enrichment procedures

are done via space increments with extra bubble functions, which have their support on a single element (in

the case of H1-conforming approximations) or with vanishing normal components over element edges (in the

case of H(div)-conforming spaces). The advantage of using bubbles as stabilization corrections relies on the
fact that all extra degrees of freedom can be condensed, in a way that the number of equations to be solved

and the matrix structure are not affected. Enhanced approximations are observed when using the resulting
enriched space configurations, which may have different orders of accuracy for the different variables. A

general error analysis is derived in order to identify the contribution of each kind of bubble increment on the

accuracy of the variables, individually. The use of enriched Poisson spaces improves the rates of convergence
of stress divergence and displacement variables. Stokes enhancement by bubbles contributes to equilibrate the

accuracy of weak stress symmetry enforcement with the stress approximation order, reaching the maximum

rate given by the normal traces (which are not affected).

1. Introduction

Mixed formulations for linear elasticity problems with weak stress symmetry have been considered by
several authors. In addition to approximation spaces S ⊂ H(div,Ω,M), and U ⊂ L2(Ω,R2), for stress
and displacement variables, the idea consists in imposing a weak symmetry condition through the use of a
Lagrange multiplier living in an appropriate approximation space Q. Usually, the spaces {S,U} are obtained
with rows taken from a compatible space configuration {V,P} for the mixed formulation of the Poisson
problem, based on a partition T = {K} of the computational domain Ω. For stability, the multiplier space
should be chosen properly. For two dimensional problems, one methodology for stability analysis consists in
finding a Stokes-compatible space configuration {W,Q}, for velocity and pressure variables. If ∇ ×W ⊂ S,

then {S,U,Q} can be stably applied to the mixed formulation for elasticity with weak stress symmetry. We
refer to [4] for an overview on this matter.

Given a stable space configuration {S,U,Q}, our purpose is to obtain new methods by enriching the spaces
U, Q, or both. Consequently, the stress space has also to be adapted to restore stability. For such kind of
space configurations, with possible different rates of convergence for the different variables, a general error
analysis is derived in Section 4, for which the error estimates for each variable is determined individually, in
terms of projection errors.

The enrichment procedures shall be enforced by space increments using extra bubble terms. Bubbles
refer to functions with support on a single element (in the case of H1-conforming approximations) or with
vanishing normal components over element edges (in the case of H(div)-conforming spaces). The advantage
of using bubbles as stabilization corrections relies on the fact that the corresponding degrees of freedom can
all be condensed, in a way that the number of equations to be solved and the matrix structure are not affected
by the enrichment process.
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2 ENRICHED 2D MIXED FEM FOR LINEAR ELASTICITY WITH WEAK SYMMETRY

One kind of enrichment consists in taking a higher order rotation space Q+ ⊃ Q, requiring a richer Stokes-
compatible configuration {W+,Q+} for the corresponding stability analysis. As described in [8], stabilization
of approximation spaces for Stokes problems using a richer pressure space Q+ can be obtained by the addition
of some proper bubble functions to form W+. Thus, the effect of this procedure on the elasticity space
configuration is an increment of S by higher order divergence-free bubble functions to form S+, without
changing U. One example in this context is discussed by Stenberg in [17], based on the Poisson-compatible
BDMk spaces for triangles, which can be viewed as an enriched version of the Arnold-Falk-Winther family
[4] by the increment of the tensor spaces by divergence-free bubbles in order to enhance the multiplier space
(see Section 6.3). As illustrated in Section 5, and having in mind the design of stable space configurations for
elasticity problems with higher order multiplier spaces, two new richer Stokes-compatible space configurations
shall be created, namely CR+

k for triangular elements, corresponding to an enriched version of the Crouzeix-

Raviart space CRk, for k = 2, 3 [10], extended for higher orders in [15], and GR+
[k] for quadrilateral meshes,

an enriched version of the Girault-Raviart (GR[k]) space [14], for k ≥ 1.

There are other circumstances where the goal is to have richer displacement approximations U+ ⊃ U.
Assuming that the pair {S,U} is constructed from a Poisson-compatible space configuration {V,P}, it seems
natural to take an enriched stable version {V+,P+} to form {S+,U+,Q}. For such cases, the same Stokes-
compatible space configuration {W,Q} used for the stability analysis of the original space configuration
{S,U,Q} can be used to prove stability for the enriched version {S+,U+,Q}. For instance, this is the case of
space configuration based on Poisson-compatible ABF [k] spaces for quadrilateral meshes, discussed in [16],
which can be viewed as an enriched version of the family based on RT [k] spaces discussed in [1]. The adoption
of enriched ABF [k] spaces enhances the accuracy of stress divergence and displacement, but it is not sufficient
to improve the weak enforcement of stress symmetry in general quadrilateral meshes.

As proposed in [11, 13], there are other enriched stable spaces {V+,P+} for the Poisson problem that
can be obtained by adding to V some appropriate bubble functions to form V+, keeping unchanged the
original edge vector functions. Some examples shall be considered in Section 5, as well as their corresponding
enriched versions, which are used in the current study. The corresponding stable finite element spaces
S ⊂ H(div,Ω,M),U ⊂ L2(Ω,R2), Q ⊂ L2(Ω,R) for the mixed method for linear elasticity with weakly
imposed stress symmetry are listed in Table 1, where the associated local spaces S(K,M), U(K,R2), and
Q(K,R) are shown.

As shall be discussed in Section 6, the effect of using these kinds of enriched Poisson-compatible spaces to
form displacement and stress approximations for linear elasticity enhances the divergence and displacement
variables. Since weak stress symmetry enforcement and stress accuracy result to be related, space enrichment
can be used to equilibrate them, reaching the maximum rate given by the order of stress normal traces, which
are not affected (see Table 3).

Geometry P-method S U Q Reference

Triangular

BDMk Pk Pk−1 Pk−1 [4]

BDM+
k P∂k ⊕ P̊k+1 Pk Pk this paper1

BDM++
k P∂k ⊕ P̊k+2 Pk+1 Pk+1 this paper

Quadrilateral
RT [k] VRT [k]

PRT [k]
Pk [1]

RT +
[k] V ∂RT [k]

⊕ V̊RT [k+1]
PRT [k+1]

Pk+1 this paper

Table 1. The discussed and implemented combinations of stable finite element spaces
S ⊂ H(div,Ω,M),U ⊂ L2(Ω,R2), Q ⊂ L2(Ω,R) for the mixed approximation of linear elas-
ticity with weakly imposed stress symmetry, with corresponding local spaces S, U and Q,
constructed from Poisson-compatible methods (P-method) for triangular and quadrilateral
meshes.

The paper is organized as follows. General aspects on notation for element geometry, polynomial spaces,
differential operators, transformations, and approximation spaces are set in Section 2. The mixed element

1It can be shown that this space is equivalent to the one proposed in [17]. In this paper we construct it by the composition of
edge and internal functions (see Section 6.3.1).
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formulation for linear elasticity problems with weak stress symmetry is set in Section 3, for which a general
error analysis script is established in Section 4. The required Poisson-compatible and Stokes compatible space
configurations, and their enriched versions, are discussed in Section 5. The proposed enhanced approxima-
tion space configurations for the mixed element formulation for linear elasticity problems with weak stress
symmetry are described in Section 6, where convergence rates are determined by identifying the principal
hypotheses required by the general script of Section 4. Section 7 contains some numerical results illustrating
the theoretical a priori estimates of previous sections.

2. Preliminaries

We begin by collecting some useful notation and fundamental aspects of compatible approximation spaces
for Poisson and Stokes problems with which we explain the analysis of the methods proposed in the paper.

2.1. Notation. We use M = R2×2 to refer to the space of two-dimensional second-order tensors, while S ⊂M
is the subspace of symmetric tensors.

Vector and tensor functional spaces. Scalar functional Hilbert spaces L2(Ω,R) and Hs(Ω,R) have the
usual meaning and norms. Associated vector and tensor spaces inherit the corresponding norms, and shall
be denoted by:

L2(Ω,R2) = [L2(Ω,R)]2; Hs(Ω,R2) = [Hs(Ω,R)]2.

L2(Ω,M) = [L2(Ω,R)]2×2; Hs(Ω,M) = [Hs(Ω,R)]2×2.

H(div,Ω,R2) =
{
q ∈ L2(Ω,R2); ∇ · q ∈ L2(Ω,R)

}
.

H(div,Ω,M) =
{
q ∈ L2(Ω,M); ∇ · q ∈ L2(Ω,R2)

}
.

Throughout the text, ( , ) denotes inner products in L2(Ω,R), L2(Ω,R2), and L2(Ω,M), and 〈 , 〉 is

used to define the duality pairing between H−1/2(∂Ω,R2), the space of normal traces of H(div,Ω,M), and

H1/2(∂Ω,R2), the space of traces of H1(Ω,R2).

Operators.

• Divergence (∇ · and ∇·):
For a vector function q = [ψ1 ψ2]T , ∇ · q = ∂1ψ1 + ∂2ψ2;

For a tensor function q =

[
ψ11 ψ12

ψ21 ψ22

]
=

[
ψ

1

ψ
2

]
, ∇ · q =

[
∇ · ψ

1

∇ · ψ
2

]
.

• Curl (∇× and ∇×):

For a scalar function ψ, ∇× ψ =
[
∂2ψ −∂1ψ

]
;

For a vector function q =

[
q1

q2

]
, ∇× q =

[
∇× q1

∇× q2

]
=

[
∂2q1 −∂1q1

∂2q2 −∂1q2

]
;

For the product of scalar and vector functions ψq: ∇× (ψq) = ψ∇× q + q∇× ψ.

• Asymmetry measure (asym):

For q =

[
ψ11 ψ12

ψ21 ψ22

]
, asym q = ψ12 − ψ21;

asym : H(div,Ω,M)→ L2(Ω,R) is a bounded operator.

Local approximation spaces restricted to an element K.

Scalar spaces:

• Pk(K,R) - scalar polynomials of total degree at most k;
• Qk,t(K,R) - scalar polynomials of maximum degree k in x and t in y;

• P̃k(K,R) - homogeneous polynomials of degree k.
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Vector spaces V (K,R2) = V ∂(K,R2)⊕ V̊ (K,R2).

• V ∂(K,R2) - edge functions;

• V̊ (K,R2) - internal functions.

Tensor spaces S(K,M).

• Rows in S(K,M) are vectors in V (K,R2).

Transformations. Let FK : K̂ → K be a geometric invertible map transforming K̂ onto K. FK : K̂ → K
is supposed to be affine FK(x̂, ŷ) = A0 + A1x̂+ A2ŷ (triangles and parallelograms), or non-affine FK(x̂, ŷ) =
A0 + A1x̂+ A2ŷ + A3x̂ŷ (non-parallelogram quadrilaterals).

• Scalar functions: p = FK p̂ = p̂◦F−1
K ; for vector functions q = FK q̂ by applying FK to the components

of q̂;

• Vector functions (Piola transformation): q = Fdiv
K q̂ = FK

[
1

JK
DFK q̂

]
, where DFK is the Jacobian

matrix of FK , and JK =
∣∣det(DFK)

∣∣;
• For tensors: q = Fdiv

K q̂ is defined by applying the Piola transformation to each row of q̂.

Properties [1, Lemma 2].

1. ∇ · q = FK
[

1

JK
∇ · q̂

]
.

2. For vector functions q = FK q̂, ∇× q = Fdiv
K ∇× q̂.

2.2. Poisson-compatible approximation spaces. Approximations spaces for flux V ⊂ H(div,Ω,R2) and
pressure P ⊂ L2(Ω,R), to be used in the mixed formulation of Poisson problems, are generally piecewise
defined as

V =
{
η ∈ H(div,Ω,R2); η|K ∈ V (K,R2), K ∈ T

}
,(1)

P =
{
p ∈ L2(Ω,R); p|K ∈ P (K,R), K ∈ T

}
.(2)

The local spaces V (K,R2) ⊂ H(div,K,R2) and P (K,R) ⊂ L2(K,R) can be defined directly on the

geometric element K, or by backtracking a vector polynomial space V̂ and a scalar polynomial space P̂ ,
which are defined on a reference element K̂. Precisely, if FK : K̂ → K is the geometric transformation of K̂
onto K, then P (K,R) = FK P̂ , and V (K,R2) = Fdiv

K V̂.
For compatibility, the following condition is required:

(3) ∇ · V̂ = P̂ .

In this paper we consider that V̂ is spanned by a hierarchy of vector shape functions organized into two

classes: the functions of interior type, with vanishing normal components over all element edges,
˚̂
V, and the

shape functions associated to the element edges V̂∂ . Thus, the decomposition V̂ =
˚̂
V⊕ V̂∂ naturally holds.

Property (3) can be extended to the spaces V and P. Precisely, let λ̂ be the L2-orthogonal projection on

P̂ , and let π̂ : Hs(K̂,R2)→ V̂ be an appropriate projection commuting the de Rham diagram

∇ · (π̂η̂) = λ̂(∇ · η̂).

Analogously, on the geometric element K, define λK : L2(K,R) → P (K,R) by λK(p) = λ̂(p̂) ◦ F−1
K ,

with p̂ = p ◦ FK . Then λ : L2(Ω,R) → P is defined by λ(p)|K = λK(p|K). Analogously, projection
πD : Hs(Ω,R2) → V is defined in terms of local projections πK : Hs(K,R2) → V (K,R2), where πK(η) =

π̂(η̂) ◦ F−1
K , with η̂ = η ◦ Fdiv

K . It follows that

(p− λp,∇ · q) = 0, ∀q ∈ V,(4a)

(∇ · (η − πDη), ψ) = 0, ∀ψ ∈ P.(4b)
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2.3. Stokes-compatible approximation spaces. Stokes-compatible approximations W ⊂ H1(Ω,R2) for
velocity, and Q ⊂ L2(Ω,R) for pressure, to be used in a mixed formulation for Stokes problems, are generally
piecewise defined as

W =
{
w ∈ H1(Ω,R2); w|K ∈W (K,R2), K ∈ T

}
,

Q =
{
q ∈ L2(Ω,R); q|K ∈ Q(K,R), K ∈ T

}
.

The local spaces can also be defined directly on the geometric element K or by backtracking a vector
polynomial space Ŵ and a scalar polynomial Q̂, which are defined on a reference element K̂. Precisely,
W (K,R2) = FKŴ, Q(K,R) = FKQ̂.

As discussed in [6], there are cases, specially for general quadrilateral meshes, where the use of unmapped
pressure spaces Q are more effective, meaning that Q(K,R) is a polynomial space defined directly in K.

For stability, the well known inf-sup condition should be verified:

• There exists a positive constant C such that for each q ∈ Q there is a nonzero w ∈W with (∇·w, q) ≥
C‖w‖H1‖q‖L2.

The inf-sup condition holds provided a bounded linear operator πS : Hs(Ω,R2)→W exists verifying:(
∇ · (w − πSw), ψ

)
= 0, ∀ψ ∈ Q.

3. Mixed formulation for elasticity problems with weak stress symmetry

Based on [1, 16], consider the mixed formulation with weak stress symmetry for the elasticity problem:

Given uD ∈ H
1
2 (∂Ω,R2) and g ∈ L2(Ω,R2), find (σ, u, q) ∈ H(div,Ω,M)× L2(Ω,R2)× L2(Ω,R) satisfying

(Aσ, τ) + (u,∇ · τ) + (q, asym τ) = 〈τν, uD〉, ∀τ ∈ H(div,Ω,M),(5a)

(∇ · σ, η) = (g, η), ∀η ∈ L2(Ω,R2),(5b)

(asymσ, ϕ) = 0, ∀ϕ ∈ L2(Ω,R),(5c)

for the stress tensor σ the displacement u and the rotation q = asym(∇u/2). Throughout this paper, the
variables shall be assumed to be normalized, such that this formulation is dimensionless.

Remark. A more general way of presenting this formulation would be to define the rotation as an anti-
symmetric tensor. This idea generalizes to the three-dimensional case and was the choice of many authors,
e.g., [4, 9].

Discrete formulation. Given finite dimensional subspaces S ⊂ H(div,Ω,M) for tensors, U ⊂ L2(Ω,R2)
for displacements, and Q ⊂ L2(Ω,R) for rotations, consider the discrete version of the formulation: find
(σ, u, q) ∈ S× U× Q satisfying

(Aσ, τ) + (u,∇ · τ) + (q, asym τ) = 〈τν, uD〉, ∀τ ∈ S,(6a)

(∇ · σ, η) = (g, η), ∀η ∈ U,(6b)

(asymσ, ϕ) = 0, ∀ϕ ∈ Q.(6c)

Stability. The inf-sup condition for this formulation holds provided the following Brezzi’s stability conditions
are satisfied:

(S1) There exists a positive constant c1 such that ‖τ‖H(div,Ω,M) ≤ c1(Aτ , τ)1/2 whenever τ ∈ S satisfies

(∇ · τ , η) = 0 for all η ∈ U, and (asym τ , ϕ) = 0 for all ϕ ∈ Q.
(S2) There exists a positive constant c2 such that for each η ∈ U and ϕ ∈ Q there is a nonzero τ ∈ S with

(∇ · τ , η) + (asym τ , ϕ) ≥ c2‖τ‖H(div,Ω,M)(‖η‖L2(Ω,R2) + ‖ϕ‖L2(Ω,R)).

One technique to construct stable space configurations for the mixed formulation for elasticity problems
with weak symmetry, using Poisson-compatible approximations, is based on Stokes-compatible spaces, as
originally proposed in [12], and stated in the next theorem (see also [5, Proposition 3], [9, Proposition 5.1],
[1, Theorem 1]).
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Theorem 1. Let V ⊂ H(div,Ω,R2) and P ⊂ L2(Ω,R) be a consistent pair of approximation spaces for the
mixed formulation of the Poisson problem, and let W ⊂ H1(Ω,R2) and Q ⊂ L2(Ω,R) be a consistent pair of
approximation spaces for the Stokes problem. If

(7) ∇×W ⊂ S,

then the space configuration S ⊂ H(div,Ω,M), with rows in V, U ⊂ L2(Ω,R2), with components in P, and
Q ⊂ L2(Ω,R) satisfies the Brezzi’s conditions for the mixed weakly symmetric formulation.

3.1. Approximation spaces and projections. Based on Theorem 1, all formulations to be studied here
shall be based on space configurations of the form {S,U,Q}, where

S =
{
τ ∈ H(div,Ω,M); τ |K ∈ S(K,M), ∀K ∈ T

}
,

U =
{
u ∈ L2(Ω,R2); u|K ∈ U(K,R2), ∀K ∈ T

}
,

Q =
{
q ∈ L2(Ω,R); q|K ∈ Q(K,R), ∀K ∈ T

}
are defined in terms of Poisson-compatible approximation spaces V ⊂ H(div,Ω,R2) and P ⊂ L2(Ω,R), as
in Equations (1) and (2), and Q ⊂ L2(Ω,R) is the pressure approximation space for a Stokes-compatible
space configuration {W,Q}, such that (7) is satisfied. Recall that the local approximation spaces S(K,M)
and U(K,R2) are constructed in such a way that the rows in S(K,M) are the vectors in V (K,R2) and the
components of U(K,R2) are in P (K,R). When V (K,R2) = VNAME(K,R2) and P (K,R) = PNAME(K,R)
correspond to the local spaces of the family “NAME” for approximation of the Poisson problem, then the
equivalent stress and displacement spaces are denoted by SNAME(K,M) and UNAME(K,R2).

As shall be revealed by the examples in Section 6, in some enriched cases the approximation spaces may
have different orders of accuracy. For such cases, usual error estimates for general stable mixed methods are
not optimal, since they are limited by the less accurate of the approximation spaces. Another analysis shall
be developed in the next section in order to specify the error estimate for each variable, individually.

3.2. Projections. Error analyses of approximated mixed methods require the estimation of the best approx-
imation allowed by the spaces, which are usually bounded in terms of some special projection errors. For the
mixed formulation of elasticity problems with weak symmetry, appropriate projections are defined in [5], as
stated in the next theorem. For completion, the proof is included in Appendix A.

Theorem 2. Assume compatible approximation spaces S ⊂ H(div,Ω,M), U ⊂ L2(Ω,R2), as defined in
Equations (1) and (2), and Q ⊂ L2(Ω,R), as stated in Theorem 1. Then, a bounded projection operator
Π : Hs(Ω,M)→ S can be defined for sufficiently smooth tensors τ such that

(8)
(
∇ · (τ −Πτ), η

)
+
(

asym(τ −Πτ), ϕ
)

= 0, ∀η ∈ U, ϕ ∈ Q.

3.3. Projection errors. Consider a family a shape-regular partitions Th, with mesh width h. Let Vh and Ph
be stable pairs of spaces for the Poisson problem, and let πDh and λh be the associated compatible projections.

According to [3, Theorems 4.1 and 4.2], and [2, Theorem 3], projection error estimates

‖β − πDh β‖L2(Ω,R2) ≤ Chs+1‖β‖Hs+1(Ω,R2),(9)

‖∇ · β −∇ · πDh β‖L2(Ω,R) ≤ Chl+1‖∇ · β‖Hl+1(Ω,R),(10)

‖p− λhp‖L2(Ω,R) ≤ Cht+1‖p‖Ht+1(Ω,R),(11)

hold provided that Ps(K,R2) ⊂ V (K,R2), Pl(K,R) ⊂ ∇ · V (K,R2), and Pt(K,R) ⊂ P (K,R).
Accordingly, consider compatible approximation spaces for the elasticity problem: Sh ⊂ H(div,Ω,M), with

rows in Vh, Uh ⊂ L2(Ω,R2), with components in Ph, and Qh ⊂ L2(Ω,R), as stated in Theorem 1. Let Πh =
Π1h + Π2h be projections Πh : Hs(Ω,M) → Sh as described in Appendix A. Recall that ‖Π2hσ‖L2(Ω,M) ≤
C‖σ −Π1hσ‖L2(Ω,M), and that ∇ ·Π2hσ = 0. Furthermore, consider Λh : L2(Ω,R2) → Uh the associated

projection Λhu = [λhu1 λhu2]T , for u = [u1 u2]T , so that

(12) (u− Λh(u),∇ · τ) = 0, ∀τ ∈ Sh.
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Therefore, given the error estimates (9)-(11), similar results hold for the associated pair of approximation
spaces {Sh,Uh}. Precisely,

‖σ −Πhσ‖L2(Ω,M) ≤ Chs+1‖σ‖Hs+1(Ω,M),(13)

‖∇ · σ −∇ ·Πhσ‖L2(Ω,R2) ≤ Chl+1‖∇ · σ‖Hl+1(Ω,R2),(14)

‖u− Λhu‖L2(Ω,R2) ≤ Cht+1‖u‖Ht+1(Ω,R2).(15)

Furthermore, let m be such that

(16) ‖q − Γhq‖L2(Ω,R) ≤ Chm+1‖q‖Hm+1(Ω,R),

where Γh denotes the L2-orthogonal projection on Qh.

4. Error estimates for the mixed weakly symmetric formulation

Given a family of shape-regular meshes Th of Ω, let Sh ⊂ H(div,Ω,M), Uh ⊂ L2(Ω,R2) and Qh ⊂ L2(Ω,R)
be approximation spaces based on Th satisfying the Brezzi’s conditions for the mixed weakly symmetric
formulation, constructed as described in Theorem 1. If σ

h
∈ Sh, uh ∈ Uh and qh ∈ Qh are approximations of

the mixed weakly symmetric formulation (6), then classic error analyses for stable mixed methods give the
following estimates

(17) ‖σ − σ
h
‖H(div,Ω,M) + ‖u− uh‖L2(Ω,R2) + ‖q − qh‖L2(Ω,R)

≤ C

[
inf
τ∈Sh

‖σ − τ‖H(div,Ω,M) + inf
η∈Uh

‖u− η‖L2(Ω,R2) + inf
ϕ∈Qh

‖q − ϕ‖L2(Ω,R)

]
.

However, as shall be revealed by the examples in Section 6, enriched space configurations usually use
approximation spaces which may have different orders of accuracy for the different variables. For such cases,
the error estimate (17) is not optimal, since it is limited by the less accurate of the approximation spaces.
Another analysis can be derived in order to specify error estimates for ∇ · σ and u, individually, in terms of
projection errors.

Precisely, considering the bounded projection operators Πh : Hs+1(Ω,M) → Sh, verifying (8), Λh :
L2(Ω,R2)→ Uh, verifying (12), and the L2-orthogonal projection Qh on Γh, the proof of the next results is
detailed in Appendix B. It is inspired by similar arguments used in the analysis of mixed methods for Poisson
problems, shown in [3, Theorem 6.1]. We also refer to [9] for a similar analysis of a mixed, weakly symmetric,
scheme for elasticity using enriched Raviart-Thomas approximations based on simplex meshes.

Theorem 3. If σ
h
∈ Sh, uh ∈ Uh and qh ∈ Qh are approximations of the mixed weakly symmetric formulation

(6), then the following error estimates hold:

‖σ − σ
h
‖L2(Ω,M) + ‖q − qh‖L2(Ω,R) ≤ C(‖σ −Πhσ‖L2(Ω,M) + ‖q − Γhq‖L2(Ω,R)),(18)

‖∇ · (σ − σ
h
)‖L2(Ω,R2) ≤ C‖∇ · (σ −Πhσ)‖L2(Ω,R2),(19)

‖Λhu− uh‖2L2(Ω,R2) = (A(σ − σ
h
), v −Πhv) + (Γhq − q, asym(v −Πhv)),(20)

where v ∈ H(div,Ω,S) is the solution of the elasticity problem

∇ · v = Λhu− uh in Ω,

v = A−1ε(w) in Ω,

w = 0 on ∂Ω.

As a consequence of Theorem 3 and of the projection errors (13)-(16), the following convergence rates
hold.

Theorem 4. Consider approximation space configurations {Sh,Uh,Qh} based on shape regular meshes Th of
a convex region Ω, obtained from the connection between elasticity elements and stable mixed finite elements
for Poisson and Stokes problems, as described in Section 3.1. Let Πh and Λh be the projections defined in
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Section 3.2. If σ
h
∈ Sh, uh ∈ Uh, and qh ∈ Qh satisfy (6), and the functions σ, u and q, solutions of (5),

are regular enough, then the following estimates hold:

‖σ − σh‖L2(Ω,M) + ‖q − qh‖L2(Ω,R) ≤ C
(
hs+1‖σ‖Hs+1(Ω,M) + hm+1‖q‖Hm+1(Ω,R)

)
,(21)

‖∇ · (σ − σ
h
)‖L2(Ω,R2) ≤ Chl+1‖∇ · σ‖Hl+1(Ω,R2),(22)

‖u− uh‖L2(Ω,R2) ≤ C
(
hs+2‖σ‖Hs+1(Ω,M) + ht+1‖u‖Ht+1(Ω,R2) + hm+2‖q‖Hm+1(Ω,R)

)
,(23)

where the values of the parameters s, l, t and m are defined in the projection error estimates (13)-(16).

Proof. Estimates (21) and (22) follow directly by inserting the projection errors (13), (14), and (16) in (18)
and (19). Using Cauchy-Schwartz inequality in (20), we obtain

‖Λhu− uh‖2L2(Ω,R2) ≤ ‖A(σ − σ
h
)‖L2(Ω,M)‖v −Πhv‖L2(Ω,M) + ‖Γhq − q‖L2(Ω,R)‖ asym(v −Πhv)‖L2(Ω,R).

Observing that ‖v‖H1(Ω,M) ≈ ‖w‖H2(Ω,M) is bounded by ‖Λhu−uh‖L2(Ω,R2), due to the elliptic regularity prop-

erty, valid for convex Ω, and recalling that ‖v−Πhv‖L2(Ω,M) ≤ Ch‖v‖H1(Ω,M), and ‖ asym(v−Πhv)‖L2(Ω,R) ≤
Ch‖v‖H1(Ω,M), we obtain

‖Λhu− uh‖L2(Ω,R2) ≤ Ch
(
‖σ − σ

h
‖L2(Ω,M) + ‖Γhq − q‖L2(Ω,R)

)
.

Finally, the displacement error estimate (23) follows by inserting the above estimate in the triangular in-
equality

‖u− uh‖L2(Ω,R2) ≤ ‖u− Λhu‖L2(Ω,R2) + ‖Λhu− uh‖L2(Ω,R2),

and by recalling the projection errors (15) and (16), and the stress error estimate (21). �

5. Enriched mixed formulations for Poisson and Stokes problems

This section describes a methodology for restoring the stability of space configurations for Poisson and
Stokes problems by the enrichment of the pressure spaces. The original methods are identified by acronyms of
the corresponding authors, with an index k referring to the polynomial degree of traces of the corresponding
vector functions on the element edges (except the Poisson-compatible spaces BDFMk+1 for triangles, which
follows the original notation [7]). The corresponding enriched versions are indicated by the superscripts +

and ++.

5.1. Enriched Poisson-compatible space configurations. Consider, in the reference element K̂, a Poisson-

compatible space configuration with polynomial vector and scalar spaces P̂Ck = {V̂k, P̂k}. The index k refers

to the polynomial degree of the normal flux of functions in V̂k on the edges in ∂K̂. The space V̂k can be

written as V̂k = V̂∂
k ⊕

˚̂
Vk, where V̂∂

k is the set of edge flux functions (those with non-vanishing normal

components over ∂K̂), and
˚̂
Vk is the set of internal vector functions. As expressed in (3), it is required that

the associated scalar space P̂k ⊂ L2(K̂,R) verifies the compatibility condition P̂k = ∇ · V̂k.

The enrichment P̂C
n+

k = {V̂n+
k , P̂n+

k }, defined in [11, 13], is constructed as

V̂n+
k = V̂∂

k ⊕
˚̂
Vk+n,

P̂n+
k = ∇ · V̂n+

k = P̂k+n.

The projection πn+ for V̂n+
k can be naturally constructed from the π projection of the original spaces,

preserving the corresponding property (3) and guaranteeing the stability of the enriched method.
For the current study, the following Poisson-compatible spaces are considered:

Triangular elements.

• BDMk spaces, with local spaces VBDMk
(K,R2) = Pk(K,R2) and PBDMk

(K,R) = Pk−1(K,R).
• Enriched versions: BDM+

k (= BDFMk+1), and BDM++
k .
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Quadrilateral elements.

• RT [k] spaces, with local spaces VRT [k]
(K,R2) = Fdiv

K V̂RT [k]
and PRT [k]

(K,R) = FK P̂RT [k]
, where

V̂RT [k]
= Pk+1,k(K̂,R)× Pk,k+1(K̂,R) and P̂RT [k]

= Qk,k(K̂,R).

• Enriched version: RT +
[k].

The dimension of the local vector spaces is shown in Table 2.

Geometry Method V ∂k (K,R2) V̊k(K,R2) V (K,R2)

Triangular

BDMk 3(k + 1) k2 − 1 (k + 1)(k + 2)

BDM+
k 3(k + 1) (k + 1)2 − 1 3 + k(k + 5)

BDM++
k 3(k + 1) (k + 2)2 − 1 (k + 1)(k + 6)

Quadrilateral
RT [k] 4(k + 1) 2k(k + 1) 2(k + 1)(k + 2)

RT +
[k] 4(k + 1) 2(k + 1)(k + 2) 2(k + 1)(k + 4)

Table 2. Dimensions of the local vector spaces V (K,R2) = V ∂(K,R2)⊕ V̊ (K,R2) used in
the construction of the stress spaces S(K,M) listed in Table 1.

5.2. Enriched Stokes-compatible space configurations. Consider a Stokes-compatible space configura-
tion SCk = {Wk,Qk}, with local spaces Wk(K,R2) and Qk(K,R). Similarly to the Poisson-compatible case,
an enriched version W+

k (K,R2), Q+
k (K,R) may be constructed by setting Q+

k (K,R) = Qk+1(K,R), and by

enriching the velocity space with bubble functions B̊k+1(K,R2). Precisely

W+
k (K,R2) = Wk(K,R2) + B̊k+1(K,R2).

The question is how to choose the extra stabilization bubble functions. For triangular meshes, the answer is
given in [8, Theorem 2], by taking

B̊k+1(K,R2) = bK∇Q+
k (K,R),

where bK = λ1λ2λ3 is the bubble function defined by the barycentric coordinates λi of the triangle K.
In order to guarantee stabilization, it is sufficient assume that the original space Wk contains at least the
continuous, piecewise quadratic, functions vanishing on ∂Ω. Similar methodology applies to quadrilateral
geometry.

The following Stokes-compatible spaces, and enriched versions of them, shall be considered in the stability
analysis for the examples of the next section.

Triangular elements.

• Crouzeix-Raviart space (CRk) for k = 2, 3 [10], extended to higher orders in [15]:

WCRk
=
{
w ∈ H1(Ω,R2);w|K ∈WCRk

(K,R2), K ∈ T
}
,

QCRk
=
{
q ∈ L2(Ω,R); q|K ∈ Pk−1(K,R), K ∈ T

}
,

with local spaces WCRk
(K,R2) = Pk(K,R2) + bKPk−2(K,R2). Note that, since ∇Pk−1(K,R) =

Pk−2(K,R2), this space configuration can be viewed as the result of a stabilization by bubble func-
tions.

• Enriched version (CR+
k ), for k ≥ 2. We propose the following pair of spaces

WCR+
k

=
{
w ∈ H1(Ω,R2);w|K ∈WCR+

k
(K,R2), K ∈ T

}
,

QCR+
k

=
{
q ∈ L2(Ω,R); q|K ∈ Pk(K,R), K ∈ T

}
,

with local spaces
WCR+

k
(K,R2) = WCRk

(K,R2) + bK∇Pk(K,R).

Based on the analysis in [8], the stability of CR+
k , k ≥ 2, holds. As far as we understand, this kind of enriched

space configuration for Stokes problems is new in the literature.
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Quadrilateral elements.

• Girault-Raviart space (GR[k]), for k ≥ 2 [14]:

WGR[k]
=
{
w ∈ H1(Ω,R2);w|K ∈WGR[k]

(K,R2), K ∈ T
}
,

QGR[k]
=
{
q ∈ L2(Ω,R); q|K ∈ Pk−1(K,R), K ∈ T

}
,

where WGR[k]
(K,R2) = FK(Qk,k(K̂,R2)). According to [14, Theorem 3.2], for regular partitions T ,

{WGR[k]
,QGR[k]

} is stable.

• Enriched version (GR+
[k]), for k ≥ 2. We propose the following enriched space configuration:

WGR+
[k]

=

{
w ∈ H1(Ω,R2);w|K ∈WGR+

[k]
(K,R2), K ∈ T

}
,

QGR+
[k]

=
{
q ∈ L2(Ω,R); q|K ∈ Pk(K,R), K ∈ T

}
.

The local spaces

WGR+
[k]

(K,R2) = WGR[k]
(K,R2) + B̊k+1(K,R2),

are obtained by adding the bubble functions B̊k+1(K,R2) = FK
(

˚̂
Bk+1(K̂,R2)

)
, with

B̊k+1(K̂,R2) = {bK̂ŵ; ŵ ∈ Qk−1,k−1(K̂,R2)} ⊂ Qk+1,k+1(K̂,R2),

bK̂ being the basic bubble function on K̂, i.e., bK̂ = U1(x̂)U2(ŷ) ∈ Q2,2(K̂,R), Ui ∈ P2([0, 1],R), Ui(0) =
Ui(1) = 0. Then, on each element K ∈ T , one has

B̊k+1(K,R2) = {FK(bK̂)FK(ŵ); ŵ ∈ Qk−1,k−1(K̂,R2)}

= {bKFK(ŵ); ŵ ∈ Qk−1,k−1(K̂,R2)}.

It is known that FK(Qk−1,k−1(K̂,R2)) contains Pk−1(K,R2) = ∇Pk(K,R) (see [2, Theorem 3]).
Consequently, according to the Corollary of Theorem 2 in [8], the stability of the enriched Stokes
space configuration {WGR+

[k]
,QGR+

[k]
} holds. As far as we understand, the enriched space configuration

GR+
[k] is new in the literature concerning the Stokes problem.

6. Enriched stable approximations for linear elasticity with weak stress symmetry

In this section the five examples of stable space configurations for the mixed formulation of linear elasticity
with weak stress symmetry indicated in Table 1 are discussed. Numerical tests using these spaces are shown
in the following section. Different families of stable spaces for the mixed formulation of the Poisson problem
are used in the construction of the space configuration for mixed elasticity: three for triangles and two for
quadrilateral elements. Precisely, the Poisson-compatible approximation spaces are of type BDMk, BDM+

k

and BDM++
k for triangular elements, and of typeRT [k] andRT +

[k], as described in Section 5, for quadrilateral

elements. The resulting elasticity families of spaces are identified by the name of the corresponding Poisson-
compatible space used in their definition. Two examples of Stokes-compatible spaces, one for each geometry,
and new enriched versions of them, as introduced in Section 5.2, shall be used to justify the stability of the
analyzed examples for elasticity problems, following the guidelines of Theorem 1.

The accuracy orders of the new schemes shall be derived, based on the error analysis of the previous
sections, determined by the parameters s, l, t and m, defining the convergence rates for the projections
(9)-(11) and (16). For all cases, the region Ω is supposed to be convex, and the meshes are assumed to be
shape regular.

Finally, after applying the error estimates of Theorem 4 to the considered configurations, we summarize
the resulting rates of convergence for the variables σ, u,∇ · σ, and q in Table 3, both for affine elements and
for non-affine quadrilateral elements mapped by bilinear transformations.



ENRICHED 2D MIXED FEM FOR LINEAR ELASTICITY WITH WEAK SYMMETRY 11

Geometry P-method σ u ∇ · σ q

Triangular

BDMk k k k k

BDM+
k k + 1 k + 1 k + 1 k + 1

BDM++
k k + 1 k + 2 k + 2 k + 1

Quadrilateral

A N-A A NA A NA A NA

RT [k] k + 1 k + 1 k + 1 k + 1 k + 1 k k + 1 k + 1

RT +
[k] k + 1 k + 1 k + 2 k + 2 k + 2 k + 1 k + 1 k + 1

Table 3. Orders of convergence in L2-norms that can be achieved by the combination of
stable finite element spaces S ⊂ H(div,Ω,M),U ⊂ L2(Ω,R2), Q ⊂ L2(Ω,R) indicated in
Table 1, when applied to the mixed method for linear elasticity with weakly imposed stress
symmetry. The spaces are constructed from Poisson-compatible methods (P-method) based
on triangular, affine (A) and non-affine (N-A) quadrilateral meshes (these mapped by bilinear
transformations).

6.1. Triangular elements. Three families of stable approximations for linear elasticity with weak stress
symmetry are presented for triangular meshes. These families are based on the Poisson-compatible BDMk

spaces, or on some enriched versions of them.

6.1.1. Based on BDMk spaces, k ≥ 1. One classic space configuration is the Arnold-Falk-Winther family [4],
defined as

EBDMk
= {SBDMk

,UBDMk
,QBDMk

},
with

SBDMk
=
{
τ ∈ H(div,Ω,M); τ |K ∈ Pk(K,M), K ∈ T

}
,

UBDMk
=
{
u ∈ L2(Ω,R2); u|K ∈ Pk−1(K,R2), K ∈ T

}
,

QBDMk
=
{
q ∈ L2(Ω,R); q|K ∈ Pk−1(K,R), K ∈ T

}
.

For this case, s = k, l = t = m = k − 1.

6.1.2. Based on BDM+
k spaces, k ≥ 1. Consider the enriched space configuration BDM+

k for the mixed
Poisson problem (corresponding to the classic BDFMk+1 family). By construction, the local flux space
VBDM+

k
(K,R2) contains VBDMk

(K,R2), and is obtained by including all internal (bubble) functions of poly-

nomial degree k+ 1. This fact guarantees stability for pressure local spaces in Pk (instead of Pk−1, as in the
case for the original BDMk case).

For the mixed formulation of linear elasticity with weak stress symmetry, we propose the approximation
spaces

SBDM+
k

=
{
τ ∈ H(div,Ω,M); τ |K ∈ SBDM+

k
(K,M), K ∈ T

}
,

UBDM+
k

=
{
u ∈ L2(Ω,R2); u|K ∈ Pk(K,R2), K ∈ T

}
,

QBDM+
k

=
{
q ∈ L2(Ω,R); q|K ∈ Pk(K,R), K ∈ T

}
.

Note that for k = 1 this space configuration corresponds to the Example 3.4 in [12].

Recall that the enhanced internal local space V̊BDM+
k

(K,R2) includes the bubble functions necessary to

stabilize the Poisson formulation with local pressure spaces in Pk(K,R), but it also has all divergence-free
bubble functions of Pk+1(K,R2), denoted by δVk+1(K,R2). According to [7, Lemma 3.2], δVk+1(K,R2) is
characterized by

δVk+1(K,R2) =
{
∇× (bKw), w ∈ Pk−1(K,R)

}
.

Therefore, in order to guarantee that

EBDM+
k

= {SBDM+
k
,UBDM+

k
,QBDM+

k
}
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is a stable configuration for approximation of the mixed elasticity problem, by the application of Theo-
rem 1 it is enough to show that a Stokes-compatible configuration {W,Q} exists with local pressure space
Q(K,R) = Pk(K,R) and a velocity local space W (K,R2) verifying ∇ × W (K,R2) ⊂ SBDM+

k
(K,M). A

space configuration that satisfies this properties is the Crouzeix-Raviart space CRk+1 = {WCRk+1
, QCRk+1

}.
Consequently, by the application of Theorem 1, the space configuration EBDM+

k
results to be stable for the

elasticity problem (noting that QBDM+
k

= QCRk+1
). Concerning the convergence parameters for EBDM+

k
, it

is clear that s = l = t = m = k.

6.1.3. Based on BDM++
k spaces, k ≥ 1. Consider the enriched BDM++

k = BDM2+
k space configuration for

the mixed Poisson problem, as described in [13] and define

SBDM++
k

=
{
τ ∈ H(div,Ω,M); τ |K ∈ SBDM++

k
(K,M), K ∈ T

}
,

UBDM++
k

=
{
u ∈ L2(Ω,R2); u|K ∈ Pk+1(K,R2), K ∈ T

}
.

By construction, the local space SBDM++
k

(K,M) contains SBDM+
k

(K,M), implying that ∇ × WCRk+1
⊂

SBDM++
k

also holds. Therefore, the stability for the space configuration

EBDM∼
[k]

= {SBDM++
k
,UBDM++

k
,QBDM+

k
}

holds as a consequence of Theorem 1.
However, recall that the enhanced local vector space VBDM++

k
(K,R2) includes all bubble functions in

Pk+2(K,R2), i.e., those necessary to stabilize the Poisson formulation with local pressures in Pk+1(K,R) and
also divergence-free bubble functions, which, according to [7, Lemma 3.2], are identified as the elements of
the set

δVk+2(K,R2) =
{
∇× (bKw), w ∈ Pk(K,R)

}
.

Therefore, there is room to improve the choice of the approximation space for the rotation. By setting

QBDM++
k

=
{
q ∈ L2(Ω,R); q|K ∈ Pk+1(K,R), K ∈ T

}
= QCR+

k+1

and following the stability analysis done for the space configuration based on BDM+
k , we conclude that an

appropriate choice for the Stokes-compatible spaces {W,Q} to be used for the construction of the BDM++
k

configuration needs to provide a local pressure space Q(K,R) = Pk+1(K,R) and a local velocity space
W (K,R2) such that

∇×W (K,R2) ⊂ SBDM++
k

(K,M).

The enriched Stokes-compatible pair {WCR+
k+1

,QCR+
k+1
} verifies these properties and, therefore, the space

configuration

EBDM++
k

= {SBDM++
k
,UBDM++

k
,QBDM++

k
}

results to be stable, according to Theorem 1.
For this case, the accuracy of the approximations is determined by the parameters s = k, l = t = m = k+1.

6.2. Quadrilateral meshes. In this section, two families of stable approximations for linear elasticity with
weak stress symmetry are considered for quadrilateral meshes, one based on the Poisson-compatible RT [k]

spaces, and a new one based on their enriched version, RT +
[k].

6.2.1. Based on the RT [k] spaces, k ≥ 1. As proposed in [1], let the space configuration

SRT [k]
=
{
τ ∈ H(div,Ω,M); τ |K ∈ SRT [k]

(K,M), K ∈ T
}
,

URT [k]
=
{
u ∈ L2(Ω,R2); u|K ∈ URT [k]

(K,R2), K ∈ T )
}
,

QRT [k]
=
{
q ∈ L2(Ω,R); q|K ∈ Pk(K,R), K ∈ T

}
.

Taking the Stokes-stable family GR[k+1], with ŴGR[k+1]
= Qk+1,k+1(K̂,R2), the inclusion ∇ ×WGR[k+1]

⊂
SRT [k]

is easily verified [1], guaranteeing the hypotheses of Theorem 1, and implying that

ERT [k]
= {SRT [k]

,URT [k]
,QRT [k]

}
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is a stable space configuration for the mixed formulation for linear elasticity with weak stress symmetry.
On affine quadrilateral meshes, all variables have the same order of accuracy, determined by equal param-

eters s = l = t = m = k. For quadrilateral meshes with elements mapped by bilinear transformations, the
order of accuracy of the divergence approximation decreases one unit [3], i.e., s = t = m = k, but l = k − 1.

6.2.2. Based on the enriched RT +
[k] spaces, k ≥ 1. Consider the enriched RT +

[k] space configuration for the

mixed Poisson problem, as described in [13]. Precisely, PRT +
[k]

(K,R) = PRT [k+1]
(K,R), and

VRT +
[k]

(K,R2) = V ∂RT [k]
(K,R2)⊕ V̊RT [k+1]

(K,R2).

Accordingly, we propose the following enriched space configuration for stress and displacement:

SRT +
[k]

= {τ ∈ H(div,Ω,M); τ |K ∈ SRT +
[k]

(K,M), K ∈ T },

URT +
[k]

= {u ∈ L2(Ω,R2); u|K ∈ URT +
[k]

(K,R2), K ∈ T }.

By construction, the flux approximation space VRT +
[k]

(K,R2) contains VRT [k]
(K,R2), implying that ∇ ×

WGR[k+1]
⊂ SRT +

[k]
also holds. Therefore, by Theorem 1, the approximation space configuration

ERT ∼
[k]

= {SRT +
[k]
,URT +

[k]
,QRT [k]

}

is stable. The accuracy orders obtained using the ERT ∼
[k]

space configuration are determined by the parameters

s = m = k and t = k + 1. For the divergence of the stress, l = k + 1 in the case of affine meshes, and l = k
for general bilinearly mapped quadrilaterals.

In order to guarantee that
ERT +

[k]
= {SRT +

[k]
,URT +

[k]
,QRT [k+1]

}

is a stable configuration as well, take the enriched Stokes-stable family GR+
[k+1], as described in Section 5.2,

with

WGR+
[k+1]

(K,R2) = WGR[k+1]
(K,R2) + B̊k+2(K,R2),

QGR+
[k+1]

(K) = Pk+1(K),

where the stabilizing bubbles functions B̊k+2(K,R2) = FK
[
B̊k+2(K̂,R2)

]
are such that B̊k+2(K̂,R2) ⊂

Qk+2,k+2(K̂,R2). Therefore,

∇×WGR+
[k+1]

(K,R2) = ∇×WGR[k+1]
(K,R2) +∇× B̊k+2(K,R2).

From the stability analysis of ERT [k]
in [1], it is already known that ∇×WGR[k+1]

(K,R2) ⊂ SRT [k]
(K,M) ⊂

SRT +
[k]

(K,M). For the stabilizing bubble term, observe that

∇× B̊k+2(K,R2) = ∇× FK
[
B̊k+2(K̂,R2)

]
= Fdiv

K

[
∇× B̊k+2(K̂,R2)

]
⊂ Fdiv

K

[
∇×Qk+2,k+2(K̂,R2)

]
.

According to [7, Lemma 3.3], Fdiv
K

[
∇×Qk+2,k+2(K̂,R)

]
is the space of divergence-free functions in VRT [k+1]

(K,R2).

Furthermore, since the functions in B̊k+2(K,R2) vanish over ∂K, then we conclude that ∇× B̊k+2(K,R2) ⊂
S̊RT [k+1]

(K,M) = S̊RT +
[k]

(K,M). Consequently, the inclusion ∇ ×WGR+
[k+1]

⊂ SRT +
[k]

is verified. Applying

Theorem 1, the approximation space configuration ERT +
[k]

results to be stable, with

QRT +
[k]

=
{
q ∈ L2(Ω,R); q|K ∈ Pk+1(K,R), K ∈ T

}
= QRT [k+1]

.

The accuracy orders obtained using the ERT +
[k]

space configuration are determined by the parameters s = k

and t = m = k + 1. For the divergence of the stress, l = k + 1 in the case of affine meshes, and l = k for
general bilinearly mapped quadrilaterals.
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Other possible choices for the local space Q(K,R), for affine quadrilaterals. The comparison with some other
Stokes-compatible spaces existing in the literature suggests other possible choices for the space Q, to be used
for weakly enforcing the symmetry of the stress.

In [18], the authors introduced a general methodology for the construction of Stokes-compatible methods
based on affine quadrilaterals. They also presented six methods; some of them can be used to show that the
tensor and displacement approximations for elasticity based on Poisson-compatible spaces RT [k] and RT +

[k]

for such meshes can be combined with different spaces Q for the variable q to construct stable configurations
for approximation of the elasticity problem.

1. Spaces based on RT [k], with Q(K̂,R) = Qk−1,k−1(K̂,R) ∪ Pk(K̂,R): Consider the Stokes-compatible

configuration SSk+1(6), indicated as Method 6 in [18]. It uses as local spaces WSSk+1(6)(K̂,R2) =

Qk+1,k+1(K̂,R2) = WGR[k+1]
(K̂,R2), and QSSk+1(6)(K̂,R) = Qk−1,k−1(K̂,R) ∪ Pk(K̂,R), which is the

maximal pressure space corresponding to this kind of velocity space. Therefore, the space configuration
{SRT [k]

, URT [k]
, QSSk+1(6)} is stable for the elasticity mixed formulation with weak symmetry.

2. Spaces based on RT +
[k], with Q(K̂,R) = Qk,k(K̂,R) ∪ Pk+1(K̂,R): Consider the Stokes-compatible

configuration with local spaces WGR+
[k+1]

(K,R2) and Q(K̂,R) = Qk,k(K̂,R) ∪ Pk+1(K̂,R), for affine

quadrilateral meshes. Since ∇ × WGR+
[k+1]

⊂ SRT +
[k]

, approximations with local spaces Q(K̂,R) =

Qk,k(K̂,R) ∪ Pk+1(K̂,R) are also an option for weakly enforcing stress symmetry on the RT +
[k] context,

given that the mesh is based on affine quadrilaterals.

It should be observed that these two options do not increase the convergence order of the approximations.
However, the magnitude of the error for q may be reduced when Q(K̂,R) = Qk−1,k−1(K̂,R) ∪ Pk(K̂,R) or

Q(K̂,R) = Qk,k(K̂,R) ∪ Pk+1(K̂,R) are used in the RT [k] and RT +
[k] contexts, respectively.

6.3. Related spaces in the literature. In this section we recall some known related stable space configu-
rations for the mixed formulation of linear elasticity with weak stress symmetry.

6.3.1. Three families for triangles. The principle used in [17] to construct enhanced space configurations for
elasticity problems is based on the enrichment of Poisson-compatible spaces with divergence-free functions.
This strategy allows for an improvement in the space that is used to weakly impose the symmetry. For
instance, the example analyzed there in detail is based on the BDMk space for triangles.

Configuration based on BDMk spaces: Consider the space configuration ES−BDMk
, analyzed in [17]:

SS−BDMk
=
{
τ ∈ H(div,Ω,M); τ |K ∈ Pk(K,M) + δSk+1(K,M), K ∈ T

}
,

US−BDMk
=
{
u ∈ L2(Ω,R2); u|K ∈ Pk−1(K,R2), K ∈ T

}
,

QS−BDMk
=
{
q ∈ L2(Ω,R); q|K ∈ Pk(K,R), K ∈ T

}
,

where δSk+1(K,M) = {∇ × (bKw), w ∈ Pk−1(K,R2)} ⊂ Pk+1(K,M).
A confront of this space configuration with the Arnold-Falk-Winther family EBDMk

, proposed in [4] and
described in Section 6.1.1 shows that the enrichment of the local spaces Pk(K,M) with the divergence free
space δSk+1(K,M) allows the ES−BDMk

family to stably use richer local approximations in Q(K,R) =
Pk(K,R) for the rotation variable, instead of Pk−1(K,R), as in the former EBDMk

case.
Note also that the rows of the extra term δSk+1(K,M) are the divergence free vector functions of

Pk+1(K,R2), with vanishing normal components over ∂K (see [7, Lemma 3.2]). Therefore, Pk(K,M) ⊕
δSk+1(K,M) ( SBDM+

k
(K,M).

Configuration based on RT k spaces. As argued in [17], a similar technique for stabilization by adding
divergence-free bubble functions can be applied to other space configurations based on Poisson-compatible
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spaces. For instance, the space configuration ES−RT k
is based on the RT k space for simplicial elements:

SS−RT k
=
{
τ ∈ H(div,Ω,M); τ |K ∈ SRT k

(K,M) + δSk+1(K,M), K ∈ T
}
,

US−RT k
=
{
u ∈ L2(Ω,R2); u|K ∈ Pk(K,R2), K ∈ T

}
,

QS−RT k
=
{
q ∈ L2(Ω,R); q|K ∈ Pk(K,R), K ∈ T

}
.

A confront of this space configuration with ES−BDMk
leads to the observation that the use of enriched local

spaces SRT k
(K,M), instead of Pk(K,M), allows the ES−RT k

family to use the richer local spaces Pk(K,R2)
for approximation of the displacement variable, instead of Pk−1(K,R2) as in the former ES−BDMk

case.
It can also be observed that the local vector spaces VRT k

(K,R2) (with dimension (k + 1)(k + 3)) are
contained in VBDM+

k
(K,R2) (= BDFMk+1 space, with dimension k(k + 5) + 3). They share the same edge

component, and their divergence is the space Pk(K,R). In fact, they differ by a divergence-free vector space

of dimension k included in Pk+1(K,R2). Since
˚̂
VBDM+

k
(K,R2) contains all the internal vector functions in

Pk+1(K,R2), including the ones in
˚̂
VRT k

(K,R2), and the remaining divergence-free ones, we conclude that
SRT k

(K,M) + δSk+1(K,M) = SBDM+
k

(K,M). Therefore, the space configurations ES−RT k
and EBDM+

k
for

elasticity with weakly imposed symmetry are the same.

An economic configuration based on RT k spaces. Inspired by the ES−RT k
space configuration, the proposal

in [9] is also to consider a formulation based on the Poisson-compatible RT k space on simplicial elements,
but augmented with divergence-free spaces of minimum dimension, while keeping the remaining configuration
for displacement and rotation variables.

6.3.2. Spaces based on ABF [k] spaces, k ≥ 1, for quadrilaterals. The ABF [k] spaces were introduced in [3]

for approximation of the Poisson problem on quadrilateral elements and correspond to V̂ABF [k]
(K̂,R2) =

Qk+2,k(K̂,R)×Qk,k+2(K̂,R) and P̂ABF [k]
(K̂,R) = Rk(K̂,R), where Rk(K̂,R) ( Qk+1,k+1(K̂,R) is obtained

by excluding from the polynomials in Qk+1,k+1(K̂,R) the span of the monomial x̂k+1ŷk+1. Accordingly, the

associated local spaces are VABF [k]
(K,R2) = Fdiv

K (V̂ABF [k]
(K̂,R2)) and PABF [k]

(K,R) = FK(P̂ABF [k]
(K̂,R)).

Based on the ABF [k] family, the space configuration EABF [k]
= {SABF [k]

,UABF [k]
,QRT [k]

}, studied in [16] is
defined as follows:

SABF [k]
=
{
τ ∈ H(div,Ω,M); τ |K ∈ SABF [k]

(K,M), K ∈ T
}
,

UABF [k]
=
{
u ∈ L2(Ω,R2); u|K ∈ UABF [k]

(K,R2), K ∈ T
}
,

QABF [k]
= QRT [k]

.

Its stability is obtained after the observation that VRT [k]
(K,R2) ⊂ VABF [k]

(K,R2), and by using the same
arguments for the verification of the hypotheses of the Theorem 1, as done for ERT [k]

in [1] and described in
Section 6.1.1.

As discussed in [13], the confrontation of the Poisson-compatibleABF [k] andRT +
[k] space configurations for

quadrilateral elements reveals that their vector spaces in the master element share the same edge component,

in Qk,k(K̂,R2), but
˚̂
VABF [k]

( ˚̂
VRT +

[k]
. Furthermore, PABF [k]

(K̂,R) ( Qk+1,k+1(K̂,R) = PRT +
[k]

(K̂,R).

Consequently, the convergence rates for EABF [k]
and ERT +

[k]
are of the same order for σ and ∇·σ. Concerning

their convergence rates for displacement, both reach the enhanced k + 2 order for affine meshes, but for
general quadrilaterals mapped by bilinear transformations the rate for EABF [k]

spaces is of order k+ 1, while
for ERT +

[k]
spaces the enhanced k + 2 order is reached. For the approximation of the rotation the rate of

convergence is k + 1, for both schemes.

7. Numerical results

One possibility for the implementation of the method (6) in a reduced form is to apply static condensation.
This procedure can be done after classifying, in each element, the degrees-of-freedom of the tensor unknowns
as internal or edge shape functions, and of the displacement as piecewise constant approximations (rigid
body motions) or functions with zero mean. Then the degrees-of-freedom associated with internal tensors,
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zero mean displacements and rotations can be condensed, leading to an indefinite linear system coupling the
global unknowns of edge tensors and rigid body piecewise constant displacements.

An alternative implementation technique is via hybridization, as described, e.g., in [9], that results in
a symmetric positive definite system for a single new variable. In the hybrid formulation, the H(div,M)-
conformity of the tensor approximation spaces Sh are relaxed, and a Lagrange multiplier, λh, is introduced
on the edges. This procedure allows for the condensation of all degrees-of-freedom associated with σ

h
, uh,

and qh, resulting in a global system for λh only. The numerical results in this section have been obtained by
the hybridization technique, using the general purpose MKL/Pardiso package to solve the global systems.

In order to illustrate the error analysis of the previous section, a test problem is defined in Ω = (0, 1)2,
and the load function g is chosen such that the model problem has exact solution given by

u(x, y) =

[
cos(πx) sin(2πy)

sin(πx) cos(πy)

]
,

with the Lamé parameters λ = 123 and µ = 79.3.

7.1. Uniform affine meshes. Uniform rectangular meshes are considered with spacing h = 2−i, i = 2, . . . , 8,
and triangular meshes constructed from them by diagonal subdivision.

Rectangular elements. We show in Figure 1 the error curves for σ and u (top side), and ∇ · σ and q (bottom
side). The results are obtained with approximation space configurations ERT [k]

,ERT ∼
[k]

and ERT +
[k]

, for

k = 1 and 2. For simplicity, these space configurations are indicated in the plots by RT [k], RT ∼[k], and

RT +
[k], respectively. The expected rates of convergence are verified, illustrating the enhanced divergence and

displacement accuracy when the enriched configurations are applied. In fact, confronted with ERT [k]
and

ERT ∼
[k]

, the configuration ERT +
[k]

gives approximations for the variables σ and q with same accuracy order,

hk+1, but with smaller error magnitudes, specially for k = 2. Enhanced order hk+2 is verified for the variables
u and ∇ · σ when using the enriched configurations ERT ∼

[k]
and ERT +

[k]
. The errors in tensor asymmetry are

displayed in Figure 2. It can be observed that the convergence rates are of order hk+1, which is consistent
with the corresponding tensor accuracy. However, the use of enhanced rotation space in ERT +

[k]
results in an

approximation for the stress tensor with reduced asymmetry.

Triangular elements. The plots in Figures 3 and 4 are for simulations based on triangular elements and the
space configurations EBDMk

(indicated by BDMk), EBDM+
k

(indicated by BDM+
k ), and EBDM++

k
(indicated

by BDM++
k ), for k = 1 and 2. In all cases, the convergence rates for the variables σ and q are of order hk+1.

For ∇·σ and u, the convergence rates increase from order hk, when BDMk is used, to orders hk+1 and hk+2,
when the space configurations are enriched to EBDM+

k
and EBDM++

k
, respectively.

7.2. Trapezoidal meshes. The purpose of this test problem is to evaluate the effect on the accuracy of the
approximation when non-affine quadrilateral meshes are used. Consider the partitions Th of Ω formed by
trapezoidal elements with a basis of length h and vertical parallel sides of lengths 0.75h and 1.25h.

The error curves for σ, u, ∇ · σ and q are presented in Figure 5, using the approximation spaces of type
ERT [k]

, ERT ∼
[k]

, and ERT +
[k]

, for k = 1 and 2. As predicted by the estimates, the convergence rates for σ,

u, and q obtained with these non-affine trapezoidal meshes coincide with the ones obtained with uniform
rectangular meshes, namely hk+1, hk+2, and hk+1, respectively. For ∇ · σ, the degradation of accuracy to

order hk is verified for ERT [k]
, but order hk+1 is recovered when the enriched space configurations ERT ∼

[k]
and

ERT +
[k]

are applied.
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Figure 1. Rectangular meshes: L2-error curves versus h for σ (top left side), u (top right
side), ∇ · σ (bottom left side), and q (bottom right side), using space configurations ERT [k]

,
ERT ∼

[k]
, and ERT +

[k]
, for k = 1 and 2.
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Figure 3. Triangular meshes: L2-error curves versus h for σ (top left side), u (top right
side), ∇·σ (bottom left side), and q (bottom right side), using space configurations EBDMk

,
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k
, and EBDM++

k
, for k = 1 and 2.
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Figure 5. Trapezoidal meshes: L2-error curves versus h for σ (top left side), u (top right
side), ∇ · σ (bottom left side), and q (bottom right side), using space configurations ERT [k]

,
ERT ∼

[k]
, and ERT +

[k]
, for k = 1 and 2.
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Figure 6. Trapezoidal meshes: L2-error curves for asymσ, using space configurations
ERT [k]

, ERT ∼
[k]

, and ERT +
[k]

, for k = 1 and 2.

8. Conclusions

In this paper we demonstrate both theoretically and numerically that bubble enriched H(div) approxima-
tion spaces can be applied to the mixed formulation of two dimensional elasticity leading to higher rates of
convergence for the divergence of the stress field and for the displacement. The compatibility between tensor
and displacement spaces was inherited from previous work on the simulation of the Darcy problem [13]. It
was also shown that the multiplier space for weakly enforcing the stress symmetry is S-compatible with the
enriched stress space.

The error analysis also demonstrates that weak stress symmetry enforcement and stress accuracy are
related. The proposed bubble enrichment has been used so that the convergence rate of the stress variable is
determined by the order of approximation of the stress normal traces.

The additional degrees of freedom corresponding the the bubble degrees of freedom and higher order
displacement space can be statically condensed. Therefore, the proposed approximation space leads to higher
order accuracy for the displacements without affecting the size of the global system of equations.

The error estimates have been confirmed through numerical tests for both affine and distorted meshes.
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Appendix A. Proof of Theorem 2

Proof. The construction of Πτ = Π1τ + Π2τ is done in two steps. First, choose Π1 : Hs+1(Ω,M)→ S such
that

(24)
(
∇ · (τ −Π1τ), η

)
, = 0, ∀η ∈ U.

This can be obtained directly from the projection associated to the pair {V,P}, πD : Hs(Ω,R2) → V,

verifying the commutation formula (4b). Precisely, for τ =
[
ψ1 ψ2

]
∈ S , let Π1τ =

[
πDψ1 πDψ2

]
. Then

Π1 is a bounded operator in H(div,Ω,M), and(
∇ · (τ −Π1τ), (η1 × η2)

)
=
(
∇ · (ψ1 − πDψ1), η1

)
×
(
∇ · (ψ2 − πDψ2), η2

)
= 0, ∀η =

[
η1 η2

]
∈ U.

The second step is a divergence free correction Π2 : Hs+1(Ω,M)→ S such that

(25) (asym Π2τ , ϕ) = (asym (Π1τ − τ), ϕ), ∀ϕ ∈ Q.

To construct Π2τ , let φ = [φ1 φ2] ∈ W be a solution of the Stokes problem such that −(∇ · φ, ϕ) =

(asym(Π1τ − τ), ϕ)), ∀ϕ ∈ Q, and define

Π2τ = ∇× φ =

[
∂2φ1 −∂1φ1

∂2φ2 −∂1φ2

]
.

By the assumption of Theorem 1, Π2τ ∈ S. It can be easily verified that Π2τ is divergence free. Consequently,

‖Π2τ‖H(div,Ω,M) = ‖Π2τ‖L2(Ω,M) ≤ C‖Π1τ − τ‖L2(Ω,M),

and since asym Π2τ = −∂1φ1 − ∂2φ2 = −∇ · φ, the required property (25) holds. �

Appendix B. Proof of Theorem 3

Proof. The proof is obtained with similar arguments as in Theorem 6.1 in [3]. Consider the errors σ − σ
h
,

u− uh and q − qh. Then

(A(σ − σ
h
), τ) + (u− uh,∇ · τ) + (q − qh, asym τ) = 0, ∀τ ∈ Sh,(26)

(∇ · (σ − σ
h
), η) = 0, ∀η ∈ Uh,(27)

(asym(σ − σ
h
), ϕ) = 0, ∀ϕ ∈ Qh.(28)

Taking τ = Πhσ − σh ∈ Sh, and using equation (27), combined with properties (8) and (12), we obtain

(u− uh,∇ · τ) = (Λhu− uh,∇ · (Πhσ − σh))

= (Λhu− uh,∇ · (σ − σh)) = 0.(29)

Analogously, from equation (28), combined with (8), we obtain

0 =
(

asym(σ −Πhσ + Πhσ − σh), ϕ
)

=
(

asym(σ −Πhσ), ϕ
)

+
(

asym τ , ϕ
)

=
(

asym τ , ϕ
)
, ∀ϕ ∈ Qh.(30)

Consequently, by using τ = Πhσ−σh as test function in (26), we obtain (A(σ−σ
h
), τ)+(q−Γhq, asym τ) = 0,

which can be expressed as

(A(σ −Πhσ + Πhσ − σh), τ) + (q − Γhq, asym τ) = 0,

meaning that
(A(Πhσ − σ), τ) + (Γhq − q, asym τ) = (Aτ , τ).

Using (29) and (30), the condition (S2) implies that (Aτ , τ) ≥ c−2
2 ‖τ‖2H(div,Ω,M) = c−2

2 ‖τ‖2L2(Ω,M). Conse-
quently,

(31) ‖τ‖L2(Ω,M) = ‖Πhσ − σh‖L2(Ω,M) ≤ C
[
‖Πhσ − σ‖L2(Ω,M) + ‖Γhq − q‖L2(Ω,R)

]
,

holds. The above relation is the statement of Theorem 4.1 in [9], derived in the context of simplex meshes.
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Concerning the estimate for ‖q − qh‖L2(Ω,R), let φ
h
∈ Wh be an approximation of a vector function

φ ∈ H1(Ω,R2), with −∇ · φ = Γhq − qh, by the mixed formulation of a Stokes problem based on the space
configuration {Wh, Qh} such that −(∇ · φ

h
, ϕ) = (Γhq − qh, ϕ), ∀ϕ ∈ Qh. Defining τ = ∇× φ

h
∈ Sh, then

∇ · τ = 0, and asym τ = −(∇ · φ
h
. Thus, ‖Γhq − qh‖2L2(Ω,R) = −(∇ · φ

h
,Γhq − qh). Using this expression in

the error relation (26), we get

−(A(σ − σ
h
), τ)− (q − Γhq, asym τ) = ‖Γhq − qh‖2L2(Ω,R)

from which the estimate

‖Γhq − qh‖L2(Ω,R) ≤ C
[
‖σ − σ

h
‖L2(Ω,M) + ‖q − Γhq‖L2(Ω,R)

]
(32)

holds. Similar result is stated in [9, Theorem 6.1]. Combining (32) with the (31), the desired estimate (26)
is derived after the application of the triangle inequality.

In the case of affine meshes, for which ∇·σ
h
∈ Uh, eq. (27) means that ∇·σ

h
is the L2-projection of ∇·σ

on Uh. Consequently, estimates (19) hold with C = 1. In general, in order to estimate the divergence error,
a procedure similar to the one applied for the Poisson problem in [3, Theorem 6.1] may be used. Precisely,
if τ ∈ Sh, define η ∈ Uh by

η =

{
JK∇ · τ , in K

0 elsewhere

For the particular case τ = σ
h
, insert the result in (27) to get

(∇ · (σ − σ
h
),JK∇ · σh) = 0,

from which the relation

‖J1/2
K ∇ · σh‖L2(K,R2) ≤ ‖J

1/2
K ∇ · σ‖L2(K,R2),

holds, so ‖∇ · σ
h
‖L2(K,R2) ≤ C‖∇ · σ‖L2(K,R2). Similarly, taking η associated to τ = Πhσ − σh, the relation

(∇ · (σ − σ
h
),JK∇ · (Πhσ − σh)) = 0

holds, from which we get

‖∇ · (σ − σ
h
)‖L2(K,R2) ≤ C‖∇ · (Πhσ − σ)‖L2(K,R2).

The estimate (19) follows by summing these contributions over all elements K.
In order to treat ‖Λhu − uh‖2L2(Ω,R2), take w as the solution of the elasticity problem ∇ · v = Λhu − uh,

with v = A−1εw ∈ H(div,Ω,S), w|∂Ω = 0. Therefore,

‖Λhu− uh‖2L2(Ω,R2) = (∇ · v,Λhu− uh) = (∇ ·Πhv,Λhu− uh) (by (8))

= (∇ ·Πhv, u− uh) + (∇ ·Πhv,Λhu− u)

= (∇ ·Πhv, u− uh), (by (12)),(33)

Since v is a symmetric tensor, and
(

asym(v −Πhv), ϕ
)

= 0, ∀ ϕ ∈ Q, by property (8) we obtain that

(asym (Πhv), ϕ) = 0, ∀ ϕ ∈ Qh, implying that

(q − qh, asym Πhv) = (q − Γhq, asym (v −Πhv)).

Noting that

(A(σ − σ
h
), v) = ((σ − σ

h
), εw) = −(∇ · (σ − σ

h
), w)

= −(∇ · (σ − σ
h
), w − Λhw) = 0, (by (12)),

we conclude that

(A(σ − σ
h
),Πhv) = −(A(σ − σ

h
), v −Πhv) + (A(σ − σ

h
), v)

= −(A(σ − σ
h
), v −Πhv).

Then, after testing (26) with Πhv, we obtain the identity

(A(σ − σ
h
),Πhv) + (u− uh,∇ ·Πhv) + (q − Γhq, asym (v −Πhv)) = 0,
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to finally reach the desired relation after using (33):

‖Λhu− uh‖
2
L2(Ω,R2) = (A(σ − σ

h
), v −Πhv) + (Γhq − q, asym (v −Πhv)).

Recall that this result is related to [9, Theorem 5.1]. �


