
HAL Id: hal-01928590
https://hal.science/hal-01928590

Submitted on 20 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving Ordinary Differential Equations with
Discontinuities

Charles William Gear, Ole Østerby

To cite this version:
Charles William Gear, Ole Østerby. Solving Ordinary Differential Equations with Discontinuities.
ACM Transactions on Mathematical Software, 1984, 10 (1), pp.23-44. �10.1145/356068.356071�. �hal-
01928590�

https://hal.science/hal-01928590
https://hal.archives-ouvertes.fr

Solving Ordinary Differential Equations
with Discontinuities
C. W. GEAR

University of Illinois at Urbana-Champaign

and

0. £)STERBY

Aarhus University, Denmark

Automatic codes for differential equations can be inadequate when the solutions have discontinuities.
If the user provides an external mdicator for discontinuities (e.g., a switching function whose sign
changes mdicate discontinuities), a code can be more efficient. A technique for detection and location
of a discontinmty ts dtscussed which can be implemented when such indicators are not practical. It
estimates the order and magmtude of the discontinuity and hence the stepsize which keeps the error
under control while stepping over the discontinuity.

Categories and Subject Descriptors: G.l.7 [Numerical Analysis]: Ordinary Differential Equations

General Terms: none

Addtt!Onal Key Words and Phrases: Multistep, differential equations, singularities, discontinuities

1. INTRODUCTION

Many problems in simulation and control give rise to systems of ordinary
differential equations (ODEs)

y' = f(x, y),

in which the right-hand-side function f contains discontinuities in the form of
finite jumps either in components off itself or in some derivatives of f. Numerical
software for solving ODEs will often behave very inefficiently in the presence of
such singularities and it is the aim of this paper to show how these shortcomings
can be remedied.

We distinguish between four computational stages and treat each of them in
detail in subsequent sections.

Thts work was supported in part by the U.S. Department of Energy under grant DOE DEAC02
76ER02383, and m part by the Damsh Sctence Research Council.
Authors' addresses: C.W. Gear, Department of Computer Science, University of Illinois at Urbana
Champaign, Urbana, IL 61801; 0. 0sterby, Computer Science Department, Aarhus University,
Aarhus, Denmark.
Permtssion to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computmg Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1984 ACM 0098-3500/84/0300-0023$00.75

ACM Transactions on Mathemattcal Software, Vol. 10, No. 1, March 1984, Pages 23-44.

24 C. W. Gear and 0. 0sterby

Stage 1. Detecting the possible presence of a discontinuity. This should be a very
inexpensive set of tests because it must be activated at every rejected
step of the integration routine.

Stage 2. Locating the discontinuity. After a discontinuity is detected, we must
locate it as quickly and efficiently as possible.

Stage 3. Passing the discontinuity. When we know where the discontinuity is we
can step right up to it and step across it with due regard to the size of
the local error involved in the crossing.

Stage 4. Restarting. Since the previous values of y and f no longer correspond to
smooth functions, we must be careful about using such information.
The restarting procedure must be chosen according to the nature of the
discontinuity.

In many cases these discontinuities do not occur completely out of the blue.
We may know the x-value where f changes its nature or we may be given a
switching function which, when reaching a certain known value, triggers the
discontinuity. It is very important to use such extra information whenever
available as this will facilitate the tasks of Stage 1 and especially the otherwise
very time-consuming tasks of Stage 2. Methods for locating discontinuities
triggered by switching functions have been discussed in the literature and range
from interpolation-type methods [2, 5, 10] to fractional step methods [7, 9] and
methods which regard the discontinuity conditions as additional differential
equations [1]. Here, however, we concentrate on the harder problem of dealing
with discontinuities which appear without other warning, as, for instance, when
the right-hand-side function is supplied by some black-box code which hides the
switching from the user.

A typical variable-order, variable-step code will check a local error estimate at
every step and decide whether to accept or reject the step and whether to try a
different stepsize and/or order in the next step. The presence of a discontinuity
is usually signaled by a very large value of the local error estimate (cf. eq. (2.14,
p. 28), resulting in the rejection of the step and a drastic reduction of the stepsize
and possibly also of the order for the next try. Back in the smooth region to the
left of the discontinuity there will often be time enough to build up the stepsize
(and order) until the code again attempts to step over the discontinuity. The
stepsize is reduced again and this process may be repeated several times before
the code successfully passes the trouble spot.

Figure 1 illustrates this for the Hindmarsh code [6] as used on the initial value
problem

1 J 0 X < 40.33,
y =]100 X � 40.33, y(O) = 40.33.

The ordinate is the number of function evaluations and is thus a measure of the
work involved in passing the discontinuity. Failed steps are marked with an x
and successful steps with an o.

From the time the code first attempts to overstep the discontinuity until it
finally succeeds it uses 118 function evaluations and takes 97 steps, 18 of which
are rejected. The local error tolerance is 10-5 relative to y, corresponding to
ACM TransactiOns on Mathematical Software, Vol 10, No 1, March 1984.

140

120

100

80

60

40

Number of

Solv1ng Ord1nary Differential Equations With Discontinuities 25

function evaluations

o � discontinuity passed • •

I
I(" "
\
�
'
t
' o successful steps

l x failed steps

I X

l

t
20

(_:-;.s�

- � -- - - �-�-
-_-_

-_-_
� � �

� =:
� � �

� �
-:.-_ -_

::: =
: =

: ::
�·

-t{

---------,....
20 30 40 50 60 70

Fig. 1. The behavior of an ODE code at a discontinuity.

4 X 10-4 in absolute measure. If the location of this very simple discontinuity is
known to the code, it is clear it need use no more than one extra step. If the
discontinuity has to be located by bisection (which will be seen to be the best
option in this case), 23 step halvings are adequate to get over the discontinuity
in the worst case.

In Section 2 we introduce notation and perform a theoretical analysis of what
happens at and around a discontinuity, paying particular attention to the behav
ior of local errors and error estimates. We develop the theory for a predictor
corrector method in PEC or PECE mode, but many of our results carry over or
are easily adapted to other modes or methods.

ACM TransactiOns on Mathematical Software, Vol. 10, No. 1, March 1984.

X

26 C. W. Gear and 0. 0sterby

Sections 3-6 deal with each of the four computational stages in the process of
crossing a discontinuity. In Section 7 we look at what can go wrong when we
misinterpret information and when things do not turn out quite the way we
expected.

This paper is a revised and shortened version of [4] which also contained
formulas for error estimates with variable stepsize and where we suggested
methods for determining new stepsizes which are different from and theoretically
more satisfying than the ones currently being used. Reference [4] also contains
some of the messy algebra the results of which are used in Section 4 of this paper
to determine the order of the discontinuity.

2. NOTATION AND THEORY

The numerical method we have in mind is a predictor-corrector method in PEC
or PECE mode where both the predictor and corrector have order p. The notation
used for the predictor is

k k-1
L a,*Yn+J = h L fJ:fn+J; J=O J=O

and for the corrector
k k
L a,Yn+J = h L fJin+J;

J=O J=O

The local truncation error of such a method can be written in the form

(2.1)

(2.2)

Cp+1hp+1y(p+l)(Xn) + O(hP+2), (2.3)

when f has continuous partial derivatives of order through p + 1 in a strip around
the solution y. The error constant of the corrector is Cp+to and the stepsize is h.

Together with the numerical method we also have a method for estimating the
local error. Such a local error estimate is typically proportional to the difference
between the predicted and the corrected y-value (e.g., Milne's device).

We shall first see how discontinuity can affect the local truncation error and
the local error estimate. The former is important for the error control and the
latter because many decisions in the program will be based on the estimate.

Assume that f has a discontinuity along a border line A, but that it also has a
smooth continuation, 1 across :.\ with continuous partial derivatives of order p +
1, giving rise to a smooth solution y (see Figure 2).

If the discontinuity appears between Xn+k-1 and Xn+k• then the predicted value
Y�+k will not be affected by it: Y�+k is actually an approximation to y(xn+k>· The
corrector uses the function value

f�+k = f(xn+k• Y�+k) = ��+k + (f�+k - ��+k),
and the corrected value is thus

k-1
Yn+k = L (-a,Yn+J + hfJin+J)

J=O

ACM TransactiOns on Mathematical Software, Vol. 10, No. 1, March 1984.

(2.4)

(2.5)

Solv1ng Ordinary Differential Equations With Discontinuities 27

y
y

X

Fig. 2. The solutiOn y, and the smooth solution y correspondmg to a smooth continuation 1 of f.

The local error estimate is a multiple of the corrector-predictor difference:

f k-1 I 'Y X (Yn+k - Y�+k) = 'Y X L� (aj - a,)Yn+J + h((3, - f3i)fn+J f
+ 'Yhf3kf�+k + 'Yhf3k(f�+k - f�+k>

= Cp+lhp+ly<p+l)(Xn) + O(hP+2)

+ 'Yhf3k(f�+k - ��+k>·

(2.6)

If Milne's device is used then 'Y = Cp+l/(C�+l - Cp+I), where C�+l is the error
constant of the predictor, and in this case we should have aj = aj, j = 0, 1, . . . ,
k, for the error estimate to be asymptotically correct.

In eq. (2.6) we have isolated the effect of the discontinuity on the local error
estimate, and we now take a closer look at the types of discontinuities which we
treat: jump discontinuities in f or in the partial derivatives of f.

The discontinuity is said to be of order q (� 1) if f has continuous partial
derivatives through order q - 2 and there is a finite jump discontinuity in at
least one of the partial derivatives of f of order q - 1. This gives rise to a jump
discontinuity in y<q> at the point� and to a term of order O(hq) in the local error
estimate.

The size of the jump in y<q> is denoted Kq:

(2.7)

The + in y�> indicates that the derivative is taken from the right.
If the location of the discontinuity depends on the value of y, then we may not

know the exact value of�- For practical purposes we can use the value correspond
ing to the local solution through (xn+k-1 > Yn+k-d·

The jump in y<q> at � can be simply related to the jump in the (q - l)th partial
derivative of f. Considering the autonomous form y' = f(y) for notational

ACM Transactwns on Mathematical Software, Vol. 10, No. 1, March 1984.

28 C. W. Gear and 0. 0sterby

simplicity, we have

y<q) = :;�x r-1 + combinations of lower derivatives.

The only jump is in the (q- 1)th partial, so we have

aq-1
ayq-1

[{+ - /]/q-1 = Kq . (2.8)

We want to measure the effect of a discontinuity on the error estimate
(eq. (2.6)). To do this we use Taylor's series to evalute f�+k - l�+k· For notational
simplicity, the argument (�, 17) of the discontinuity will be omitted from values
of {, /, and their partial derivatives; and f and its derivatives will refer to values
to the right of the discontinuity. We get

Define() by

and note that

��+k = 1 + /y(y�+k - 17) + 1/2 /yy(Y�+k- 17)2 +
f�+k = f + {y (Y�+k - 17) + 1/2 {yy(y�+k - 17)2 +

Xn+k - � = ()h, 0 < ()::::; 1,

Y�+k - 11 = 8 h{ + 0(h2).

Hence we have from eqs. (2.8), (2.9), (2.10) and (2.12)

1 aq-l
{* -{�* - - [{ - f�)(8hfiJ-t + O(hq) n+k n+k - (q - 1)! ayq-1

(()h)q-1 =
(q _ 1)! Kq + O(hq),

and the local error estimate becomes

()Q-1
'Y(Yn+k - Y�+k) = 'Y{jk X

(q
_ 1)! hqKq + 0(hq+1)

+ Cp+l hp+ly<p+l)(Xn) + O(hP+2).

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

When q � p + 1 the method will remain of order p and we may not even notice
the discontinuity, whereas for q :::: p the dominant term in the local error estimate
is due to the discontinuity. A variable step code which determines the stepsize
on the basis of the local error estimate will therefore often respond to a discon
tinuity by reducing the stepsize drastically.

To find out what the local error actually is, note that

y<q>(x) = y<q>(x) + Kq + O(h) (2.15)

throughout the interval (�, Xn+k), and

y(Xn+k) = y(Xn+k) + (()�)q
X Kq + O(hq+l).

q.

ACM Transactions on Mathematical Software, Vol. 10, No 1, March 1984

(2.16)

Solving Ordinary Differential Equations With Discontinuities 29

An explicit method (predictor) will produce a good approximation to 5ifxn+k):
Y�+k = y(Xn+k) + O(hP+1), (2.17)

whereas the implicit method (corrector) will take the new f into account. From
eqs. (2.5) and (2.13) we deduce that

{j 8q-1
Yn+k = y(Xn+k) +

(q
k
- 1)! hqKq + 0(hq+1 + hP+1).

The local error is thus

(� - {jk) x 8q-1
hqK + O(hq+1 + hP+1),

q (q - 1)! q

and, when q s p, an upper bound for the leading term of the local error is

hq
(q - 1)!

Kq,

(2.18)

(2.19)

(2.20)

since 0 < {jk s 1. When we know Kq this expression can be used to ensure that
the local error will be less than a specified error tolerance E when taking a step
across the discontinuity. If we define the passing stepsize ((q - 1)!)1/q

hpass = Kq
X E , (2.21)

then we know whenever h < hpass that the local error in passing the discontinuity
will be less than E.

In particular, for q = 1 we have (as in [6])

ilp888 = E/K1. (2.22)

We note in passing that the error estimate is very realistic in this case. From
eqs. (2.19) and (2.22) the local error is seen to be approximately (8 - {jk) X E,
with an expected value as 8 varies of at least E/ 4.

The formulas for the local error estimate (2.14) and for the local error (2.19)
are very similar, which makes a comparison very easy. The only difference in the
leading term is the factor 'Y{jk in (2.14) versus 8/q - {jk in (2.19). If Milne's device
is used, then 'Y is negative and s 0.1 in magnitude for Adams' methods of orders
greater than 2. The local error estimate will therefore often be as much as an
order of magnitude smaller than the local error. This means that if we rely on
the local error estimate (which is all we have) then we might commit an error
which is an order of magnitude greater than the tolerance when we pass over the
discontinuity. In order to avoid serious consequences from this, we might choose
to either lower the error tolerance when a discontinuity is detected or use the
corrector-predictor difference directly, as this provides a safer estimate of the
local error when a discontinuity is present.

3. STAGE 1-DETECTING A DISCONTINUITY

This must be a very low cost set of tests that fit well into an existing code, for in
principle it should be activated at every rejected step of the integration routine.

ACM TransactiOns on Mathemattcal Software, Vol. 10, No. 1, March 1984.

30 C. W. Gear and 0. 0sterby

As already mentioned the presence of a discontinuity is usually indicated by a
large value of the local error estimate. This in turn will prompt a reduction in
the stepsize according to a formula like

I 11/(p+l) E hnew = . X hold
error estimate

if an error-per-step strategy is used and the order of the numerical method is p.
An easy check for trouble is thus that hnew « hold or that the local error estimate
is much greater than E.

As a matter of fact most variable-order variable-step codes already check the
local error estimate at every step in order to determine whether to accept or
reject the current step. It is therefore very easy to fit the discontinuity detection
into the code at little extra expense. Only when a step is rejected should we do
anything at all and in this case we should just check hnew against hold·

It is a matter of discussion how small hnew must be, but we feel that if hnew
< hold/2, then we shall probably be better off assuming that the change in f is a
discontinuity (possibly in a derivative) and is best handled by a special procedure.
On the other hand, if hnew :=: hold/2, then the code might be able to force its way
through the trouble-whether it is a discontinuity or just a rapidly varying f-in
possibly a couple of attempts, and we would not have to bother with activating
the special code. The value 1/2 has no particular significance, but in terms of the
discussion in the next section it is a very natural choice.

It should be mentioned that some discontinuities might avoid detection. These
would probably be very easy to pass without the need to invoke a special routine.
On the other hand, tests may be activated when f is not really discontinuous but
just varies rapidly in a particular region. In this case it might just be sensible to
assume that f is discontinuous and to act accordingly; but more about this in
Section 7.

4. STAGE 2-DETERMINING THE ORDER, SIZE AND LOCATION OF THE
DISCONTINUITY

Once we have detected what we believe to be a discontinuity, we must find its
approximate location. If we know the value of �. then we should of course use it.
If, as is often the case, we have knowledge of a steering function which triggers
the discontinuity upon reaching a certain value, then we should use an inverse
interpolation procedure [2, 5, 10] or some other method [1, 7, 9] to locate the
discontinuity approximately. In most cases a few extra calculations will suffice
to determine the location with sufficient accuracy that we can step right up to
the discontinuity and pass it with an error less than the prescribed tolerance. We
shall not go into more details with this problem but instead concentrate on the
more difficult case where we have no extra information available, but must base
our decisions on computed values of y and f exclusively.

If the discontinuity is of order 1 (as shown in Figure 3), then it is impossible
to locate it on the basis of just a few values of f. The jump can occur anywhere
in the last interval and the only way we can find it is by evaluating f at various
points in this interval. The most efficient way of narrowing down the search is
thus some kind of bisection procedure (which is also suggested in [8]). Also, when

ACM Transactwns on Mathematical Software, Vol 10, No 1, March 1984.

Solving Ordinary Differential Equations With Discontinuities 31

f

X

Fig. 3. A first-order discontinuity.

we first detect the discontinuity, we have no way of deciding the order so we
must be prepared for the worst case (i.e., q = 1). As our basic method we therefore
propose to do as follows.

(a) Halve the stepsize and take a step;
(b) if the step fails, then go to a;
(c) if we succeed, then advance the solution and go to a.

Since we assume the function to be smooth to the left of the discontinuity, we
should stay with the same order method, but since we reduce the stepsize, we
expect no stability problems and can save function evaluations by switching to
PEC mode.

If a step is successful as indicated by the local error estimate being smaller
than the tolerance, then we should not attempt a second step with the same
stepsize until this has become smaller than hpass· In most cases this second step
is rejected and it gives us little extra information on the location of the discon
tinuity, so we might as well save the work and just go ahead with stepsize halving.
If a step is rejected, we just divide h by two and try again.

After the first failed step in which we first detect the presence of a discontinuity
we have no way of finding its order, but after several tries we may be able to
estimate q and Kq using information from divided differences of /-values. To see
how this can be done in a simple example let us first assume that q = 1 and that

fo f(x, y) =
IKl > 0

X<�'
X��· (4.1)

Let FR and FL denote the values of f at the right and left endpoints of the
smallest step taken containing the discontinuity. In our example we have thus
FR = K1 and FL = 0. Define

d _ FR - FL
1- h ' (4.2)

ACM TransactiOns on Mathematical Software, Vol. 10, No. 1, March 1984.

32 C. W. Gear and 0. 0sterby

f

FL
0

FR new

!; h/2
Fig. 4. A first-order discontinuity.

f

FL
0

h

Fig. 5. A second- (or higher-) order discontinmty.

X

X

where h is the length of the step. We can compute d1 as soon as a discontinuity
is detected. It is the slope of the chord as shown in Figure 4. Now take a step of
size h/2 and notice that the new value of d1 is twice the old value independent of
where in the interval the discontinuity is located. (In Figure 4 the discontinuity
is located in the first half of the interval. If it had been located in the second
half, the point marked FL would have moved to the right rather than FR moving
to the left, as shown.)

If instead we have q 2:: 2, then we notice that the new value of d1 is smaller
than the old value if the discontinuity is located in the left half of the interval,
that is, if the halved step is a failure. This is shown in Figure 5. It is thus possible
to distinguish between first- and higher-order singularities after a failed step.

After a successful step, d1 is always doubled no matter what q is (FR stays the
same and h is halved), so we get no new information on q. In case of doubt, we
stay with an assumption of a lower-order discontinuity because this enforces a
tighter stepsize control (cf. eq. (2.21)).

In the more realistic case when f -:f= 0 before the discontinuity, we can assume

(4.3)
ACM TransactiOns on MathematiCal Software, Vol 10, No. 1, March 1984

f

Solving Ordinary Differential Equations With Oiscontinultles 33

FL
0

Fig. 6. A second-order discontinuity.

where f is a smooth function and ft is a jump function:

- Jo 11 (x, Y) - I continuously differentiable for
X<�'
X>�.

(4.4)

Since we are interested in the jump function, we must subtract out the smooth
part by extrapolating from earlier values of f. We are then back to our example
cases (show in Figures 4 and 5), with the exception that the function is not
constant for x > �- We can therefore not expect exact doublings in d1 but must
allow for (small) changes in /1- Still the difference between the behavior of d1
after a failed step when q = 1 and when q > 1 is big enough for us to be able to
decide with some confidence.

When dealing with a system of equations, d1 should be taken to be a suitable
norm of the vector difference of the (extrapolated) function values. Which norm
we use is probably not important since the value will be dominated by the large
variations in one (or a few) of the components whereas the smooth components
will contribute very little.

We can now distinguish the case where q = 1 from that where q > 1. We can
also go further and distinguish between q = 2 and q > 2 if we introduce a second
divided difference

FR - FM FM- FL
h h

2h

FR - 2 x FM+ FL
2h2

(4.5)

FM denotes the most recently computed {-value which is halfway between the
points corresponding to FL and FR (see Figure 6). We can compute dz as soon
as h has been halved once. A new value of dz can be computed after the second
halving.

When analyzing the change in d2 from one step to the next, we have to consider
the success or failure of two consecutive steps. We have thus four different cases
which we will denote FF, FS, SF and SS-F meaning fail, S meaning success
corresponding to the discontinuity being located in the first, second, third or
fourth quarter of the large interval in Figure 6.

ACM TransactiOns on Mathematical Software, Vol. 10, No. 1, March 1984.

34 C. W. Gear and 0. 0sterby

Table I. The Behavior of dz When q = 2 and q � 3

d2 is multiplied by -----
position of � q=2 q�3 identification

FF (0, h/2) 4 (0, 1) +
FS (h/2, h) (0, 4) (0, 4/7) (+)
SF (h, 3h/2) (0, 4) (2, 4) (+)
ss (3h/2, 2h) 4 4

We shall not burden the reader with unnecessary computational detail here,
but refer the curious to [4]. Instead, we summarize the results in Table I which
gives the multiplication factors for d2 as a function of q and the success or failure
of the last two steps.

When an interval is given for the multiplier, it means that d2 is multiplied by
some number in this interval depending on the exact location of the discontinuity
and the value of q. In the last column of Table 1 a simple plus sign + indicates
that we can determine whether q = 2 or q > 2 with confidence since d2 is either
quadrupled or reduced. A plus sign in parentheses (+) in the last column of Table
I indicates that we can do a partial identification in the following sense:

• If, in case FS, we observe that d2 is multiplied by more than 4/7, then we can
conclude that q = 2 (and at the same time that� E (h/2, 4h/5)).

• If, in case SF, we observe that d2 is multiplied by less than 2, then we can
again conclude that q = 2 (and that� E (h, 6h/5)).

On the other hand, if q � 3 and/or if� E (4h/5, h) U (6h/5, 3h/2), then we cannot
conclude anything as to the value of q.

After two successful steps in a row (i.e.,� E (3h/2, 2h)), we have no information
on q from the behavior of d2.

It is not advisable to use the above numerical values of 4/7 and 2 in practical
computations since we should allow for continuous variations in f. Therefore
4/7 should be replaced by a slightly larger constant, such as 0.65, and 2 should
be replaced by a slightly smaller constant, such as 1.9, to prevent misinterpreta
tion of results.

In principle it is also possible to distinguish between q = 3 and q > 3 by
introducing third divided differences, but the analysis is more complicated and
probably not worthwhile since discontinuities of orders greater than 2 are usually
rather easy to pass because of a reasonably large value of hpass·

As can be seen from Figure 6, it is possible to locate the discontinuity quickly
if we know that q = 2 and we have had at least two failed steps (which we must
have had for we cannot decide that q = 2 on the basis of successes only). A linear
extrapolation through FR and FM yields

XR- XM h
� � a = XM - FM X FR _ FM = XM - FM X FR _ FM, (4.6)

and we can step right up to the discontinuity by choosing the next stepsize equal
to h = a - X£. Of course we must be reasonably sure that the order of the
discontinuity is actually 2 before we use this estimate of �. so we wait until we
ACM Transactwns on Mathematical Software, Vol. 10, No. 1, March 1984.

Solv1ng Ordinary Differential Equat1ons With Oiscontinuities 35

have two consecutive indications of q = 2 together with a check that the estimate
of � did not change appreciably (i.e., by more than hr>ass/2).

,

In principle it is also possible to locate � when q > 2, but first of all it would
require us to determine the correct order, and even if we knew q, the intersection
between the axis and a parabola or a higher order curve will be very sensitive to
small errors in the determination of FM and FR. We shall therefore not try to
estimate � when q > 2 but rely on the observation that such discontinuities can
be crossed with moderately sized steps (cf. eq. (2.21)).

Out of these considerations a strategy emerges for locating the discontinuity,
determining the order q and estimating the size of the jump. In the following, FR
and FM indicate function values of the (vector-valued) function /with the smooth
part-as determined by (componentwise) extrapolation from earlier values of /
subtracted out. When calculating K1. K2, d1 and dz, a suitable norm should be
used. Below, d{ and d� denote previous values of d1 and dz.

(1) When a discontinuity is suspected because hnew < ho1d/2, assume the worst
case; that is, set q = 1 and compute d1, K and hr>ass accordingly:

K1 = IIFR-FLII; (4.7)

Halve the stepsize, but keep the same order. A switch to PEC mode is made
to give fewer function evaluations.

(2) Take a step and compute d1 and d2. If the step fails and d1 � 2d{, then note
that q = 1 and recompute K1 and hr,ass- If d1 < d{, then note that q > 1.
Assume the worst case and set q = 2. Compute

K _IIFR-FMll. 2- h ' hr>ass = W,; a = XM - ll:- ll . (4.8)

(3) In either case halve hand try another step (from XL or from XM, depending
on whether the previous step was a failure or a success).

(4) In the general situation when previous values of d1 and d2 are available, we
do the following:
If the step fails and d1 > d i, then

If q =!= 1 then set q = 1, compute K1 and hr,ass,
otherwise confirm q = 1, compute K1 and hr,ass·
Do not look at d2 at all.

If the step fails and d1 < d)_, then
If the previous step failed, we are in case FF.

If dz � 4d2 and q =!= 2, then set q = 2.

} If q was already 2, then confirm q = 2. (*)
Compute K2, hr,ass and a according to (4.8).

If dz < d2, then set q = 3.
If q was already 3, then confirm q = 3.

Compute KJ = 2dz; hr,ass = 3../2t/K3
(q = 3 here means q =:! 3).

If the previous step was a success (case SF)
and d2 < 2d2, then set or confirm q = 2 (see(*)).

ACM TransactiOn<; on Mathematical Software, Vol. 10, No. 1, March 1984.

36 C. W. Gear and 0. 0sterby

If the step succeeds and the previous step failed and d2 > 4/7d'2, then set or
confirm q = 2 (see(*)).

(5) Go to 3.

In addition to the actual value of q as it appears in a computer program,
we need a set of flags to indicate the degree of confidence we have in the value.
This is done in our code by means of an extra integer variable which is given the
value 1 the first time the value of q is determined and increased by 1 each time
this value of q is confirmed. The value 0 is used to indicate that the value of q

has not yet been determined, as is the case when we first detect the discontinuity
(when we set q = 1 but actually mean q � 1) or when on the basis of d1 and d{
we determine that q � 2 (and we set q = 2).

5. STAGE 3-PASSING THE DISCONTINUITY

The above procedure for approaching and locating the discontinuity should now
be augmented so that it can also pass the discontinuity. The basic rule is that if
h s hr.ass and the last step was successful, then we should attempt a second step
of the same size. If this is also successful, then we assume that we have safely
passed the discontinuity and we can go to the restarting procedure (Section 6).

If we have confirmed that q = 2, then we can take a step right up to the
estimated location of the discontinuity, a, and, if this step is a success, go to the
restarting procedure.

When q = 1 we actually do not need to wait until h s hr.ass if we instead look a
little more closely at the local error estimate which tells us whether a given step
was accepted or not. Since we use the same order method as before the discon
tinuity was detected, and have halved the stepsize a number of times, say m, we
expect the local error estimate to be well below the tolerance as long as we are
to the left of the discontinuity. Even at first order, the local error should not
exceed 4 -m�. Therefore, if a step barely passes our test after at least two step
halvings, say if

�110 < error estimate < E, (5.1)

then we have passed the discontinuity in this step and can go right on to the
restarting procedure (Section 6).

When q = 1 we have another way of checking whether we have actually passed
the discontinuity. The accepted {-value must then correspond to the value after
the discontinuity so FM must be much closer to FR than to FL. It is rather
important for the accuracy of the restarting procedure that this be true.

When q = 2 and we use our estimate for the location of the discontinuity, we
are usually well within a distance hr.ass from the discontinuity so that a step of
size hr.ass in most cases will be sufficient to cross it. Should we not actually cross
it, we should now be very close to it. Although in the restart process f may be
evaluated on the wrong side of the discontinuity, the error thus introduced is
small because f is continuous.

When q > 2 or when q = 2 but has not been confirmed, we might either check
the local error estimate or h < hr.ass· Usually hr.ass is so large that either test will
be satisfied rather quickly.
ACM TransactiOns on Mathematical Software, Vol 10, No 1, March 1984.

f

y

Solvmg Ordinary Differential EquatiOns With Discontinuiti� 37

- -o-- - - - - -o- ----------

X

.... t
"

.... I
I

xn+k-2 xn+k-1 xn+k X

Fig. 7. A discontinmty of order 1.

6. STAGE 4-RESTARTING

When we have passed the discontinuity, we should start up the usual integration
routine again using as much of the previously obtained information as is profit
able. We first discuss the problems encountered when using a self-starting
variable-order variable-step code based on linear multistep formulas.

Because of the discontinuity, back values of y and I do not correspond to those
of smooth functions but differ by terms of the order O(hq) and O(hq-1), respec
tively, when the discontinuity is of order q. See Figure 7 for an illustration of
this when q = 1. To include such values in our linear multistep formulas would
in turn give rise to terms in the local truncation error of order O(hq). It is
therefore not advisable to use any back values when q = 1.

Since Euler's method does not use back values, it is always safe to use as a
predictor. For the corrector we can use either backward Euler or the trapezoidal
rule. The resulting local truncation error will be of order 0(h2) or O(h3),
respectively.

If q = 1 then we have already committed an error of order O(h) in the passage
of the discontinuity, although our step control mechanism has been designed to
keep the size of the error less than the local error tolerance. It is essential for our
results, however, that we pass the discontinuity and that the last value of I
correspond to the right branch of that function.

If q = 2 we shall gain very little by raising the order of the restarting method,
so we still recommend Euler's method combined with backward Euler or the

ACM Transactwns on Mathematical Software, Vol. 10, No. 1, March 1984.

38 C. W. Gear and 0. 0sterby

trapezoidal rule. Since I varies continuously, it is difficult to ascertain whether
the last value is on the right branch. We must therefore be prepared for the case
where we actually have not passed the discontinuity but are going to pass it in
the "restarting" step. The effect will be similar to that of using back values: the
local truncation error will be of order 0(h2).

For q � 3 we should restart with a method of order no more than q - 1, since
the local error is going to be O(hq) anyway. Since we do not distinguish between
values of q greater than or equal to 3, we therefore recommend a second order
restarting method unless the value of q is known to us from other considerations.

It is more difficult to suggest a stepsize for restarting, but since the passing
stepsize according to eq. (2.21) satisfies

q - (q - 1)!
hpass- K X E,

q
(6.1)

it probably has the right order of magnitude to be used with a method of order
q - 1. For a first order discontinuity the value of hpass is probably much smaller
than needed and we suggest using a restarting stepsize closer to (hpass)112•

If our method includes a Runge-Kutta starter [2], then we can make use of
previous values of p and h. If we assume that our equations (or rather the func
tion f) have not changed character but have only jumped to a different level,
then it is a good guess that the order and stepsize which were used when we first
detected the discontinuity can be used again after the discontinuity has been
passed. We therefore recommend that the values of p and h be stored away at
that point and used now. We can thus avoid the usual dilemma of starting an
initial value problem from scratch when we often have little idea of an appropriate
order and stepsize to use.

7. ROBUSTNESS

In practice things may not turn out quite as we have assumed which may lead to
a misinterpretation of results and to wrong decisions about what to do. It is to
be expected that a general program will keep functioning in a reasonable manner,
giving results within the specified error tolerance with only a moderate loss of
efficiency.

Among the things that can go wrong, we consider what happens when

(1) q is underestimated,
(2) q is overestimated,
(3) q is taken to be 2 and the (incorrect) estimate of� is used,
(4) the discontinuity is passed inadvertently, or

(5) there is actually no discontinuity but (the derivative of) I varies rapidly
enough to suggest one to the code.

Since the estimated values of Kq and hpass depend critically on the value of q ,
these will be determined incorrectly in cases 1 and 2. In particular, when we first
detect the presence of a discontinuity, we have no information on the order and
by setting q = 1 we often have a case 1 situation right away. If the next couple
of steps are successful (because the discontinuity is located far to the right in the
ACM Transactions on Mathematical Software, Vol. 10, No. 1, March 1984.

f

Solving Ord1nary Differential EquatiOns With Oiscontinuities 39

FR

FM

FL

X

Fig. B.

interval), we stay in case 1 for a while. The behavior of the algorithm in each of
the five cases is discussed below.

Case 1. As an illustration assume that the order actually is 2 and that the size
of the jump in y" is K2. The passing stepsize is therefore

hpass = .J t/K2, (7.1)

where
�

is the local error tolerance. Since we believe that q = 1 we actually
compute

and

Ki = I FR - FL I :::: K2 x (h - n

h< � � h hpass pass = Ki ::;: K2(h - 0 = '"Pass X h - r

(7.2)

(7.3)

The superscript c indicates that these are computed values; h is the current
stepsize and� the location of the discontinuity.

We see from eq. (7.3) that h�ass is a conservative value (h�ass < hpass) when hpass
« h and � is not too far to the right in the interval.

If h - � is actually very small, we shall have several successful steps and not
be able to correct the value of q, in which case we might reach the point where
the stepsize is less than h�ass and attempt a "second step" prematurely. Since FR
corresponds to a failed step, and we are basically recomputing that value, this
"second step" will also fail. This second failure will not give us any more
information on the order of the discontinuity, but it will at least force us to halve
the stepsize and try again. We may thus lose efficiency either by failing steps or
by using a too small hpass• but we shall not lose much and not at the expense of
accuracy.

Case 2. If we overestimate the value of q, as might happen with the discontin
uous function shown in Figure 8, then we usually overestimate hpass also. This
could cause us to try to step over the discontinuity too soon, which would result
in an unnecessary failure. This cannot happen more than once per step halving,

ACM TransactiOns on Mathematical Software, Vol. 10, No. 1, March 1984.

40 C. W. Gear and 0. 0sterby

f

FL
X

so, even in the unlikely event that we never realize the true nature of the
discontinuity, we shall not use more than twice the optimal number of steps and
should still be able to perform better than a standard code.

Case 3. A more serious by-product of the erroneous determination of q shows
up when q is determined to be 2 (as in Figure 8) and we therefore use the estimate
of eq. (4.6) for the location of the discontinuity. This is the reason why we should
be careful with this estimate and only use it when we have confirmed the
determination of q at least once and have assured ourselves that the last two
estimates have not differed by much (say, by 1tr,ass/2).

Still the estimate might be so large that the next step fails, in which case we
should resort to the old step-halving strategy (so we must remember the old
stepsize such that we can carry on as if we never had an estimate of the
discontinuity).

If the estimate is too small, as could happen if the discontinuity looks like
Figure 9, then we are still to the left of the discontinuity and, if we do not pass
it in the next step of size 1tr,ass• we shall have to repeat the whole process, from
detecting the discontinuity (which is still the same one), to locating it, etc.

When worst comes to worst, we might even misjudge the location again, even
though we still have the correct value of q (= 2), and we may have to switch the
linear extrapolation (eq. (4.6)) off completely and just rely on step halving. (This
has not been implemented for the test code.)

Case 4. If during the process of locating the discontinuity we actually pass it
without realizing it, we have two kinds of problems.

First, the next step or steps will be taken with a method of the same order,
which is probably too high for restarting (cf. Section 6), leading to larger errors
than expected. But we have just passed the discontinuity with a successful step
and the next step will probably be taken with half the stepsize: although the
new error will have the same order, it will have smaller magnitude. But once
again we have to note that the usual error estimate might be too optimistic

(cf. Section 2).
Second, we will almost certainly have successful steps from now on, so we shall

get no new information on q, Kq or 1tr,ass· If we are using a too small value of q
and therefore of 1tr,ass, we might halve the stepsize many times, just to build it up
again after finally having decided to restart.
ACM TransactiOns on Mathematical Software, Vol 10, No 1, March 1984

Solv1ng Ordinary Differential Equations With Discontinuities 41

It is therefore important to check the local error estimate carefully and
distinguish between two types of successful steps: those with a very small local
error, indicating that we are to the left of the discontinuity, and those that are
barely less than the tolerance, indicating that the discontinuity was located in
the last interval, which allows us to go straight to the restarting procedure.

Another strategy which could alleviate some efficiency problems (but no
accuracy problems), would be to try a "second step" once in a while, just to see
if the discontinuity is still there. (By a "second step" we mean that after a
successful step we would not do the automatic halving in the location algorithm.)
This strategy might be especially useful in Case 5.

Case 5. Some problems (e.g., in the modeling of diodes), involve rapidly varying
functions which actually do not contain any discontinuities (mathematically
speaking) even though our procedures mistakenly detect a discontinuity. This
often reflects the fact that these functions can be approximated quite well by
discontinuous ones. Unfortunately, as the stepsize is reduced the apparent
discontinuity often disappears (in the sense that we keep making successful
steps), although the independent variable is not being advanced very much.

The best solution to this problem seems to be to allow "second steps" quite
often, so that we can quickly realize when the stepsize is small enough for
successful integration. Since there are no discontinuities, there is also no reason
to use the special restarting procedures of Section 6, but this kind of information
is difficult to build into a general program. The step-halving strategy, however,
is probably more efficient than traditional step selection schemes which can be
expected to reduce the stepsize drastically when they first encounter variations
resembling discontinuities.

8. NUMERICAL RESULTS

The algorithm described in the previous sections has been added to an experi
mental code we have developed, and several problems have been run, with and
without the discontinuity checker turned on. The code uses a PECE Adams
method with a Nordsieck representation and interpolatory step changing. Al
though the code has no known bugs, it has neither been extensively tested nor
tuned, so it is possible that a production quality code would perform differently
and change the results slightly. It is also probable that the use of a modified
divided difference representation with a variable step mechanism would change
the results. (We hope to have a similar code based on divided differences soon
and will attempt such comparisons.) It is also likely that a different stepsize/
order selection strategy would change the results. However, in spite of these
reservations, we believe that the numerical results presented below give a quali
tative validation of the ideas presented in earlier sections.

Several test problems are reported. The first was the example used in Figure 1
(p. 25), namely

y' = J 0
\100

X< 40.33,
X > 40.33, y(O) = 40.33. (8.1)

ACM TransactiOns on Mathematical Software, Vol. 10, No. 1, March 1984.

42 C. W. Gear and 0. 0sterby

This is trivial and was used principally to test the code. It is reported as a basis
of comparison with the results shown in Figure 1. The second problem set is

y' - J -y y � 0·75• y(O) = 1 (8.2) - J-y[1 + (y - 0.75)q-l] y < 0.75,
for q = 1, 2, and 3. The order of the discontinuity is q. The next four problems
have discontinuities of orders 1, 2, 3, and 3, respectively. They are

y'= J-y X :S 1, y(O) = 1, (8.3) J+y X > 1,

y'= f 0 X :S 1, y(O) = 1, (8.4) \10(x- 1) X > 1,

y'= f 0 X< 1, y(O) = 1, (8.5) J100(x- 1)2 X > 1,

y'= f 0 X :S 0.74, y(O) = 1. (8.6) J100(x - 0.74)2 X > 0.74,
Finally, a problem with a physical basis was chosen. It is a model of a one

dimensional spring/dashpot system with a limit stop such as is found in an
automobile suspension. A periodic driving force is applied.
The equations are

where

yf = Yz
y2 = -yz- 10(yi + sinx + F(yi)),

J 0
F(y) = J10(y + 0.1)

Y1 (0) = Yz(O) = 0.

y � -0.1,
y < -0.1,

(8.7)

The discontinuity is of second order. In all examples a local absolute error per
step tolerance of 10-5 was used. (Absolute error per step is not necessarily
recommended. The choice depends on the problem. Here we just wish to compare
two schemes under identical conditions.)

The results are given in narrative fashion as it is difficult to present the
information in tabular form. For the first problem, eq. (8.1), the stepsize at
x = 10.5 was increased to 31.6. The order was still 1, as is best for the trivial
problem y' = 0. Since the next step crossed the discontinuity, the step was
reduced. Without the scheme described, the code took 64 PECE steps, many
unsuccessful, until the step was down to 0.62T5 and the discontinuity was passed.
This represents 128 function evaluations. With detection the step was halved 24
times down to 0.18-5• The passing stepsize was less, 0.1-6, but at that time the
step was successful with error estimate > E/10 (see eq. (5.1)), so the integration
was restarted at order 1. The new technique used about 80 percent fewer function
evaluations, but reduced the step further, making it likely that it will use more
steps to get the stepsize large again, but also that it will introduce a local error
ACM TransactiOns on Mathematical Software, Vol. 10, No 1, March 1984

Solv1ng Ord1nary D1fferent1al Equations With Discontinuitie& 43

that is smaller than the tolerance. The standard method may introduce a larger
local error depending on the location of the discontinuity in the step that crosses
it.

For q = 1, eq. (8.2) gives similar results. Prior to the singularity at x = 0.2877,
the stepsize was 0.097 and the order was 3. Without detection, the code reduced
the stepsize to 0.12-3 in 18 steps (36 function evaluations) but had managed to
increase the order to 4 (there was a string of successful steps after a large
reduction). With detection, 10 step size halvings were used to reduce the step
size enough so that the discontinuity could be passed. As in the previous case,
the code was certain that q was one (three confirmations) and that it had an
estimate of K1 good to nearly four digits. The savings in function evaluations
was about 70 percent. For q = 2 and q = 3, the discontinuity detection was never
invoked because the first step to cross the discontinuity only just barely crossed
it. In this case the stepsize reduction is small and there is no reason to believe
that anything is wrong. In the case q = 2, the first step across failed, the reduced
step did not cross but the next did and also failed. One more reduction was
sufficient to cross the discontinuity at order 3. In the case q = 3 the step crossing
the discontinuity was successful but the next step failed. One reduction allowed
the code to continue at order 3.

Equation (8.3), a discontinuity of order 1, was passed in 12 steps without
detection starting from a stepsize of 0.178 at order 4. With detection, the order,
jump and location were determined after 11 reductions: about a 50 percent
savings.

Equation (8.4) required 38 steps to pass the second order discontinuity with
detection at order 1. Seven halvings were sufficient, by which time the code had
computed Kz and the location of the discontinuity to at least four digits. The
value of q had been confirmed three times. At that point it stepped to the
discontinuity and restarted.

Equation (8.5) required 20 steps without discontinuity detection, but five
halvings were sufficient with detection. By that time the code suspected q = 2
but had no confirmation, so no estimate of the location of the discontinuity was
made.

Equation (8.6) is just a shift of equation (8.5), but illustrates the importance
of luck. Without detection, four steps were sufficient to cross the discontinuity
at order 1 because a mesh point landed just to the left of it. With detection, eight
halvings were used to reduce the step below the passing size. After six halvings
the code had four confirmations that q was equal to 3, but after the next two
halvings had reason to suspect that perhaps q was equal to 2.

For the spring system in eq. (8.7), the code was at order 4 wheny1 first dipped
below -0.1. Without detection, there were four step failures, but the order
remained at 4. With detection, eight halvings were used and q = 2 was suspected
but never confirmed. The restart at order 1 was more expensive than just
continuing, but also more reliable. When Y1 passed -0.1 in the other direction,
detection failed: the stepsize was smaller because of the higher speed of the
system when F (yd was nonzero, and the order was 5 in the case of no detection,
and 6 otherwise. (By this point the codes had different step sequences.) In both
cases there were six failures caused by the (undetectable) discontinuity. The code

ACM Transactwns on Mathematical Software, Vol. 10, No. 1, March 1984.

44 C. W. Gear and 0. 0sterby

with detection located the next discontinuity, but again failed to find the fourth
when y increased past -0.1. By this time the entering stepsizes were sufficiently
different that there was little useful comparative information to be gleaned.

9. CONCLUSIONS

An algorithm has been described that can detect and locate some discontinuities
and provide information about their size, order and position. However, the success
of the algorithm is strongly dependent on the location of the discontinuity with
respect to the steps that straddle it. The major advantage of the scheme appears
to be that a more reliable error estimate can be used when a discontinuity is
present so that codes will be more robust. In some cases significant savings may
accrue but it appears that a better restarting procedur� than we used will be
necessary to realize most of those benefits.

Note added in proof. The use of binary search is also suggested in H. J. Stetter's
"Modular Analysis of Numerical Software," in the proceedings of Numerical
Analysis, Dundee, 1979, edited by G. A. Watson, and published as volume 773 in
Springer-Verlag's Lecture Notes in Computer Science (New York, 1979).

ACKNOWLEDGMENTS
The programs used in the discontinuity detection were written by Mr. Martin
Wong, who also ran the tests. The experimental integrator used was written by
Dr. Kyle Gallivan.

REFERENCES
1. CARVER, M.B. Efficient integration over discontinuities in ordinary differential equation sim

ulations Math Comput Stmul. 20, 3 (1978), 190-196
2. ELLISON, D. Efficient automatic mtegration of ordinary differential equations with discontin

uitles. Math. Comput. Simul. 23, 1 (1981), 12-20.
3. GEAR, C.W. Runge-Kutta starters for multistep methods. ACM Trans Math. Softw 6, 3 (1980),

263-279.
4. GEAR, C.W. AND 0STERBY, 0. Solving ordmary differential equations with discontinmties

Tech. Rep. R-81-1064, Univ. of Illinois at Urbana-Champaign (1981).
5 HAY, J.L., CROSBIE, R.E AND CHAPLIN, R.I. Integration routines for systems with discontm

uities Comput. J 1 7, 3 (1974), 275-278.
6. HINDMARSH, A. GEAR: Ordinary differential equation solver. Tech. Rep UCID-30001, Revi

sion 3, Lawrence Livermore National Laboratories, Livermore, Calif., 1974.
7. MANNSHARDT, R. One-step methods of any order for ordinary differential equations with

discontinuous nght-hand sides. Numer. Math. 31, 2 (1978), 131-152.
8. MUNTER, P. Numeriske metoder til l0sing of systemer of saedvanlige differentlallignmger

indeholdende diskontinmteter. Rapport F40-78.03, Laboratoriet for K0leteknik, Techmcal Um
versity of Denmark, 1978 (report is in Damsh)

9. O'REGAN, P.G Step stze adjustment at d1scontmuities for fourth order Runge-Kutta methods.
Comput. J 13, 4 (1970), 401-404.

10 THOMSEN, P.G. Numencal Simulation in theory and praxis. Mathematics and Computation
Tech. Rep. 2/79, Department of Mathematics, University of Trondhe1m, Norway 1979.

Received October 1981; revised August 1983; accepted August 1983

ACM Transactions on Mathematical Software, Vol. 10, No 1, March 1984

