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Solving Ordinary Differential Equations 
with Discontinuities 
C. W. GEAR

University of Illinois at Urbana-Champaign 

and 

0. £)STERBY 

Aarhus University, Denmark 

Automatic codes for differential equations can be inadequate when the solutions have discontinuities. 
If the user provides an external mdicator for discontinuities (e.g., a switching function whose sign 
changes mdicate discontinuities), a code can be more efficient. A technique for detection and location 
of a discontinmty ts dtscussed which can be implemented when such indicators are not practical. It 
estimates the order and magmtude of the discontinuity and hence the stepsize which keeps the error 
under control while stepping over the discontinuity. 

Categories and Subject Descriptors: G.l.7 [Numerical Analysis]: Ordinary Differential Equations 

General Terms: none 

Addtt!Onal Key Words and Phrases: Multistep, differential equations, singularities, discontinuities 

1. INTRODUCTION

Many problems in simulation and control give rise to systems of ordinary 
differential equations (ODEs) 

y' = f(x, y),

in which the right-hand-side function f contains discontinuities in the form of
finite jumps either in components off itself or in some derivatives of f. Numerical 
software for solving ODEs will often behave very inefficiently in the presence of 
such singularities and it is the aim of this paper to show how these shortcomings 
can be remedied. 

We distinguish between four computational stages and treat each of them in 
detail in subsequent sections. 
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24 C. W. Gear and 0. 0sterby

Stage 1. Detecting the possible presence of a discontinuity. This should be a very 
inexpensive set of tests because it must be activated at every rejected 
step of the integration routine. 

Stage 2. Locating the discontinuity. After a discontinuity is detected, we must 
locate it as quickly and efficiently as possible. 

Stage 3. Passing the discontinuity. When we know where the discontinuity is we 
can step right up to it and step across it with due regard to the size of 
the local error involved in the crossing. 

Stage 4. Restarting. Since the previous values of y and f no longer correspond to 
smooth functions, we must be careful about using such information. 
The restarting procedure must be chosen according to the nature of the 
discontinuity. 

In many cases these discontinuities do not occur completely out of the blue. 
We may know the x-value where f changes its nature or we may be given a 
switching function which, when reaching a certain known value, triggers the 
discontinuity. It is very important to use such extra information whenever 
available as this will facilitate the tasks of Stage 1 and especially the otherwise 
very time-consuming tasks of Stage 2. Methods for locating discontinuities 
triggered by switching functions have been discussed in the literature and range 
from interpolation-type methods [2, 5, 10] to fractional step methods [7, 9] and 
methods which regard the discontinuity conditions as additional differential 
equations [1]. Here, however, we concentrate on the harder problem of dealing 
with discontinuities which appear without other warning, as, for instance, when 
the right-hand-side function is supplied by some black-box code which hides the 
switching from the user. 

A typical variable-order, variable-step code will check a local error estimate at 
every step and decide whether to accept or reject the step and whether to try a 
different stepsize and/or order in the next step. The presence of a discontinuity 
is usually signaled by a very large value of the local error estimate (cf. eq. (2.14, 
p. 28), resulting in the rejection of the step and a drastic reduction of the stepsize
and possibly also of the order for the next try. Back in the smooth region to the 
left of the discontinuity there will often be time enough to build up the stepsize 
(and order) until the code again attempts to step over the discontinuity. The 
stepsize is reduced again and this process may be repeated several times before 
the code successfully passes the trouble spot. 

Figure 1 illustrates this for the Hindmarsh code [6] as used on the initial value 
problem 

1 J 0 X < 40.33, 
y = ]100 X � 40.33, y(O) = 40.33. 

The ordinate is the number of function evaluations and is thus a measure of the 
work involved in passing the discontinuity. Failed steps are marked with an x 
and successful steps with an o. 

From the time the code first attempts to overstep the discontinuity until it 
finally succeeds it uses 118 function evaluations and takes 97 steps, 18 of which 
are rejected. The local error tolerance is 10-5 relative to y, corresponding to 
ACM TransactiOns on Mathematical Software, Vol 10, No 1, March 1984. 
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Fig. 1. The behavior of an ODE code at a discontinuity. 

4 X 10-4 in absolute measure. If the location of this very simple discontinuity is 
known to the code, it is clear it need use no more than one extra step. If the 
discontinuity has to be located by bisection (which will be seen to be the best 
option in this case), 23 step halvings are adequate to get over the discontinuity 
in the worst case. 

In Section 2 we introduce notation and perform a theoretical analysis of what 
happens at and around a discontinuity, paying particular attention to the behav­
ior of local errors and error estimates. We develop the theory for a predictor­
corrector method in PEC or PECE mode, but many of our results carry over or 
are easily adapted to other modes or methods. 
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26 C. W. Gear and 0. 0sterby 

Sections 3-6 deal with each of the four computational stages in the process of 
crossing a discontinuity. In Section 7 we look at what can go wrong when we 
misinterpret information and when things do not turn out quite the way we 
expected. 

This paper is a revised and shortened version of [4] which also contained 
formulas for error estimates with variable stepsize and where we suggested 
methods for determining new stepsizes which are different from and theoretically 
more satisfying than the ones currently being used. Reference [4] also contains 
some of the messy algebra the results of which are used in Section 4 of this paper 
to determine the order of the discontinuity. 

2. NOTATION AND THEORY 

The numerical method we have in mind is a predictor-corrector method in PEC 
or PECE mode where both the predictor and corrector have order p. The notation 
used for the predictor is 

k k-1 
L a,*Yn+J = h L fJ:fn+J; J=O J=O 

and for the corrector 
k k 
L a,Yn+J = h L fJin+J; 

J=O J=O 

The local truncation error of such a method can be written in the form 

(2.1) 

(2.2) 

Cp+1hp+1y(p+l)(Xn) + O(hP+2), (2.3) 

when f has continuous partial derivatives of order through p + 1 in a strip around 
the solution y. The error constant of the corrector is Cp+to and the stepsize is h. 

Together with the numerical method we also have a method for estimating the 
local error. Such a local error estimate is typically proportional to the difference 
between the predicted and the corrected y-value (e.g., Milne's device). 

We shall first see how discontinuity can affect the local truncation error and 
the local error estimate. The former is important for the error control and the 
latter because many decisions in the program will be based on the estimate. 

Assume that f has a discontinuity along a border line A, but that it also has a 
smooth continuation, 1 across :.\ with continuous partial derivatives of order p + 
1, giving rise to a smooth solution y (see Figure 2). 

If the discontinuity appears between Xn+k-1 and Xn+k• then the predicted value 
Y�+k will not be affected by it: Y�+k is actually an approximation to y(xn+k>· The 
corrector uses the function value 

f�+k = f(xn+k• Y�+k) = ��+k + (f�+k - ��+k), 
and the corrected value is thus 

k-1 
Yn+k = L (-a,Yn+J + hfJin+J) 

J=O 

ACM TransactiOns on Mathematical Software, Vol. 10, No. 1, March 1984. 
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X 

Fig. 2. The solutiOn y, and the smooth solution y correspondmg to a smooth continuation 1 of f. 

The local error estimate is a multiple of the corrector-predictor difference: 

f k-1 I 'Y X (Yn+k - Y�+k) = 'Y X L� (aj - a,)Yn+J + h((3, - f3i)fn+J f 
+ 'Yhf3kf�+k + 'Yhf3k(f�+k - f�+k> 

= Cp+lhp+ly<p+l)(Xn) + O(hP+2) 

+ 'Yhf3k(f�+k - ��+k>· 

(2.6) 

If Milne's device is used then 'Y = Cp+l/(C�+l - Cp+I), where C�+l is the error 
constant of the predictor, and in this case we should have aj = aj, j = 0, 1, . . . , 
k, for the error estimate to be asymptotically correct. 

In eq. (2.6) we have isolated the effect of the discontinuity on the local error 
estimate, and we now take a closer look at the types of discontinuities which we 
treat: jump discontinuities in f or in the partial derivatives of f. 

The discontinuity is said to be of order q (� 1) if f has continuous partial 
derivatives through order q - 2 and there is a finite jump discontinuity in at 
least one of the partial derivatives of f of order q - 1. This gives rise to a jump 
discontinuity in y<q> at the point� and to a term of order O(hq) in the local error 
estimate. 

The size of the jump in y<q> is denoted Kq: 

(2.7) 

The + in y�> indicates that the derivative is taken from the right. 
If the location of the discontinuity depends on the value of y, then we may not 

know the exact value of�- For practical purposes we can use the value correspond­
ing to the local solution through (xn+k-1 > Yn+k-d· 

The jump in y<q> at � can be simply related to the jump in the (q - l)th partial 
derivative of f. Considering the autonomous form y' = f(y) for notational 
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28 C. W. Gear and 0. 0sterby 

simplicity, we have 

y<q) = :;�x r-1 + combinations of lower derivatives. 

The only jump is in the (q- 1)th partial, so we have 

aq-1 
ayq-1 

[{+ - /]/q-1 = Kq . (2.8) 

We want to measure the effect of a discontinuity on the error estimate 
(eq. (2.6) ). To do this we use Taylor's series to evalute f�+k - l�+k· For notational 
simplicity, the argument (�, 17) of the discontinuity will be omitted from values 
of {, /, and their partial derivatives; and f and its derivatives will refer to values 
to the right of the discontinuity. We get 

Define() by 

and note that 

��+k = 1 + /y(y�+k - 17) + 1/2 /yy( Y�+k- 17)2 + 
f�+k = f + {y (Y�+k - 17) + 1/2 {yy(y�+k - 17)2 + 

Xn+k - � = ()h, 0 < ()::::; 1, 

Y�+k - 11 = 8 h{ + 0(h2). 

Hence we have from eqs. (2.8), (2.9), (2.10) and (2.12) 

1 aq-l 
{* -{�* - - [{ - f�)(8hfiJ-t + O(hq) n+k n+k - (q - 1)! ayq-1 

(()h )q-1 = 
(q _ 1)! Kq + O(hq), 

and the local error estimate becomes 

()Q-1 
'Y(Yn+k - Y�+k) = 'Y{jk X 

(q 
_ 1)! hqKq + 0(hq+1) 

+ Cp+l hp+ly<p+l)(Xn) + O(hP+2). 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

When q � p + 1 the method will remain of order p and we may not even notice 
the discontinuity, whereas for q :::: p the dominant term in the local error estimate 
is due to the discontinuity. A variable step code which determines the stepsize 
on the basis of the local error estimate will therefore often respond to a discon­
tinuity by reducing the stepsize drastically. 

To find out what the local error actually is, note that 

y<q>(x) = y<q>(x) + Kq + O(h) (2.15) 

throughout the interval (�, Xn+k), and 

y(Xn+k) = y(Xn+k) + (()�)q 
X Kq + O(hq+l). 

q. 
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Solving Ordinary Differential Equations With Discontinuities 29 

An explicit method (predictor) will produce a good approximation to 5ifxn+k): 
Y�+k = y(Xn+k) + O(hP+1), (2.17) 

whereas the implicit method (corrector) will take the new f into account. From 
eqs. (2.5) and (2.13) we deduce that 

{j 8q-1 
Yn+k = y(Xn+k) + 

(q
k
- 1)! hqKq + 0(hq+1 + hP+1). 

The local error is thus 

(� - {jk) x 8q-1 
hqK + O(hq+1 + hP+1), 

q (q - 1)! q 

and, when q s p, an upper bound for the leading term of the local error is 

hq 
(q - 1)! 

Kq, 

(2.18) 

(2.19) 

(2.20) 

since 0 < {jk s 1. When we know Kq this expression can be used to ensure that 
the local error will be less than a specified error tolerance E when taking a step 
across the discontinuity. If we define the passing stepsize ((q - 1)! )1/q 

hpass = Kq 
X E , (2.21) 

then we know whenever h < hpass that the local error in passing the discontinuity 
will be less than E. 

In particular, for q = 1 we have (as in [6]) 

ilp888 = E/K1. (2.22) 

We note in passing that the error estimate is very realistic in this case. From 
eqs. (2.19) and (2.22) the local error is seen to be approximately (8 - {jk) X E, 
with an expected value as 8 varies of at least E/ 4. 

The formulas for the local error estimate (2.14) and for the local error (2.19) 
are very similar, which makes a comparison very easy. The only difference in the 
leading term is the factor 'Y{jk in (2.14) versus 8/q - {jk in (2.19). If Milne's device 
is used, then 'Y is negative and s 0.1 in magnitude for Adams' methods of orders 
greater than 2. The local error estimate will therefore often be as much as an 
order of magnitude smaller than the local error. This means that if we rely on 
the local error estimate (which is all we have) then we might commit an error 
which is an order of magnitude greater than the tolerance when we pass over the 
discontinuity. In order to avoid serious consequences from this, we might choose 
to either lower the error tolerance when a discontinuity is detected or use the 
corrector-predictor difference directly, as this provides a safer estimate of the 
local error when a discontinuity is present. 

3. STAGE 1-DETECTING A DISCONTINUITY 

This must be a very low cost set of tests that fit well into an existing code, for in 
principle it should be activated at every rejected step of the integration routine. 

ACM TransactiOns on Mathemattcal Software, Vol. 10, No. 1, March 1984. 
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As already mentioned the presence of a discontinuity is usually indicated by a 
large value of the local error estimate. This in turn will prompt a reduction in 
the stepsize according to a formula like 

I 11/(p+l) E hnew = . X hold 
error estimate 

if an error-per-step strategy is used and the order of the numerical method is p. 
An easy check for trouble is thus that hnew « hold or that the local error estimate 
is much greater than E. 

As a matter of fact most variable-order variable-step codes already check the 
local error estimate at every step in order to determine whether to accept or 
reject the current step. It is therefore very easy to fit the discontinuity detection 
into the code at little extra expense. Only when a step is rejected should we do 
anything at all and in this case we should just check hnew against hold· 

It is a matter of discussion how small hnew must be, but we feel that if hnew 
< hold/2, then we shall probably be better off assuming that the change in f is a 
discontinuity (possibly in a derivative) and is best handled by a special procedure. 
On the other hand, if hnew :=: hold/2, then the code might be able to force its way 
through the trouble-whether it is a discontinuity or just a rapidly varying f-in 
possibly a couple of attempts, and we would not have to bother with activating 
the special code. The value 1/2 has no particular significance, but in terms of the 
discussion in the next section it is a very natural choice. 

It should be mentioned that some discontinuities might avoid detection. These 
would probably be very easy to pass without the need to invoke a special routine. 
On the other hand, tests may be activated when f is not really discontinuous but 
just varies rapidly in a particular region. In this case it might just be sensible to 
assume that f is discontinuous and to act accordingly; but more about this in 
Section 7. 

4. STAGE 2-DETERMINING THE ORDER, SIZE AND LOCATION OF THE 
DISCONTINUITY 

Once we have detected what we believe to be a discontinuity, we must find its 
approximate location. If we know the value of �. then we should of course use it. 
If, as is often the case, we have knowledge of a steering function which triggers 
the discontinuity upon reaching a certain value, then we should use an inverse 
interpolation procedure [2, 5, 10] or some other method [1, 7, 9] to locate the 
discontinuity approximately. In most cases a few extra calculations will suffice 
to determine the location with sufficient accuracy that we can step right up to 
the discontinuity and pass it with an error less than the prescribed tolerance. We 
shall not go into more details with this problem but instead concentrate on the 
more difficult case where we have no extra information available, but must base 
our decisions on computed values of y and f exclusively. 

If the discontinuity is of order 1 (as shown in Figure 3), then it is impossible 
to locate it on the basis of just a few values of f. The jump can occur anywhere 
in the last interval and the only way we can find it is by evaluating f at various 
points in this interval. The most efficient way of narrowing down the search is 
thus some kind of bisection procedure (which is also suggested in [8]). Also, when 
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f 

X 

Fig. 3. A first-order discontinuity. 

we first detect the discontinuity, we have no way of deciding the order so we 
must be prepared for the worst case (i.e., q = 1). As our basic method we therefore 
propose to do as follows. 

(a) Halve the stepsize and take a step; 
(b) if the step fails, then go to a; 
(c) if we succeed, then advance the solution and go to a. 

Since we assume the function to be smooth to the left of the discontinuity, we 
should stay with the same order method, but since we reduce the stepsize, we 
expect no stability problems and can save function evaluations by switching to 
PEC mode. 

If a step is successful as indicated by the local error estimate being smaller 
than the tolerance, then we should not attempt a second step with the same 
stepsize until this has become smaller than hpass· In most cases this second step 
is rejected and it gives us little extra information on the location of the discon­
tinuity, so we might as well save the work and just go ahead with stepsize halving. 
If a step is rejected, we just divide h by two and try again. 

After the first failed step in which we first detect the presence of a discontinuity 
we have no way of finding its order, but after several tries we may be able to 
estimate q and Kq using information from divided differences of /-values. To see 
how this can be done in a simple example let us first assume that q = 1 and that 

fo f(x, y) = 
IKl > 0 

X<�' 
X��· (4.1) 

Let FR and FL denote the values of f at the right and left endpoints of the 
smallest step taken containing the discontinuity. In our example we have thus 
FR = K1 and FL = 0. Define 

d _ FR - FL 
1- h ' (4.2) 

ACM TransactiOns on Mathematical Software, Vol. 10, No. 1, March 1984. 



32 C. W. Gear and 0. 0sterby 

f 

FL 
0 

FR new 

!; h/2 
Fig. 4. A first-order discontinuity. 

f 

FL 
0 

h 

Fig. 5. A second- (or higher-) order discontinmty. 

X 

X 

where h is the length of the step. We can compute d1 as soon as a discontinuity 
is detected. It is the slope of the chord as shown in Figure 4. Now take a step of 
size h/2 and notice that the new value of d1 is twice the old value independent of 
where in the interval the discontinuity is located. (In Figure 4 the discontinuity 
is located in the first half of the interval. If it had been located in the second 
half, the point marked FL would have moved to the right rather than FR moving 
to the left, as shown.) 

If instead we have q 2:: 2, then we notice that the new value of d1 is smaller 
than the old value if the discontinuity is located in the left half of the interval, 
that is, if the halved step is a failure. This is shown in Figure 5. It is thus possible 
to distinguish between first- and higher-order singularities after a failed step. 

After a successful step, d1 is always doubled no matter what q is (FR stays the 
same and h is halved), so we get no new information on q. In case of doubt, we 
stay with an assumption of a lower-order discontinuity because this enforces a 
tighter stepsize control (cf. eq. (2.21)). 

In the more realistic case when f -:f= 0 before the discontinuity, we can assume 

(4.3) 
ACM TransactiOns on MathematiCal Software, Vol 10, No. 1, March 1984 
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FL 
0 

Fig. 6. A second-order discontinuity. 

where f is a smooth function and ft is a jump function: 

- Jo 11 (x, Y) - I continuously differentiable for 
X<�' 
X>�. 

(4.4) 

Since we are interested in the jump function, we must subtract out the smooth 
part by extrapolating from earlier values of f. We are then back to our example 
cases (show in Figures 4 and 5), with the exception that the function is not 
constant for x > �- We can therefore not expect exact doublings in d1 but must 
allow for (small) changes in /1- Still the difference between the behavior of d1 
after a failed step when q = 1 and when q > 1 is big enough for us to be able to 
decide with some confidence. 

When dealing with a system of equations, d1 should be taken to be a suitable 
norm of the vector difference of the (extrapolated) function values. Which norm 
we use is probably not important since the value will be dominated by the large 
variations in one (or a few) of the components whereas the smooth components 
will contribute very little. 

We can now distinguish the case where q = 1 from that where q > 1. We can 
also go further and distinguish between q = 2 and q > 2 if we introduce a second 
divided difference 

FR - FM FM- FL 
h h 

2h 

FR - 2 x FM+ FL 
2h2 

(4.5) 

FM denotes the most recently computed {-value which is halfway between the 
points corresponding to FL and FR (see Figure 6). We can compute dz as soon 
as h has been halved once. A new value of dz can be computed after the second 
halving. 

When analyzing the change in d2 from one step to the next, we have to consider 
the success or failure of two consecutive steps. We have thus four different cases 
which we will denote FF, FS, SF and SS-F meaning fail, S meaning success­
corresponding to the discontinuity being located in the first, second, third or 
fourth quarter of the large interval in Figure 6. 

ACM TransactiOns on Mathematical Software, Vol. 10, No. 1, March 1984. 
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Table I. The Behavior of dz When q = 2 and q � 3 

d2 is multiplied by -----
position of � q=2 q�3 identification 

FF (0, h/2) 4 (0, 1)  + 
FS (h/2, h) (0, 4) (0, 4/7) (+) 
SF (h, 3h/2) (0, 4) (2, 4) (+) 
ss (3h/2, 2h) 4 4 

We shall not burden the reader with unnecessary computational detail here, 
but refer the curious to [4]. Instead, we summarize the results in Table I which 
gives the multiplication factors for d2 as a function of q and the success or failure 
of the last two steps. 

When an interval is given for the multiplier, it means that d2 is multiplied by 
some number in this interval depending on the exact location of the discontinuity 
and the value of q. In the last column of Table 1 a simple plus sign + indicates 
that we can determine whether q = 2 or q > 2 with confidence since d2 is either 
quadrupled or reduced. A plus sign in parentheses ( +) in the last column of Table 
I indicates that we can do a partial identification in the following sense: 

• If, in case FS, we observe that d2 is multiplied by more than 4/7, then we can 
conclude that q = 2 (and at the same time that� E (h/2, 4h/5)). 

• If, in case SF, we observe that d2 is multiplied by less than 2, then we can 
again conclude that q = 2 (and that� E (h, 6h/5)). 

On the other hand, if q � 3 and/or if� E (4h/5, h) U (6h/5, 3h/2), then we cannot 
conclude anything as to the value of q. 

After two successful steps in a row (i.e.,� E (3h/2, 2h) ), we have no information 
on q from the behavior of d2. 

It is not advisable to use the above numerical values of 4/7 and 2 in practical 
computations since we should allow for continuous variations in f. Therefore 
4/7 should be replaced by a slightly larger constant, such as 0.65, and 2 should 
be replaced by a slightly smaller constant, such as 1.9, to prevent misinterpreta­
tion of results. 

In principle it is also possible to distinguish between q = 3 and q > 3 by 
introducing third divided differences, but the analysis is more complicated and 
probably not worthwhile since discontinuities of orders greater than 2 are usually 
rather easy to pass because of a reasonably large value of hpass· 

As can be seen from Figure 6, it is possible to locate the discontinuity quickly 
if we know that q = 2 and we have had at least two failed steps (which we must 
have had for we cannot decide that q = 2 on the basis of successes only). A linear 
extrapolation through FR and FM yields 

XR- XM h 
� � a = XM - FM X FR _ FM = XM - FM X FR _ FM, (4.6) 

and we can step right up to the discontinuity by choosing the next stepsize equal 
to h = a - X£. Of course we must be reasonably sure that the order of the 
discontinuity is actually 2 before we use this estimate of �. so we wait until we 
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have two consecutive indications of q = 2 together with a check that the estimate 
of � did not change appreciably (i.e., by more than hr>ass/2). 

, 

In principle it is also possible to locate � when q > 2, but first of all it would 
require us to determine the correct order, and even if we knew q, the intersection 
between the axis and a parabola or a higher order curve will be very sensitive to 
small errors in the determination of FM and FR. We shall therefore not try to 
estimate � when q > 2 but rely on the observation that such discontinuities can 
be crossed with moderately sized steps (cf. eq. (2.21)). 

Out of these considerations a strategy emerges for locating the discontinuity, 
determining the order q and estimating the size of the jump. In the following, FR 
and FM indicate function values of the (vector-valued) function /with the smooth 
part-as determined by (componentwise) extrapolation from earlier values of /­
subtracted out. When calculating K1. K2, d1 and dz, a suitable norm should be 
used. Below, d{ and d� denote previous values of d1 and dz. 

(1) When a discontinuity is suspected because hnew < ho1d/2, assume the worst 
case; that is, set q = 1 and compute d1, K and hr>ass accordingly: 

K1 = IIFR-FLII; (4.7) 

Halve the stepsize, but keep the same order. A switch to PEC mode is made 
to give fewer function evaluations. 

(2) Take a step and compute d1 and d2. If the step fails and d1 � 2d{, then note 
that q = 1 and recompute K1 and hr,ass- If d1 < d{, then note that q > 1. 
Assume the worst case and set q = 2. Compute 

K _IIFR-FMll. 2- h ' hr>ass = W,; a = XM - ll:- ll . (4.8) 

(3) In either case halve hand try another step (from XL or from XM, depending 
on whether the previous step was a failure or a success). 

(4) In the general situation when previous values of d1 and d2 are available, we 
do the following: 
If the step fails and d1 > d i, then 

If q =!= 1 then set q = 1, compute K1 and hr,ass, 
otherwise confirm q = 1, compute K1 and hr,ass· 
Do not look at d2 at all. 

If the step fails and d1 < d)_, then 
If the previous step failed, we are in case FF. 

If dz � 4d2 and q =!= 2, then set q = 2. 

} If q was already 2, then confirm q = 2. ( * ) 
Compute K2, hr,ass and a according to (4.8). 

If dz < d2, then set q = 3. 
If q was already 3, then confirm q = 3. 

Compute KJ = 2dz; hr,ass = 3../2t/K3 
(q = 3 here means q =:! 3). 

If the previous step was a success (case SF) 
and d2 < 2d2, then set or confirm q = 2 (see(*)). 
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If the step succeeds and the previous step failed and d2 > 4/7d'2, then set or 
confirm q = 2 (see(*)). 

(5) Go to 3. 

In addition to the actual value of q as it appears in a computer program, 
we need a set of flags to indicate the degree of confidence we have in the value. 
This is done in our code by means of an extra integer variable which is given the 
value 1 the first time the value of q is determined and increased by 1 each time 
this value of q is confirmed. The value 0 is used to indicate that the value of q 

has not yet been determined, as is the case when we first detect the discontinuity 
(when we set q = 1 but actually mean q � 1) or when on the basis of d1 and d{ 
we determine that q � 2 (and we set q = 2). 

5. STAGE 3-PASSING THE DISCONTINUITY 

The above procedure for approaching and locating the discontinuity should now 
be augmented so that it can also pass the discontinuity. The basic rule is that if 
h s hr.ass and the last step was successful, then we should attempt a second step 
of the same size. If this is also successful, then we assume that we have safely 
passed the discontinuity and we can go to the restarting procedure (Section 6). 

If we have confirmed that q = 2, then we can take a step right up to the 
estimated location of the discontinuity, a, and, if this step is a success, go to the 
restarting procedure. 

When q = 1 we actually do not need to wait until h s hr.ass if we instead look a 
little more closely at the local error estimate which tells us whether a given step 
was accepted or not. Since we use the same order method as before the discon­
tinuity was detected, and have halved the stepsize a number of times, say m, we 
expect the local error estimate to be well below the tolerance as long as we are 
to the left of the discontinuity. Even at first order, the local error should not 
exceed 4 -m�. Therefore, if a step barely passes our test after at least two step 
halvings, say if 

�110 < error estimate < E, (5.1) 

then we have passed the discontinuity in this step and can go right on to the 
restarting procedure (Section 6). 

When q = 1 we have another way of checking whether we have actually passed 
the discontinuity. The accepted {-value must then correspond to the value after 
the discontinuity so FM must be much closer to FR than to FL. It is rather 
important for the accuracy of the restarting procedure that this be true. 

When q = 2 and we use our estimate for the location of the discontinuity, we 
are usually well within a distance hr.ass from the discontinuity so that a step of 
size hr.ass in most cases will be sufficient to cross it. Should we not actually cross 
it, we should now be very close to it. Although in the restart process f may be 
evaluated on the wrong side of the discontinuity, the error thus introduced is 
small because f is continuous. 

When q > 2 or when q = 2 but has not been confirmed, we might either check 
the local error estimate or h < hr.ass· Usually hr.ass is so large that either test will 
be satisfied rather quickly. 
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Fig. 7. A discontinmty of order 1. 

6. STAGE 4-RESTARTING 

When we have passed the discontinuity, we should start up the usual integration 
routine again using as much of the previously obtained information as is profit­
able. We first discuss the problems encountered when using a self-starting 
variable-order variable-step code based on linear multistep formulas. 

Because of the discontinuity, back values of y and I do not correspond to those 
of smooth functions but differ by terms of the order O(hq) and O(hq-1), respec­
tively, when the discontinuity is of order q. See Figure 7 for an illustration of 
this when q = 1. To include such values in our linear multistep formulas would 
in turn give rise to terms in the local truncation error of order O(hq). It is 
therefore not advisable to use any back values when q = 1. 

Since Euler's method does not use back values, it is always safe to use as a 
predictor. For the corrector we can use either backward Euler or the trapezoidal 
rule. The resulting local truncation error will be of order 0(h2) or O(h3), 
respectively. 

If q = 1 then we have already committed an error of order O(h) in the passage 
of the discontinuity, although our step control mechanism has been designed to 
keep the size of the error less than the local error tolerance. It is essential for our 
results, however, that we pass the discontinuity and that the last value of I 
correspond to the right branch of that function. 

If q = 2 we shall gain very little by raising the order of the restarting method, 
so we still recommend Euler's method combined with backward Euler or the 
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trapezoidal rule. Since I varies continuously, it is difficult to ascertain whether 
the last value is on the right branch. We must therefore be prepared for the case 
where we actually have not passed the discontinuity but are going to pass it in 
the "restarting" step. The effect will be similar to that of using back values: the 
local truncation error will be of order 0(h2). 

For q � 3 we should restart with a method of order no more than q - 1, since 
the local error is going to be O(hq) anyway. Since we do not distinguish between 
values of q greater than or equal to 3, we therefore recommend a second order 
restarting method unless the value of q is known to us from other considerations. 

It is more difficult to suggest a stepsize for restarting, but since the passing 
stepsize according to eq. (2.21) satisfies 

q - (q - 1)! 
hpass- K X E, 

q 
(6.1) 

it probably has the right order of magnitude to be used with a method of order 
q - 1. For a first order discontinuity the value of hpass is probably much smaller 
than needed and we suggest using a restarting stepsize closer to (hpass)112• 

If our method includes a Runge-Kutta starter [2], then we can make use of 
previous values of p and h. If we assume that our equations (or rather the func­
tion f) have not changed character but have only jumped to a different level, 
then it is a good guess that the order and stepsize which were used when we first 
detected the discontinuity can be used again after the discontinuity has been 
passed. We therefore recommend that the values of p and h be stored away at 
that point and used now. We can thus avoid the usual dilemma of starting an 
initial value problem from scratch when we often have little idea of an appropriate 
order and stepsize to use. 

7. ROBUSTNESS 

In practice things may not turn out quite as we have assumed which may lead to 
a misinterpretation of results and to wrong decisions about what to do. It is to 
be expected that a general program will keep functioning in a reasonable manner, 
giving results within the specified error tolerance with only a moderate loss of 
efficiency. 

Among the things that can go wrong, we consider what happens when 

(1) q is underestimated, 
(2) q is overestimated, 
(3) q is taken to be 2 and the (incorrect) estimate of� is used, 
(4) the discontinuity is passed inadvertently, or 

(5) there is actually no discontinuity but (the derivative of) I varies rapidly 
enough to suggest one to the code. 

Since the estimated values of Kq and hpass depend critically on the value of q ,  
these will be determined incorrectly in cases 1 and 2. In particular, when we first 
detect the presence of a discontinuity, we have no information on the order and 
by setting q = 1 we often have a case 1 situation right away. If the next couple 
of steps are successful (because the discontinuity is located far to the right in the 
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interval), we stay in case 1 for a while. The behavior of the algorithm in each of 
the five cases is discussed below. 

Case 1. As an illustration assume that the order actually is 2 and that the size 
of the jump in y" is K2. The passing stepsize is therefore 

hpass = .J t/K2, (7.1) 

where 
� 

is the local error tolerance. Since we believe that q = 1 we actually 
compute 

and 

Ki = I FR - FL I :::: K2 x (h - n 

h< � � h hpass pass = Ki ::;: K2(h - 0 = '"Pass X h - r 

(7.2) 

(7.3) 

The superscript c indicates that these are computed values; h is the current 
stepsize and� the location of the discontinuity. 

We see from eq. (7.3) that h�ass is a conservative value (h�ass < hpass) when hpass 
« h and � is not too far to the right in the interval. 

If h - � is actually very small, we shall have several successful steps and not 
be able to correct the value of q, in which case we might reach the point where 
the stepsize is less than h�ass and attempt a "second step" prematurely. Since FR 
corresponds to a failed step, and we are basically recomputing that value, this 
"second step" will also fail. This second failure will not give us any more 
information on the order of the discontinuity, but it will at least force us to halve 
the stepsize and try again. We may thus lose efficiency either by failing steps or 
by using a too small hpass• but we shall not lose much and not at the expense of 
accuracy. 

Case 2. If we overestimate the value of q, as might happen with the discontin­
uous function shown in Figure 8, then we usually overestimate hpass also. This 
could cause us to try to step over the discontinuity too soon, which would result 
in an unnecessary failure. This cannot happen more than once per step halving, 
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so, even in the unlikely event that we never realize the true nature of the 
discontinuity, we shall not use more than twice the optimal number of steps and 
should still be able to perform better than a standard code. 

Case 3. A more serious by-product of the erroneous determination of q shows 
up when q is determined to be 2 (as in Figure 8) and we therefore use the estimate 
of eq. (4.6) for the location of the discontinuity. This is the reason why we should 
be careful with this estimate and only use it when we have confirmed the 
determination of q at least once and have assured ourselves that the last two 
estimates have not differed by much (say, by 1tr,ass/2). 

Still the estimate might be so large that the next step fails, in which case we 
should resort to the old step-halving strategy (so we must remember the old 
stepsize such that we can carry on as if we never had an estimate of the 
discontinuity). 

If the estimate is too small, as could happen if the discontinuity looks like 
Figure 9, then we are still to the left of the discontinuity and, if we do not pass 
it in the next step of size 1tr,ass• we shall have to repeat the whole process, from 
detecting the discontinuity (which is still the same one), to locating it, etc. 

When worst comes to worst, we might even misjudge the location again, even 
though we still have the correct value of q (= 2), and we may have to switch the 
linear extrapolation ( eq. ( 4.6)) off completely and just rely on step halving. (This 
has not been implemented for the test code.) 

Case 4. If during the process of locating the discontinuity we actually pass it 
without realizing it, we have two kinds of problems. 

First, the next step or steps will be taken with a method of the same order, 
which is probably too high for restarting (cf. Section 6), leading to larger errors 
than expected. But we have just passed the discontinuity with a successful step 
and the next step will probably be taken with half the stepsize: although the 
new error will have the same order, it will have smaller magnitude. But once 
again we have to note that the usual error estimate might be too optimistic 

(cf. Section 2). 
Second, we will almost certainly have successful steps from now on, so we shall 

get no new information on q, Kq or 1tr,ass· If we are using a too small value of q 
and therefore of 1tr,ass, we might halve the stepsize many times, just to build it up 
again after finally having decided to restart. 
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It is therefore important to check the local error estimate carefully and 
distinguish between two types of successful steps: those with a very small local 
error, indicating that we are to the left of the discontinuity, and those that are 
barely less than the tolerance, indicating that the discontinuity was located in 
the last interval, which allows us to go straight to the restarting procedure. 

Another strategy which could alleviate some efficiency problems (but no 
accuracy problems), would be to try a "second step" once in a while, just to see 
if the discontinuity is still there. (By a "second step" we mean that after a 
successful step we would not do the automatic halving in the location algorithm.) 
This strategy might be especially useful in Case 5. 

Case 5. Some problems (e.g., in the modeling of diodes), involve rapidly varying 
functions which actually do not contain any discontinuities (mathematically 
speaking) even though our procedures mistakenly detect a discontinuity. This 
often reflects the fact that these functions can be approximated quite well by 
discontinuous ones. Unfortunately, as the stepsize is reduced the apparent 
discontinuity often disappears (in the sense that we keep making successful 
steps), although the independent variable is not being advanced very much. 

The best solution to this problem seems to be to allow "second steps" quite 
often, so that we can quickly realize when the stepsize is small enough for 
successful integration. Since there are no discontinuities, there is also no reason 
to use the special restarting procedures of Section 6, but this kind of information 
is difficult to build into a general program. The step-halving strategy, however, 
is probably more efficient than traditional step selection schemes which can be 
expected to reduce the stepsize drastically when they first encounter variations 
resembling discontinuities. 

8. NUMERICAL RESULTS 

The algorithm described in the previous sections has been added to an experi­
mental code we have developed, and several problems have been run, with and 
without the discontinuity checker turned on. The code uses a PECE Adams 
method with a Nordsieck representation and interpolatory step changing. Al­
though the code has no known bugs, it has neither been extensively tested nor 
tuned, so it is possible that a production quality code would perform differently 
and change the results slightly. It is also probable that the use of a modified 
divided difference representation with a variable step mechanism would change 
the results. (We hope to have a similar code based on divided differences soon 
and will attempt such comparisons.) It is also likely that a different stepsize/ 
order selection strategy would change the results. However, in spite of these 
reservations, we believe that the numerical results presented below give a quali­
tative validation of the ideas presented in earlier sections. 

Several test problems are reported. The first was the example used in Figure 1 
(p. 25), namely 

y' = J 0 
\100 

X< 40.33, 
X >  40.33, y(O) = 40.33. (8.1) 
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This is trivial and was used principally to test the code. It is reported as a basis 
of comparison with the results shown in Figure 1. The second problem set is 

y' - J -y y � 0·75• y(O) = 1 (8.2) - J-y[1 + ( y - 0.75)q-l] y < 0.75, 
for q = 1, 2, and 3. The order of the discontinuity is q. The next four problems 
have discontinuities of orders 1, 2, 3, and 3, respectively. They are 

y'= J-y X :S 1, y(O) = 1, (8.3) J+y X >  1, 

y'= f 0 X :S 1, y(O) = 1, (8.4) \10(x- 1) X >  1, 

y'= f 0 X< 1, y(O) = 1, (8.5) J100(x- 1)2 X >  1, 

y'= f 0 X :S 0.74, y(O) = 1. (8.6) J100(x - 0.74)2 X >  0.74, 
Finally, a problem with a physical basis was chosen. It is a model of a one­

dimensional spring/dashpot system with a limit stop such as is found in an 
automobile suspension. A periodic driving force is applied. 
The equations are 

where 

yf = Yz 
y2 = -yz- 10(yi + sinx + F(yi)), 

J 0 
F(y) = J10(y + 0.1) 

Y1 (0) = Yz(O) = 0. 

y � -0.1, 
y < -0.1, 

(8.7) 

The discontinuity is of second order. In all examples a local absolute error per 
step tolerance of 10-5 was used. (Absolute error per step is not necessarily 
recommended. The choice depends on the problem. Here we just wish to compare 
two schemes under identical conditions.) 

The results are given in narrative fashion as it is difficult to present the 
information in tabular form. For the first problem, eq. (8.1), the stepsize at 
x = 10.5 was increased to 31.6. The order was still 1, as is best for the trivial 
problem y' = 0. Since the next step crossed the discontinuity, the step was 
reduced. Without the scheme described, the code took 64 PECE steps, many 
unsuccessful, until the step was down to 0.62T5 and the discontinuity was passed. 
This represents 128 function evaluations. With detection the step was halved 24 
times down to 0.18-5• The passing stepsize was less, 0.1-6, but at that time the 
step was successful with error estimate > E/10 (see eq. (5.1)), so the integration 
was restarted at order 1. The new technique used about 80 percent fewer function 
evaluations, but reduced the step further, making it likely that it will use more 
steps to get the stepsize large again, but also that it will introduce a local error 
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that is smaller than the tolerance. The standard method may introduce a larger 
local error depending on the location of the discontinuity in the step that crosses 
it. 

For q = 1, eq. (8.2) gives similar results. Prior to the singularity at x = 0.2877, 
the stepsize was 0.097 and the order was 3. Without detection, the code reduced 
the stepsize to 0.12-3 in 18 steps (36 function evaluations) but had managed to 
increase the order to 4 (there was a string of successful steps after a large 
reduction). With detection, 10 step size halvings were used to reduce the step 
size enough so that the discontinuity could be passed. As in the previous case, 
the code was certain that q was one (three confirmations) and that it had an 
estimate of K1 good to nearly four digits. The savings in function evaluations 
was about 70 percent. For q = 2 and q = 3, the discontinuity detection was never 
invoked because the first step to cross the discontinuity only just barely crossed 
it. In this case the stepsize reduction is small and there is no reason to believe 
that anything is wrong. In the case q = 2, the first step across failed, the reduced 
step did not cross but the next did and also failed. One more reduction was 
sufficient to cross the discontinuity at order 3. In the case q = 3 the step crossing 
the discontinuity was successful but the next step failed. One reduction allowed 
the code to continue at order 3. 

Equation (8.3), a discontinuity of order 1, was passed in 12 steps without 
detection starting from a stepsize of 0.178 at order 4. With detection, the order, 
jump and location were determined after 11 reductions: about a 50 percent 
savings. 

Equation (8.4) required 38 steps to pass the second order discontinuity with 
detection at order 1. Seven halvings were sufficient, by which time the code had 
computed Kz and the location of the discontinuity to at least four digits. The 
value of q had been confirmed three times. At that point it stepped to the 
discontinuity and restarted. 

Equation (8.5) required 20 steps without discontinuity detection, but five 
halvings were sufficient with detection. By that time the code suspected q = 2 
but had no confirmation, so no estimate of the location of the discontinuity was 
made. 

Equation (8.6) is just a shift of equation (8.5), but illustrates the importance 
of luck. Without detection, four steps were sufficient to cross the discontinuity 
at order 1 because a mesh point landed just to the left of it. With detection, eight 
halvings were used to reduce the step below the passing size. After six halvings 
the code had four confirmations that q was equal to 3, but after the next two 
halvings had reason to suspect that perhaps q was equal to 2. 

For the spring system in eq. (8.7), the code was at order 4 wheny1 first dipped 
below -0.1. Without detection, there were four step failures, but the order 
remained at 4. With detection, eight halvings were used and q = 2 was suspected 
but never confirmed. The restart at order 1 was more expensive than just 
continuing, but also more reliable. When Y1 passed -0.1 in the other direction, 
detection failed: the stepsize was smaller because of the higher speed of the 
system when F (yd was nonzero, and the order was 5 in the case of no detection, 
and 6 otherwise. (By this point the codes had different step sequences.) In both 
cases there were six failures caused by the (undetectable) discontinuity. The code 
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with detection located the next discontinuity, but again failed to find the fourth 
when y increased past -0.1. By this time the entering stepsizes were sufficiently 
different that there was little useful comparative information to be gleaned. 

9. CONCLUSIONS 

An algorithm has been described that can detect and locate some discontinuities 
and provide information about their size, order and position. However, the success 
of the algorithm is strongly dependent on the location of the discontinuity with 
respect to the steps that straddle it. The major advantage of the scheme appears 
to be that a more reliable error estimate can be used when a discontinuity is 
present so that codes will be more robust. In some cases significant savings may 
accrue but it appears that a better restarting procedur� than we used will be 
necessary to realize most of those benefits. 

Note added in proof. The use of binary search is also suggested in H. J. Stetter's 
"Modular Analysis of Numerical Software," in the proceedings of Numerical 
Analysis, Dundee, 1979, edited by G. A. Watson, and published as volume 773 in 
Springer-Verlag's Lecture Notes in Computer Science (New York, 1979). 
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