J. Ferlay, Cancer Incidence and Mortality Worldwide: IARC CancerBase, issue.11, 2012.

A. Noone, Cancer Statistics Review, 1975.

P. Tomasini, EGFR and KRAS Mutations Predict the Incidence and Outcome of Brain Metastases in Non-Small Cell Lung Cancer, Int J Mol Sci, vol.17, p.2132, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01477442

J. S. Barnholtz-sloan, Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System, J Clin Oncol, vol.22, pp.2865-2872, 2004.

Y. Oh, Number of metastatic sites is a strong predictor of survival in patients with nonsmall cell lung cancer with or without brain metastases, Cancer, vol.115, pp.2930-2938, 2009.

F. Barlesi, Management of brain metastases for lung cancer patients, Bull Cancer, vol.100, pp.303-308, 2013.

P. Métellus, Place of surgery in brain metastases, Bull Cancer, vol.100, pp.51-56, 2013.

E. Tabouret, Surgical resection of brain metastases from breast cancer in the modern era: clinical outcome and prognostic factors, Anticancer Res, vol.33, pp.2159-2167, 2013.

G. Gundem, The evolutionary history of lethal metastatic prostate cancer, Nature, vol.520, pp.353-357, 2015.

L. Weiss, Patterns of Metastasis, Cancer Metastasis Rev, vol.19, pp.281-301, 2000.

E. V. Sugarbaker, A. M. Cohen, and A. S. Ketcham, Do metastases metastasize?, Ann Surg, vol.174, pp.161-167, 1971.

A. F. Chambers, A. C. Groom, and I. C. Macdonald, Dissemination and growth of cancer cells in metastatic sites, Nat Rev Cancer, vol.2, pp.563-572, 2002.

D. X. Nguyen, P. D. Bos, and J. Massagué, Metastasis: from dissemination to organ-specific colonization, Nat Rev Cancer, vol.9, pp.274-284, 2009.

J. W. Snider, V. Gondi, P. D. Brown, W. Tome, and M. P. Mehta, Prophylactic cranial irradiation: recent outcomes and innovations, CNS Oncol, vol.3, pp.219-230, 2014.

A. V. Tallet, Neurocognitive function impairment after whole brain radiotherapy for brain metastases: actual assessment, Radiat Oncol, vol.7, p.77, 2012.

V. Gondi, NRG Oncology CC001: A phase III trial of hippocampal avoidance (HA) in addition to whole-brain radiotherapy (WBRT) plus memantine to preserve neurocognitive function (NCF) in patients with brain metastases (BM), J Clin Oncol, vol.37, 2009.

C. Gui, A prospective evaluation of whole brain volume loss and neurocognitive decline following hippocampal-sparing prophylactic cranial irradiation for limited-stage small-cell lung cancer, J. Neurooncol, 2019.

P. Mulvenna, Dexamethasone and supportive care with or without whole brain radiotherapy in treating patients with nonsmall cell lung cancer with brain metastases unsuitable for resection or stereotactic radiotherapy (QUARTZ): results from a phase 3, non-inferiority, randomised trial, The Lancet, vol.388, 2004.

C. L. Pechoux, F. Dhermain, and B. Besse, Whole brain radiotherapy in patients with NSCLC and brain metastases, The Lancet, vol.388, pp.1960-1962, 2016.

R. Soffietti, Diagnosis and treatment of brain metastases from solid tumors: guidelines from the European Association of Neuro-Oncology (EANO), Neuro Oncol, vol.19, pp.162-174, 2017.

M. K. Doherty, Treatment options for patients with brain metastases from EGFR/ALK -driven lung cancer, Radiother Oncol, vol.123, pp.195-202, 2017.

T. Jiang, EGFR TKIs plus WBRT Demonstrated No Survival Benefit Other Than That of TKIs Alone in Patients with NSCLC and EGFR Mutation and Brain Metastases, J Thorac Oncol, vol.11, pp.1718-1728, 2016.

P. M. Altrock, L. L. Liu, and F. Michor, The mathematics of cancer: integrating quantitative models, Nat Rev Cancer, vol.15, pp.730-745, 2015.

D. Barbolosi, J. Ciccolini, B. Lacarelle, F. Barlési, and N. André, Computational oncology -mathematical modelling of drug regimens for precision medicine, Nat Rev Clin Oncol, 2015.

H. M. Byrne, Dissecting cancer through mathematics: from the cell to the animal model, Nat Rev Cancer, vol.10, pp.221-230, 2010.

D. J. Bross and L. E. Blumenson, Statistical testing of a deep mathematical model for human breast cancer, J Chronic Dis, vol.21, pp.493-506, 1968.

M. Guiguet, M. Tubiana, and A. J. Valleron, Size distribution of metastases during detection and adjuvant treatment: biomathematical approach, C R Seances Acad Sci III, vol.294, pp.15-18, 1982.

S. Koscielny, M. Tubiana, and A. J. Valleron, A simulation model of the natural history of human breast cancer, Br J Cancer, vol.52, pp.515-524, 1985.

M. W. Retsky, Computer simulation of a breast cancer metastasis model, Breast Cancer Res Treat, vol.45, pp.193-202, 1997.

L. A. Liotta, G. M. Saidel, and J. Kleinerman, Stochastic model of metastases formation, Biometrics, vol.32, pp.535-550, 1976.

K. Iwata, K. Kawasaki, and N. Shigesada, A Dynamical Model for the Growth and Size Distribution of Multiple Metastatic Tumors, J Theor Biol, vol.203, pp.177-186, 2000.

L. Hanin, J. Rose, and M. Zaider, A stochastic model for the sizes of detectable metastases, J Theor Biol, vol.243, pp.407-417, 2006.

F. Michor, M. A. Nowak, and Y. Iwasa, Stochastic dynamics of metastasis formation, J Theor Biol, vol.240, pp.521-530, 2006.

H. Haeno, Computational Modeling of Pancreatic Cancer Reveals Kinetics of Metastasis Suggesting Optimum Treatment Strategies, Cell, vol.148, pp.362-375, 2012.

P. K. Newton, A Stochastic Markov Chain Model to Describe Lung Cancer Growth and Metastasis, PLoS One, vol.7, p.34637, 2012.

J. G. Scott, P. Gerlee, D. Basanta, and A. G. Fletcher, Mathematical modeling of the metastatic process, Experimental Metastasis: Modeling and Analysis, 2013.

N. Hartung, Mathematical modeling of tumor growth and metastatic spreading: validation in tumor-bearing mice, Cancer Res, vol.74, pp.6397-6407, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01107681

E. Baratchart, Computational Modelling of Metastasis Development in Renal Cell Carcinoma, PLoS Comput Biol, vol.11, p.1004626, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01164834

S. Benzekry, Modeling Spontaneous Metastasis following Surgery: An In Vivo-In Silico Approach, Cancer Res, vol.76, pp.535-547, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01222046

J. T. Poleszczuk, Abscopal Benefits of Localized Radiotherapy Depend on Activated T-cell Trafficking and Distribution between Metastatic Lesions, Cancer Res, vol.76, pp.1009-1018, 2016.

D. Barbolosi, A. Benabdallah, F. Hubert, and F. Verga, Mathematical and numerical analysis for a model of growing metastatic tumors, Math Biosci, vol.218, pp.1-14, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00262335

S. Benzekry, Mathematical analysis of a two-dimensional population model of metastatic growth including angiogenesis, J Evol Equ, vol.11, pp.187-213, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00516693

S. Benzekry, Mathematical and numerical analysis of a model for anti-angiogenic therapy in metastatic cancers, ESAIM, Math Model Numer Anal, vol.46, pp.207-237, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00518110

S. Friberg and S. Mattson, On the growth rates of human malignant tumors: implications for medical decision making, J Surg Oncol, vol.65, pp.284-297, 1997.

A. K. Laird, Dynamics of Tumour Growth: Comparison of Growth Rates and Extrapolation of Growth Curve To One Cell, Br J Cancer, vol.19, pp.278-91, 1965.

L. Norton, A Gompertzian model of human breast cancer growth, Cancer Res, vol.48, pp.7067-7071, 1988.

S. Benzekry, Classical mathematical models for description and prediction of experimental tumor growth, PLoS Comput Biol, vol.10, p.1003800, 2014.

F. C. Detterbeck and C. J. Gibson, Turning gray: the natural history of lung cancer over time, J Thorac Oncol, vol.3, pp.781-792, 2008.

C. A. Klein, Parallel progression of primary tumours and metastases, Nat Rev Cancer, vol.9, pp.302-312, 2009.

A. Mujoomdar, Clinical Predictors of Metastatic Disease to the Brain from Non-Small Cell Lung Carcinoma: Primary Tumor Size, Cell Type, and Lymph Node Metastases1, Radiology, vol.242, pp.882-888, 2007.

M. V. Patrone, J. L. Hubbs, J. E. Bailey, and L. B. Marks, How long have I had my cancer, doctor? Estimating tumor age via Collins' law, Oncology, vol.25, pp.38-43, 2011.

V. P. Collins, R. K. Loeffler, and H. Tivey, Observations on growth rates of human tumors, Am J Roentgenol Radium Ther Nucl Med, vol.76, 1956.

L. Norton, T. A. Gilewski, and . Cytokinetics, Holland-Frei Cancer Medicine, 2003.

L. Claret, Model-based prediction of phase III overall survival in colorectal cancer on the basis of phase II tumor dynamics, J Clin Oncol, vol.27, pp.4103-4108, 2009.

J. A. Aguirre-ghiso, How dormant cancer persists and reawakens, Science, vol.361, pp.1314-1315, 2018.

G. P. Gupta and J. Massagué, Cancer metastasis: building a framework, Cell, vol.127, pp.679-695, 2006.

B. Wang, Impacts of EGFR mutation and EGFR-TKIs on incidence of brain metastases in advanced non-squamous NSCLC, Clin Neurol Neurosurg, vol.160, pp.96-100, 2017.

G. Han, A retrospective analysis in patients with EGFR-mutant lung adenocarcinoma: is EGFR mutation associated with a higher incidence of brain metastasis, Oncotarget, vol.7, pp.56998-57010, 2016.

J. G. Reiter, Minimal functional driver gene heterogeneity among untreated metastases, Science, vol.361, pp.1033-1037, 2018.

Y. Kienast, Real-time imaging reveals the single steps of brain metastasis formation, Nat Med, vol.16, pp.116-122, 2010.

F. Winkler, The brain metastatic niche, J Mol Med, vol.93, pp.1213-1220, 2015.

L. Holmgren, M. S. O'reilly, and J. Folkman, Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression, Nat Med, vol.1, pp.149-153, 1995.

W. D. Dewys, A Quantitative Model for the Study of the Growth and Treatment of a Tumor and Its Metastases with Correlation between Proliferative State and Sensitivity to Cyclophosphamide, Cancer Res, pp.367-373, 1972.

L. Norton and J. Massagué, Is cancer a disease of self-seeding, Nat Med, vol.12, pp.875-878, 2006.

S. Benzekry, C. Lamont, D. Barbolosi, L. Hlatky, and P. Hahnfeldt, Mathematical Modeling of Tumor-Tumor Distant Interactions Supports a Systemic Control of Tumor Growth, Cancer Res, vol.77, pp.5183-5193, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01969102

S. Benzekry, A. Gandolfi, and P. Hahnfeldt, Global Dormancy of Metastases Due to Systemic Inhibition of Angiogenesis, PLoS One, vol.9, pp.84249-84260, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00868592

D. Imbs, Revisiting Bevacizumab + Cytotoxics Scheduling Using Mathematical Modeling: Proof of Concept Study in Experimental Non-Small Cell Lung Carcinoma, CPT Pharmacometrics Syst Pharmacol, vol.7, pp.42-50, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01624423

R. Serre, Mathematical Modeling of Cancer Immunotherapy and Its Synergy with Radiotherapy, Cancer Res, vol.76, pp.4931-4940, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01336779

M. Farris, Brain Metastasis Velocity: A Novel Prognostic Metric Predictive of Overall Survival and Freedom From Whole-Brain Radiation Therapy After Distant Brain Failure Following Upfront Radiosurgery Alone, Int J Radiat Oncol Biol Phys, vol.98, pp.131-141, 2017.

M. Yamamoto, Validity of a Recently Proposed Prognostic Grading Index, Brain Metastasis Velocity, for Patients With Brain Metastasis Undergoing Multiple Radiosurgical Procedures, Int J Radiat Oncol Biol Phys, vol.103, pp.631-637, 2019.

K. Shedden, Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study, Nat Med, vol.14, pp.822-827, 2008.

H. J. Aerts, Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach, Nat Commun, vol.5, p.4006, 2014.

J. S. Spratt, J. S. Meyer, and J. A. Spratt, Rates of growth of human solid neoplasms: Part I, J Surg Oncol, vol.60, pp.137-146, 1995.

S. Benzekry, Metronomic reloaded: Theoretical models bringing chemotherapy into the era of precision medicine, Semin Cancer Biol, vol.35, pp.53-61, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01195547

C. L. Chaffer and R. A. Weinberg, A perspective on cancer cell metastasis, Science, vol.331, pp.1559-1564, 2011.

J. W. Baish and R. K. Jain, Cancer, angiogenesis and fractals, Nat Med, vol.4, pp.984-984, 1998.

C. Gomez and N. Hartung, Stochastic and Deterministic Models for the Metastatic Emission Process: Formalisms and Crosslinks, Cancer Systems Biology 193-224, 2018.

D. Barbolosi, Modélisation du risque d' évolution métastatique chez les patients supposés avoir une maladie localisée, Oncologie, vol.13, pp.528-533, 2011.

T. Mathworks, Matlab with statistics and optimization toolboxes, 2015.

G. A. Seber and C. J. Wild, Nonlinear regression, 2003.