
HAL Id: hal-01927829
https://hal.science/hal-01927829

Submitted on 20 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploiting the Table of Energy and Power Leverages
Issam Raïs, Laurent Lefèvre, Anne-Cécile Orgerie, Anne Benoit

To cite this version:
Issam Raïs, Laurent Lefèvre, Anne-Cécile Orgerie, Anne Benoit. Exploiting the Table of Energy and
Power Leverages. ICA3PP 2018 - 18th International Conference on Algorithms and Architectures for
Parallel Processing, Nov 2018, Guangzhou, China. pp.1-10. �hal-01927829�

https://hal.science/hal-01927829
https://hal.archives-ouvertes.fr


Exploiting the Table of Energy and
Power Leverages

Issam Räıs1, Laurent Lefèvre1, Anne-Cécile Orgerie3, Anne Benoit1,2

1 Laboratoire LIP, École Normale Supérieure de Lyon & Inria, France
2 Georgia Institute of Technology, Atlanta, GA, USA
3 Univ. Rennes, Inria, CNRS, IRISA, Rennes, France

firstname.lastname@inria.fr

Abstract. Large scale distributed systems and supercomputers con-
sume huge amounts of energy. To address this issue, a large set of hard-
ware and software capabilities and techniques (leverages) exist to mod-
ify power and energy consumption in large scale systems. Discovering,
benchmarking and efficiently exploiting such leverages, remains a real
challenge for most of the users. In this paper, we define leverages and
the table of leverages, and we propose algorithms and predicates that
ease the reading of the table of leverages and extract knowledge from it.

1 Introduction

Data centers worldwide consumed around 194 terawatt hours (TWh) of electric-
ity in 2014, or about 1% of total demand [2]. This worrying consumption has
direct financial and environmental consequences on data center managers, like
Cloud providers and supercomputer operators. Several techniques have been de-
veloped in order to lower the electrical consumption of data centers. These tech-
niques, that we call leverages, can improve the energy efficiency of data centers
at different levels: hardware, middleware, and application. Hardware leverages
include Dynamic Voltage and Frequency Scaling (DVFS) [11] and shutdown tech-
niques [10]. At the middleware level, energy-efficient resource allocation policies
for job managers are examples of leverages [7]. Finally, leverages at the applica-
tion level include green programming [1].

While many of these leverages have been independently studied in the liter-
ature, few works consider the utilization of several leverages at the same time,
and no more than two leverages. Yet, the utilization of a given leverage can im-
pact both the utilization and the efficiency of another leverage. The variety of
leverages is added to the data center’s complexity, in terms of size and hardware
heterogeneity, and makes energy efficiency complex to reach for the users who
have access to multiple leverages.

In this work, we aim at extending the current state of the art, which is
studying the influence of one or two leverages at maximum at the same time,
thus ignoring the impacts incurred by the utilization of more leverages. Thus, we
proposed a generic definition, combination and knowledge extraction of multiple
leverages in order to fully explore their combined impacts.

We propose a first approach toward a completely automated process to char-
acterize the leverages available on a data center node. The key idea of our con-
tribution consists in providing hints to users about the most suitable solution



for their application from a defined score table with a value for each leverage
combination and each studied metric. Through these tables could be derived
knowledge about leverage combination and effects they incur on each other.
From the definition of a table of leverages, a tool to help a user, a developer or
an administrator to choose which leverage or leverage combination suits the best
his objectives (here with a focus on energy or power metrics), the contribution
of this paper consists in the algorithms proposed to extract knowledge about the
interaction of leverages and their influence on a given metric.

The remaining of this paper is structured as follows. Section 2 formalizes
the concept of leverages, and illustrates this formalism on the leverages under
consideration in this paper. Section 3 defines and explains how to build the table
of leverages. Section 4 presents the experimental setup and a first full example
of table of leverages. Section 5 then shows how to exploit the raw data of the
table of leverages and extract useful knowledge. Finally, Section 6 concludes this
work and gives perspectives.4

2 Leverage definition

In this section, we first propose a formalization of a leverage. Second, we apply
this formalism to the leverages that we selected for this paper.

Definition 1 A leverage L is composed of S = {s0, s1, . . . , sn}, the set of avail-
able valid states of L, and sc, the current state of L.

Thus, an energy or power leverage is a leverage that has a high impact on the
energy or power consumption of a device through its various states or through
the modification of its current state. Switching from one state to another can
have a cost in terms of time and energy. Yet, in the current work, we focus on
studying the impacts of leverage combinations over a single intensive application
phase [4], and thus we do not study the switching costs between states.

In this paper, we consider multiple leverages available on current hardware,
namely multi-thread, computation precision and vectorization. These leverages
belong to different categories of leverages: application level with computation
precision and vectorization techniques, and middleware level with multi-threading.
These leverages are described hereafter.

Multi-thread leverage. The first studied leverage is a middleware-level lever-
age that permits the usage of multiple cores during computation. OpenMP [5], a
well-known application programming interface abstraction for multi-threading,
can be used to exploit this intra-node parallelism of multi-cores. It consists of a
set of directives that modifies the behavior of the executed code, where a master
thread forks a specific number of slave threads that run concurrently.

4 This work is supported by the ELCI project, a French FSN project that associates
academic and industrial partners to design and provide software environment for
very high performance computing. Experiments were carried out using the Grid’5000
testbed, supported by a scientific interest group hosted by Inria and including CNRS,
RENATER and several Universities (https://www.grid5000.fr).



This multi-thread leverage increases the CPU utilization of the node. Con-
sequently, because of the non-power proportionality of current hardware archi-
tectures [10], this leverage can improve the energy efficiency of the node. In the
rest of the paper, the multi-thread leverage is denoted by nbThreads with the
set of states {1, . . . , nmax}, where 1 means that one OpenMP thread is used, and
nmax corresponds to the maximum number of threads that could be launched
simultaneously on the node. In this work, only the extreme states, 1 and nmax,
are explored.

Computation precision leverage. The second leverage belongs to the ap-
plication level and exploits the various computation precision options available
on actual hardware (i.e., int, float, double). Such a leverage alters the precision
of the results computed by the application, but lower precision translates into
shorter data representation and so, less computation and less energy consump-
tion. At the application level, the user can specify a desired Quality-of-Service
that can be expressed as accessible computation precision states.

This precision leverage is denoted by Precision, and the set of states is {int,
float, double}, corresponding to the data format for the application. For each of
these states, a different code version is provided.

Vectorization leverage. Finally, the last studied leverage concerns the appli-
cation level. Current CPUs allow the usage of vectorization capabilities to exploit
intra-core parallelism. On Intel architectures, it started with MMX instruction
in Pentium P5 architectures in 1997 [9]. It was then extended to SSE [6]. SSE
was then extended to SSE2, SSE3, SSSE3 and finally SSE4. AVX [8] then in-
troduces new instructions, followed by AVX2 and finally AVX512 available in
XeonPhi architecture. In this paper, we focus on SSE3 and AVX2, which are rep-
resentative of the SSE and AVX families. These instruction sets permit single
instruction on multiple data (SIMD) at application level.

This vectorization leverage is denoted by V ectorization. The set of states is
{none, SSE3, AVX2}, where none means that no vectorization is used. For each
of these states, a different code version is provided using the specific intrinsics
and adequate compilation flags for each version.

The proposed leverage formalism described above is used in the rest of the
paper to easily describe the state of each considered leverage and the possible
combinations of leverages. The three leverages studied here are chosen to be
representative examples of available leverages on modern architectures and fre-
quently used during HPC applications. The methodology proposed in this paper
is designed to be applied to any number and any type of leverages.

3 The table of leverages

We describe the table of leverages, which relies on metrics and benchmarks to
characterize the performance and energy impact of each leverage combination
on a given node. For each metric and each benchmark, a score is attributed to a
given leverage combination. The table is then used to extract knowledge about



each leverage and evaluate impacts of leverage combinations in order to help the
users to utilize their computing infrastructure in a more energy-efficient way.

Metrics. Leverages may influence the quality of service or performance of an
application. For instance, shutdown techniques may induce latency in waking up
the required nodes. Consequently, for these leverages, users need to determine
their acceptable trade-off between energy-related metrics and performance met-
rics. The table of leverages relies on three different metrics that represent both
energy and performance constraints. These metrics are measured for a given
period of time corresponding to the time spent during benchmark execution.

The two first metrics are energy and power related metrics. To define them,
we introduce the following notations: T = {t0, . . . , tN} is the set of time stamps of
energy consumption measurements of a given run; t0 and tN represent the start-
ing and ending timestamps (with a distance of one second), respectively; pj , j ∈
[0, N ], represents the power consumption (in Watt), of the considered node for
the timestamp tj . Metric 1: The average power consumption of an executable is
denoted avrgWatt, and it is defined as avrgWatt =

∑
j∈[0,N ] pj/(N + 1). Met-

ric 2: The energy consumption of an executable is denoted Joules. It represents
the energy consumption of the complete node used between t0 and tN . It is
defined as Joules =

∑
j∈[0,N−1](tj+1 − tj)× pj . Metric 3: The last metric con-

cerns the performance of the run, and is expressed as the execution time, denoted
Time. It includes whole execution time of an executable, including initialization.

Benchmarks. A benchmark corresponds to a self-contained application that is
representative of typical applications or portions of applications. The benchmark
is compiled before the run, and once launched, the metrics previously defined
are collected during its execution.

Here, for the sake of clarity, we evaluate only one benchmark for a set of
embedded leverages. We chose to focus on a well-known CPU intensive code:
the line per line matrix multiplication (LpL MM) of dense random large squared
matrices (8192 as dimension size). The same algorithm is implemented for the
various leverage combinations. The considered leverages are multi-thread, com-
putation precision and vectorization. For the last two leverages, a different state
means a different version of code, here generated by hand using dedicated in-
trinsics and compilation flags (-O3 -msse3 -mavx2). We deactivated the auto
vectorization of the compiler (-fno-tree-vectorize) to have a control over the cho-
sen intrinsics and because auto generation of vectorizable code is not one of the
focused leverage in this paper.

Formalization of the table of leverages. Here, we describe how to compute
the score associated to each metric for each leverage. Let X,Y, Z be the sets of
available states of three leverages χ, ψ, ω (corresponding to S, the set of states
for a given leverage L, from definition 1): X = {x0, . . . , xnx

}, Y = {y0, . . . , yny
},

and Z = {z0, . . . , znz
}. Let g1, . . . , gm be the measured metric functions, as for

instance avrgWatt, Joules, and Time. For all u (1 ≤ u ≤ m), gu(xi, yj , zk) is
the value of metric gu for the states xi, yj , zk for the leverages χ, ψ, ω.



In the table of leverages, each line corresponds to a combination of states for
each leverage and the columns correspond to the measured metrics. We normal-
ize each value on the minimum value for each metric. These normalized values
constitute the scores indicated in the table of leverages. Let h1, . . . , hm be the
normalized versions of g1, . . . , gm. So, we have, for 1 ≤ u ≤ m, hu(xi, yj , zk) =

gu(xi,yj ,zk)
min

x
i′∈X,y

j′∈Y,z
k′∈Z

gu(xi′ ,yj′ ,zk′ )
, with hu(xi, yj , zk) being the value in the table of

leverages in column of metric u and corresponding to the line for the states
xi, yj , zk respectively for the leverages χ, ψ, ω.

For application-level leverages, here Precision and Vectorization, the chosen
benchmarks correspond to a different combination of application leverage states.
Leverage nbThreads changes its state through environment variable. When all
states are covered, the table of leverages is complete for the considered bench-
mark. Reducing the creation time of such a table is not the focus of this paper.

4 Building and analyzing the table of leverages

In this section, we present the table of leverages built on a node from our exper-
imental testbed, Grid’5000 [3]. Grid’5000 deploys clusters linked with dedicated
high performance networks in several cities in France. As our focus is on energy
and performance related metrics, we used the Lyon site, where the energy con-
sumption of every computing node is monitored through a dedicated wattmeter,
exposing one power measurement per second with a 0.125 Watts accuracy. The
Nova cluster from Lyon is used in the following. This cluster contains Dell Pow-
erEdge R430 with 2 CPU E5-2620 v4 of 8 cores each, 32 GB of memory, 2 HDD
disks of 300 GB each.

We applied our previous methodology for the three chosen leverages to the
CPU intensive benchmark. This allows us to explore all possible states of chosen
leverages, and thus to build a complete table of leverages. The table has the
following format: the first three columns present the states of the nbThreads,
Precision, and V ectorization leverages respectively, while the last three columns
show the normalized results of the three metrics avrgWatt, Joules, and Time,
respectively, for every combination of leverage. As can be seen in Table 1 (first
six columns), a line represents results of all gathered metrics for the execution
of a representative load for a chosen combination of leverages. The results are
normalized as explained before. The table of leverages gathers the knowledge of
a Nova node, for a given workload done for multiple states of leverages combined.

Explanation of the table: A lot of unexpected results, at first sight, are
detected in Table of leverage 1, like the combination with int being better than
float and double when 1 and none are the chosen state for the nbThread and
Vectorization leverages, with this trend being reversed with nbThreads=32.

From the set of combination with 1 as the chosen state for leverage nbThreads,
it is logic to see that int is quicker than float then double from a cache usage
perspective. Indeed, more data can be brought into the cache to compute with-
out the need to fetch new data compared to float or double representation that



Table 1: Normalized table of leverage states and ranked impact for line per line
matrix multiplication (LpL MM) benchmark on a Nova node.

Leverage states Table of leverages Ranked impact

nbThreads (T) Prec. (P) Vector. (V) avrgWatt Joules Time avrgWatt Joules Time

1 int none 1.05 65.09 61.89 P,T,V P,T,V P,T,V
1 int SSE3 1.06 28.26 26.56 P,V,T V,P,T V,P,T
1 int AVX2 1.06 29.32 27.67 P,V,T V,P,T V,P,T
1 float none 1.05 72.97 69.67 P,V,T P,T,V P,T,V
1 float SSE3 1.06 33.8 31.89 V,P,T V,P,T V,P,T
1 float AVX2 1.05 36.8 34.89 P,V,T V,P,T V,P,T
1 double none 1.06 81.59 76.89 P,T,V P,T,V P,T,V
1 double SSE3 1.07 58.52 54.89 V,P,T V,P,T V,P,T
1 double AVX2 1.06 57.72 54.22 P,V,T V,P,T V,P,T
32 int none 1.43 13.48 9.44 P,T,V T,P,V T,P,V
32 int SSE3 1.4 4.68 3.33 P,V,T T,V,P T,V,P
32 int AVX2 1.0 1.0 1.0 P,V,T T,V,P T,V,P
32 float none 1.45 7.4 5.11 P,T,V T,P,V T,P,V
32 float SSE3 1.41 3.76 2.67 V,P,T T,P,V T,P,V
32 float AVX2 1.56 3.11 2.0 P,V,T T,V,P T,V,P
32 double none 1.53 8.34 5.44 P,T,V T,P,V T,P,V
32 double SSE3 1.53 8.52 5.56 V,T,P T,P,V T,P,V
32 double AVX2 1.54 7.0 4.56 P,T,V T,V,P T,V,P

need more space for the same amount of elements. As for the SSE and AVX
combinations, we have tremendous gain while using it compared to None, as it
uses vectorial capabilities of the used core. Using a leverage usually comes with
a cost. This statement is also true for the Vectorization leverage. An operation
on vectors has costs, even if it is low. For instance, it is known that loading
and saving vectors has a non null cost. With only one active thread, the current
architecture, Broadwell here, allows turbo boost, a technology that permits to
reach a much higher frequency that the available ones (here it can reach 3.0
GHz, when average frequency is 2.1 GHz). Also, when the OS detects too much
load on a core, it context switches the running process and runs it on another
core. Hence, the kernel saves the states (stack, registers) of the current process
and loads it on another core, implying a storing and loading cost of the given
process. This phenomenon can happened several times during a second. Thus,
saving and charging states can create a lot of cache misses, which could be dra-
matical with usage of vectorization, where loading and saving vectors is not free.
As AVX has longer vectors, its operation costs on vectors can be longer than
SSE. Thus, it starts to be beneficial only when comparing double combinations
for such a Vectorization leverage.

When threads are up to 32, data is more likely to be shared between caches
of various used cores. Without the previous struggles from caches for one core
and because it is also well known that floating points operations(float and dou-
bles here) are well optimized on current architectures and perform better than
integers, {32, float, none} and {32, double, none} perform better than {32, int,



none}. All threads are sharing data on separated cache, SSE and AVX out-
performs the none configuration, with AVX always outperforming SSE for a
fixed combination. Due to this data repartition between caches implied by the
chosen configuration of the nbThreads leverage, there is enough computation to
overcome costs of larger vector operations, here AVX for all combinations.

Note that the best combination for all metrics used here is always the {32,
int, AVX2} combination. This result is the best combination to choose only if
we have no constraints about leverage choices. It is expected to see variation, as
leverages highly modulate the usage of nodes, either from intensity of usage for
example of caches, core usage, availability of specific leverages (like seen with
turbo boost with one thread). Results of metrics from combination of leverages
is thus complicated to fully understand without a detailed knowledge of the ar-
chitecture, the underlying used leverages and their influences on a given context.
We propose predicates that helps a user underline such interesting points of in-
terest from the table of leverages. For example, this table could help a user to
choose a combination taking into account a fixed leverage state. Or to answer
the following question: is there a leverage or a state of leverage that is always
better for a given metric?

5 Exploiting the table of leverages

In this section, we describe the main contribution of this paper: a methodology
to exploit the table of leverages and to extract useful knowledge, such as the
influence and impact of one or multiple leverages on a given metric or set of
metrics. We propose two focuses for extracting a score for each leverage. The
first one corresponds to the actual table: it normalizes the results of a given
metric for every explored configuration. The second one computes a ratio of
contribution for each leverage in order to expose the most relevant leverage
(the one with the largest contribution to the considered metric). We define four
exploitation predicates that ease the analysis of the table, and answer questions.
We illustrate these predicates and the answers of these questions on the selected
table (Table 1). These questions target a single metric, hu.

Question 1: Is a selected combination of leverages states the best one
for metric hu? If a given combination is always the best, it means it should
always be applied, if possible, if one wants to optimize hu. Consider a combi-
nation of states xa, yb, zc of leverages χ, ψ, ω for metric hu. We need to check
whether for all i ∈ [0, . . . , nx]\{a}, j ∈ [0, . . . , ny]\{b}, and k ∈ [0, . . . , nz]\{c},
we have hu(xa, yb, zc) ≤ hu(xi, yj , zk). On Nova nodes and for the three leverages
(Table 1), the best combination for all three studied metrics is {32, int, AVX2}.

Question 2: When I fix a state, do I always improve metric hu? Consider
state xa of leverage χ. We want to check whether for all i ∈ [0, . . . , nx]\{a}, for
all l, j ∈ [0, . . . , ny], and for all m, k ∈ [0, . . . , nz], we have hu(xa, yl, zm) ≤
hu(xi, yj , zk). On the example of Table 1, for the Joules and Time metric, only
the nmax (here, 32) state of nbThreads leverage answers this predicate, meaning
that using this state will always be beneficial. No specific results can be obtained



with this question for the avrgWatt metric, meaning that no leverage state is
always better for this metric when used.

Question 3: If some states are fixed for a subset of leverages, is a
given state for the remaining leverages the best choice to optimize hu?
Consider that the state of leverages ψ, ω is fixed to yb, zc. We are asking whether
state xa of leverage χ is the best choice for metric hu. Therefore, we need to
check whether for all i ∈ [0, . . . , nx]\{a}, we have hu(xa, yb, zc) ≤ hu(xi, yb, zc),
which tells for instance that for the fixed combination {32, SSE3}, the best state
for the Precision leverage is float, when considering the Joules or Time metric
(Table 1). Although, when focusing on avrgWatt as the studied metric, for the
{32, SSE3} fixed combination, the best state for the Precision metric is int.

If only state zc for leverage ω is fixed, and we consider states xa and yb
of leverages χ and ψ respectively, we check whether for all i ∈ [0, . . . , nx] and
for all j ∈ [0, . . . , ny], we have hu(xa, yb, zc) ≤ hu(xi, yj , zc). Concerning the
Joules metric (Table 1) for the fixed state float of the Precision leverage, the
best combination for the nbThreads and Vectorization leverages is {32, AVX2}.
However, for the avrgWatt metric, fixing again the state float of the Precision
leverage, the best combination is now {32, SSE3}.

Applying this predicate allows us to extract some unexpected results. Con-
cerning the Joules and Time metrics, for the Precision and Vectorization lever-
ages, no state emerges as the best one. In fact, it highly depends on the chosen
state of other leverages. One could for instance expect int to always be the best
state, but when comparing the {32, double, none} with {32, int, none}, we see
that the double combination is more effective than the int combination. Similar
conclusions can be drawn when the Vectorization leverage is used. AVX2 has
larger vectors than SSE3, thus we would expect it to be always more efficient.
However, when nbThreads state is equal to 1, {1, float, SSE3} is more effective
than {1, float, AVX2}, leading to a different best choice when combined to the
nmax state (here, 32), where {32, float, AVX2} is more effective than {32, float,
SSE3}. Note that this combination emerges as the best one when SSE3 is fixed.

Concerning the avrgWatt metric, we also get unexpected knowledge. In op-
position to the Joules and Time metrics, no state emerges as the best one for
none of the studied leverages. As AVX2 has larger vectors than SSE3, we would
expect it to always stress more the CPU, thus always having higher values for
this metric. It is the case with the {32, float} and {32, double} combinations.
However, it is not observed with other combinations. When nbThreads=1, int
is always the best choice to minimize this metric, whatever the chosen state
for Precision and Vectorization leverages. Moreover, when Vectorization and
nbThreads are set to any studied states, int is also always the best choice to
minimize the avrgWatt metric.

Question 4: Given a combination for all the leverages, how can we
rank the states in terms of contribution for metric hu? To answer this
question, we consider a set of states xa, yb, zc of leverages χ, ψ, ω. Then, for each
state w ∈ {xa, yb, zc}, we compute the contribution score mc(w) for this state on



metric hu as follows. For state xa of leverage χ, mc(xa) = hu(xa,yb,zc)
max

i∈[0,...,nx]
hu(xi,yb,zc)

.

We define similarly the contribution of states for the other leverages ψ and ω.
Then, we rank the contribution scores mc(xa), mc(yb), mc(zc) in ascending order
to answer the question.

Table 1 (last three columns) presents the scoring related to the table of lever-
ages. For the best combination {32, int, AVX2}, the ranking goes as follows for
the Joules metric: “T,V,P” or “nbThreads, Vectorization, Precision”, meaning
that the chosen state for T here is the most contributing state in this combi-
nation, followed by the V, and then P states. Thus, for this combination, the
precision leverage with the int position has the lowest contribution.

This ranking points out unexpected results for the Joules metric. We notice
a switch between two positions of a given leverage for the fixed combination
of other leverage states: {32, double}. In fact, when comparing the scoring of
{32, double, SSE3} with {32, double, AVX2}, we get respectively “T,P,V” and
“T,V,P”. In the first case, double and SSE3 have the same worst possible score,
1.0, meaning that it is the worst state of this leverage for this combination.
In the second case, AVX2 scores better than SSE3 and thus, it is above double.
When nbThreads=1, we note that combinations including SSE3 and AVX2 states
always have the Vectorization leverage state as the most contributing one, which
leads to the conclusion that it is always better to use SSE3 and AVX2 states for
the Vectorization leverage. For the {32, float, SSE3} combination, we get the
scoring “T,P,V”. float gets a better score and thus a better position than SSE3
because it is the best leverage state for the {32, SSE3} combination, leading
to the conclusion that choosing float instead of other Precision leverage states
contributes more than choosing SSE3 instead of other Vectorization leverage
states for this combination. For the avrgWatt metric, scoring underlines the
fact that when choosing int as a state of Precision leverage, and for a fixed
state of the Vectorization leverage, the sorting is always the same. In fact, {32,
int, none}, {32, int, SSE3} and {32, int, AVX2} get the exact same sorting of
contribution that {1, int, none}, {1, int, SSE3} and {1, int, AVX2}, respectively.
Moreover, int is always the most contributing leverage state, which shows that
int is always a good choice to improve this metric. This scoring also underlines
the fact that in order to minimize the avrgWatt metric, a user should better
focus on P and V leverages, asT is never the most contributing one. This scoring
highlights results that would have been difficult to notice just by looking at
the table. It allows a user to quantify how much a leverage position used in a
combination contributes to the overall performance for a given metric.

6 Conclusion
Energy efficiency is a growing concern. In the context of HPC and datacenters
where the size of infrastructures grows drastically, energy consumption has to
be taken into account as a high expense. There is a wide range of techniques,
that we formally define as leverages, that permits to modulate the computing
capabilities and/or the energy/power used by a device. We propose a generic
solution to extract fine grain knowledge and hints from the table of leverages,



thanks to the defined predicates. Our solution underlines new knowledge about
leverages alone and about combinations of leverages. Thus, it allows us to extract
influences of leverages on each other and understandable knowledge by the user.

Knowledge could be extracted from a table on CPU-intensive workload. For
example, our solution underlines the fact that if Precision is set to the double
state, it is always better to use it with AVX2 state for the Vectorization leverage
to minimize the Joules metric. Also, for Vectorization fixed to the SSE3 state,
our solution tells us that float is the best state to minimize the Joules metric.
We also underline the fact that some unexpected behavior can be seen when
combining leverages. For example, we underline the fact that changing float or
int to double for Precision, and keeping the SSE3 state activated for Vectorization
state, turns out to be counterproductive for the Joules metric.

The first short term future work is the parallelization of the creation of
the table of leverages in order to improve the time needed to build it. Then,
we plan to apply this methodology on other non CPU-intensive phases, such
as IO, HDD, and RAM-intensive phases with appropriate leverages for every
phase. Finally, a future working direction would be to extend this methodology
to costly transition leverage states, as for instance shutdown policies. Also, we
would like to investigate how to reduce the completion time for building such a
table. In fact, the time to solution here could be greatly reduced, for example
by predicting which run is not needed to know values of relevant metrics using
learning or prediction techniques.

References

1. H. Acar, G. I. Alptekin, J.-P. Gelas, and P. Ghodous. Towards a Green and
Sustainable Software. In Concurrent Engineering, pages 471–480, 2015.

2. I. E. Agency. Digitalization & Energy. White paper, 2017.
3. D. Balouek et al. Adding virtualization capabilities to the Grid’5000 testbed. In

Cloud Computing and Services Science, volume 367, pages 3–20. Springer, 2013.
4. G. L. T. E. A. Chetsa. A user friendly phase detection methodology for hpc

systems’ analysis. In IEEE International Conference on and IEEE Cyber, Physical
and Social Computing, 2013.

5. L. Dagum and R. Menon. OpenMP: an industry standard API for shared-memory
programming. IEEE computational science and engineering, pages 46–55, 1998.

6. B. Gallas and V. Verma. Embedded Pentium (R) processor system design for
Windows CE. In Wescon/98, pages 114–123. IEEE, 1998.

7. Y. Georgiou, D. Glesser, K. Rzadca, and D. Trystram. A scheduler-level incentive
mechanism for energy efficiency in hpc. In CCGrid, pages 617–626, 2015.

8. C. Lomont. Introduction to intel advanced vector extensions. Intel White Paper,
pages 1–21, 2011.

9. A. Peleg and U. Weiser. MMX technology extension to the Intel architecture.
IEEE micro, 16(4):42–50, 1996.

10. I. Rais, A.-C. Orgerie, and M. Quinson. Impact of Shutdown Techniques for
Energy-Efficient Cloud Data Centers. In ICA3PP, Dec. 2016.

11. D. Suleiman, M. Ibrahim, and I. Hamarash. Dynamic voltage frequency scaling
(DVFS) for microprocessors power and energy reduction. In International Confer-
ence on Electrical and Electronics Engineering, 2005.


	Exploiting the Table of Energy and Power Leverages[-.6cm]

