F. Gironi and V. Piemonte, VOCs removal from dilute vapour streams by adsorption onto activated carbon, Chem. Eng. J, vol.172, pp.671-677, 2011.
DOI : 10.1016/j.cej.2011.06.034

E. Gallego, F. J. Roca, J. F. Perales, and X. Guardino, Experimental evaluation of VOC removal efficiency of a coconut shell activated carbon filter for indoor air quality enhancement, Build. Environ, vol.67, pp.14-25, 2013.

X. Zhang, B. Gao, Y. Zheng, X. Hu, A. E. Creamer et al., Biochar for volatile organic compound (VOC) removal: Sorption performance and governing mechanisms, Bioresour. Technol, vol.245, pp.606-614, 2017.
DOI : 10.1016/j.biortech.2017.09.025

S. Pak, M. Jeon, and Y. Jeon, Study of sulfuric acid treatment of activated carbon used to enhance mixed VOC removal, Int. Biodeterior. Biodegradat, vol.113, pp.195-200, 2016.

H. Valdés, M. Sánchez-polo, J. Rivera-utrilla, and C. A. Zaror, Effect of ozone treatment on surface properties of activated carbon, Langmuir, vol.18, pp.2111-2116, 2002.

F. Qu, L. Z. Zhu, and K. Yang, Adsorption behaviors of volatile organic compounds (VOCs) on porous clay heterostructures (PCH), J. Hazard. Mater, vol.170, pp.7-12, 2009.
DOI : 10.1016/j.jhazmat.2009.05.027

P. Monneyron, M. H. Manero, and S. Mathé, A combined selective adsorption and ozonation process for VOCs removal from air, Can. J. Chem. Eng, vol.85, pp.326-332, 2007.
DOI : 10.1002/cjce.5450850307

N. Brodu, H. Zaitan, M. Manero, and J. Pic, Removal of volatile organic compounds by heterogeneous ozonation on microporous synthetic alumina silicate, Water Sci. Technol, vol.66, pp.2020-2026, 2012.
DOI : 10.2166/wst.2012.385

URL : https://hal.archives-ouvertes.fr/hal-00926358

H. Einaga and S. Futamura, Catalytic oxidation of benzene with ozone over Mn ion-exchanged zeolites
DOI : 10.1016/j.catcom.2006.07.024

, Catal. Commun, vol.8, pp.557-560, 2007.

C. W. Kwong, C. Y. Chao, K. S. Hui, and M. P. Wan, Catalytic ozonation of toluene using zeolite and MCM-41 materials, Environ. Sci. Technol, vol.42, pp.8504-8509, 2008.

C. Y. Chao, C. W. Kwong, and K. S. Hui, Potential use of a combined ozone and zeolite system for gaseous toluene elimination, J. Hazard. Mater, vol.143, pp.118-127, 2007.

C. W. Kwong, C. Y. Chao, K. S. Hui, and M. P. Wan, Removal of VOCs from indoor environment by ozonation over different porous materials, Atmos. Environ, vol.42, pp.2300-2311, 2008.

L. Yosefi, M. Haghighi, S. Allahyari, R. Shokrani, and S. Ashkriz, Abatement of toluene from polluted air over Mn/Clinoptilolite-CeO 2 nanopowder: Impregnation vs. Ultrasound assisted synthesis with various Mn-loading, Adv. Powder Technol, vol.26, pp.602-611, 2015.

M. Ahmadi, M. Haghighi, and D. Kahforoushan, Influence of active phase composition (Mn, Ni, Mn x Ni 10?x ) on catalytic properties and performance of clinoptilolite supported nanocatalysts synthesized using ultrasound energy toward abatement of toluene from polluted air, Process Saf. Environ. Protect, vol.106, pp.294-308, 2017.

M. Rafatullah, O. Sulaiman, R. Hashim, and A. Ahmad, Adsorption of methylene blue on low-cost adsorbents: A review, J. Hazard. Mater, vol.177, pp.70-80, 2010.

S. J. Allen, E. Ivanova, and B. Koumanova, Adsorption of sulfur dioxide on chemically modified natural clinoptilolite. Acid modification, Chem. Eng. J, vol.152, pp.389-395, 2009.

H. Valdés, V. A. Solar, E. H. Cabrera, A. F. Veloso, and C. A. Zaror, Control of released volatile organic compounds from industrial facilities using natural and acid-treated mordenites: The role of acidic surface sites on the adsorption mechanism, Chem. Eng. J, vol.244, pp.117-127, 2014.

A. Kuleyin, Removal of phenol and 4-chlorophenol by surfactant-modified natural zeolite, J. Hazard. Mater, vol.144, pp.307-315, 2007.

A. , S. Valdés, H. Manéro, M. Zaror, and C. A. , Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: The influence of zeolite chemical surface characteristics, J. Hazard. Mater, vol.274, pp.212-220, 2014.

G. S. Soylu, Z. Özçelik, and I. Boz, Total oxidation of toluene over metal oxides supported on a natural clinoptilolite-type zeolite, Chem. Eng. J, vol.162, pp.380-387, 2010.

M. Amereh, M. Haghighi, and P. Estifaee, The potential use of HNO 3-treated clinoptilolite in the preparation of Pt/CeO 2-clinoptilolite nanostructured catalyst used in toluene abatement from waste gas stream at low temperature, Arab. J. Chem, vol.11, pp.81-90, 2018.

S. J. Gregg and K. S. Sing, Adsortion, Surface Area and Porosity, p.371, 1982.

A. H. Englert and J. Rubio, Characterization and environmental application of a chilean natural zeolite, Int. J. Miner. Process, vol.75, pp.21-29, 2005.

G. E. Christidis, D. Moraetis, E. Keheyan, L. Akhalbedashvili, N. Kekelidze et al., Chemical and thermal modification of natural HEU-type zeolitic materials from armenia, georgia and greece, Appl. Clay Sci, vol.24, pp.79-91, 2003.
DOI : 10.1016/s0169-1317(03)00150-9

A. , S. Valdés, H. Manero, M. H. Zaror, and C. A. , BTX abatement using chilean natural zeolite: The role of bronsted acid sites, Water Sci. Technol, vol.66, pp.1759-1769, 2012.

H. Valdés, S. Alejandro, and C. A. Zaror, Natural zeolite reactivity towards ozone: The role of compensating cations, J. Hazard. Mater, vol.2012, pp.227-228

R. M. Barrer, Molecular sieve sorbents from clinoptilolite, Can. J. Chem, vol.42, pp.1480-1487, 1964.
DOI : 10.1139/v64-223

H. Valdés, V. J. Farfán, J. A. Manoli, and C. A. Zaror, Catalytic ozone aqueous decomposition promoted by natural zeolite and volcanic sand, J. Hazard. Mater, vol.165, pp.915-922, 2009.

A. , S. Valdés, H. Zaror, and C. A. , Natural zeolite reactivity towards ozone: The role of acid surface sites

, J. Adv. Oxidat. Technol, vol.14, pp.182-189, 2011.

M. Stöcker, Gas phase catalysis by zeolites. Micropor. Mesopor. Mater, vol.82, pp.257-292, 2005.

M. Guillemot, J. Mijoin, S. Mignard, and P. Magnoux, Volatile organic compounds (VOCs) removal over dual functional adsorbent/catalyst system, Appl. Catal. B Environ, vol.75, pp.249-255, 2007.
DOI : 10.1016/j.apcatb.2007.04.020

URL : https://hal.archives-ouvertes.fr/hal-00312805

M. A. Vannice, Kinetics of Catalytic Reactions

B. Kasprzyk-hordern, M. Ziólek, and J. Nawrocki, Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment, Appl. Catal. B Environ, vol.46, pp.639-669, 2003.

K. M. Bulanin, J. C. Lavalley, and A. A. Tsyganenko, IR spectra of adsorbed ozone, Colloids Surf. A Physicochem. Eng. Aspects, vol.101, pp.153-158, 1995.
DOI : 10.1016/0927-7757(95)03130-6

W. Li and S. T. Oyama, Mechanism of ozone decomposition on a manganese oxide catalyst. 2. Steady-state and transient kinetic studies, J. Am. Chem. Soc, vol.120, pp.9047-9052, 1998.

E. Rezaei and J. Soltan, Low temperature oxidation of toluene by ozone over MnO x /alumina and MnO x /MCM-41 catalysts, Chem. Eng. J, 2012.
DOI : 10.1016/j.cej.2012.06.016

K. M. Bulanin, J. C. Lavalley, and A. A. Tsyganenko, Infrared study of ozone adsorption on CaO, J. Phys. Chem. B, vol.101, pp.2917-2922, 1997.

R. Roque-malherbe, Complementary approach to the volume filling theory of adsorption in zeolites, vol.41, pp.227-240, 2000.

R. Roque-malherbe and V. Ivanov, Codiffusion and counterdiffusion of para-xylene and ortho-xylene in a zeolite with 10 MR/12 MR interconnected channels. An example of molecular traffic control, J. Mol. Catal. A Chem, vol.313, pp.7-13, 2009.

H. Einaga and S. Futamura, Catalytic oxidation of benzene with ozone over alumina-supported manganese oxides, J. Catal, vol.227, pp.304-312, 2004.

H. Einaga and A. Ogata, Benzene oxidation with ozone over supported manganese oxide catalysts: Effect of catalyst support and reaction conditions, J. Hazard. Mater, vol.164, pp.1236-1241, 2009.

H. Valdés, R. F. Tardón, and C. A. Zaror, Role of surface hydroxyl groups of acid-treated natural zeolite on the heterogeneous catalytic ozonation of methylene blue contaminated waters, Chem. Eng. J, pp.388-395, 2012.

M. Guisnet, P. Ayrault, C. Coutanceau, M. Fernanda-alvarez, and J. Datka, Acid properties of dealuminated beta zeolites studied by IR spectroscopy, J. Chem. Soc. Faraday Trans, vol.93, pp.1661-1665, 1997.

A. Simon-masseron, J. P. Marques, J. M. Lopes, F. R. Ribeiro, I. Gener et al., Influence of the Si/Al ratio and crystal size on the acidity and activity of HBEA zeolites, Appl. Catal. A Gen, vol.316, pp.75-82, 2007.

C. R. Reddy, Y. S. Bhat, G. Nagendrappa, and B. S. Prakash, Brønsted and Lewis acidity of modified montmorillonite clay catalysts determined by FT-IR spectroscopy, Catal. Today, vol.141, pp.157-160, 2009.

F. Jin and Y. Li, A FTIR and TPD examination of the distributive properties of acid sites on ZSM-5 zeolite with pyridine as a probe molecule, Catal. Today, vol.145, pp.101-107, 2009.

M. Tamura, K. Shimizu, and A. Satsuma, Comprehensive IR study on acid/base properties of metal oxides

, Appl. Catal. A Gen, pp.135-145, 2012.

T. Barzetti, E. Selli, D. Moscotti, and L. Forni, Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts, J. Chem. Soc. Faraday Trans, vol.92, pp.1401-1407, 1996.

C. A. Emeis, Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts, J. Catal, vol.141, pp.347-354, 1993.

F. Collignon and G. Poncelet, Comparative vapor phase synthesis of ETBE from ethanol and isobutene over different acid zeolites, J. Catal, vol.202, pp.68-77, 2001.

K. L. Konan, C. Peyratout, A. Smith, J. P. Bonnet, P. Magnoux et al., Surface modifications of illite in concentrated lime solutions investigated by pyridine adsorption, J. Colloid Interface Sci, vol.382, pp.17-21, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01115672