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Abstract
Fusion of the base classifiers is seen as the way to achieve
high performance in state-of-the-art speaker verification sys-
tems. Typically, we are looking for base classifiers that would
be complementary. We might also be interested in reinforcing
good base classifiers by including others that are similar to it.
In any case, the final ensemble size is typically small and has to
be formed based on some rules of thumb. We are interested to
find out the subset of classifiers that has a good generalization
performance. We approach the problem from the sparse learn-
ing point of view. We assume that the true, but unknown, fusion
weights are actually sparse. As a practical solution we regular-
ize the weighted logistic regression loss function by the Elastic-
Net constraint. Though sparse solutions can be easily obtained
using the so-called least absolute shrinkage and selection oper-
ator (LASSO), but it does not take into account high correlation
between classifiers. Elastic-Net, on the other hand, is a compro-
mise between LASSO and ridge regression constraints. While
ridge regression cannot produce sparse solutions, Elastic-Net
can. By using sparseness enforcing constraint we are able to
improve over the un-regularized solution in all but tel-tel condi-
tion.
Index Terms: logistic regression, regularization, compressed
sensing, linear fusion, speaker verification

1. Introduction
Speaker verification is the task of accepting or rejecting an iden-
tity claim based on a person’s voice sample [1]. Classification
can be done on eitherbase classifierlevel or at the level ofen-
semble, which is then called theclassifier fusion. In fusion,
binary classifier is trained on the base classifier scores to make
the accept or reject decision. The base classifiers might utilize,
for instance, different speech parameterizations (e.g. spectral,
prosodic or high-level features), classifiers (e.g. Gaussian mix-
ture models [2] or support vector machines [3]) or channel com-
pensation techniques (e.g. joint factor analysis [4] or nuisance
attribute projection [5]).

In this paper, we consider linear classifier as a fusion device
for the base classifer scores. Loss function used to optimize lin-
ear classifier parameters, i.e. the weight vectorw and the biasb,
play an important role as to how well learned classifier general-
izes to an unseen data [6]. It is well known that 0/1-loss, where
classification error is directly optimized, can lead to a serious
overfit. In addition, finding the global optimum of 0/1-loss is an
NP-complete computational problem [7]. Thehinge loss, also
known as maximum margin, andlogistic regressionhave been
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proposed to tackling these deficiencies, by optimizing the upper
bound of the 0/1-loss instead of the classification error itself.

Logistic regression loss defines an unconstrained convex
programming problem, meaning that the global optimum can
be found easily by iterative schemes [6]. In addition, logistic
regression loss has similar generalization features as the maxi-
mum margin in the SVM. Logistic regression has been applied
to the speaker verification score fusion task [8]. Later it was
popularized by thefusion and calibration(FoCal) toolkit. It
has subsequently been found to be usefull linear fusion train-
ing methodology by a number of independent studies (e.g.
[9, 10, 11]) and is taken here as a reference method.

Overfitting on the training data is still possible, even though
upper bound is optimized instead of 0/1-loss. To avoid overfit,
a regularization is required. Most common one is the quadratic
regularizationλ

2
‖w‖22 also known as theridge regression[12].

Regularization forces parameter shrinkage, where the greater
the Lagrange coefficientλ is, smaller the norm‖w‖1 will be.
Smaller norm implies better generalizability. Reason for it is
also easy to see, as higher norm means that some classifiers are
given a large weight based on the training data. Effectiveness
of these classifiers might not be realized on the evaluation data.

When the ensemble has a large number of classifiers, it is
expected that some of them will not play any role in a successful
ensemble. So, it would be beneficial to remove some badly per-
forming classifiers from the ensemble and thus reduce the pre-
diction variance [13]. We have recently studied whether FoCal-
based fusion can be improved by computing optimal weights
and bias for all subsets and then selecting the one subset that
gives best performance based on the training set [14]. We no-
ticed, in oracle experiments, that classifier selection can sig-
nificantly improve performance if suitable selection criterion is
utilized. Our proposal was to use 0/1-loss as the selection crite-
rion, this turned out not to generalize well. In addition, selection
does not necessarily shrink the norm of the weight vector.

In contrast to the ridge regression, other approach is to regu-
larize via the sum of absolute valuesλ

∑

i
|wi|1, which is called

least absolute shrinkage and selection operator(LASSO) [13].
It shrinks all coefficients, where some are forced to exactly zero.
By regularizing weighted logistic regression with LASSO con-
straint, we can simultaneously optimize fusion weights and per-
form classifier subset selection. The convex combination (by
parameterα) of ridge regression and LASSO leads to a reg-
ularization technique known as the Elastic-Net [15], which is
believed to be sharp on the zeroing capability and at the same
time smoother than the LASSO type of regularization. In addi-
tion, with Elastic-Net control of the norm of the weight vector
can be more fine-grained than using LASSO, by increasing the
influence of Ridge constraint.
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Figure 1: TheCwlr objective plotted as a function of two weights for systems{3, 11}. Included in the plots are the LASSO constraint
(diamond) and the minimum (circle). Training set (right), Evalset 1 (center) and Evalset 2 (left).This figure is a place-holder right
now, Tomi will find a better one.

In our previous work [16], we proposed to use LASSO and
Elastic-Net regularization techniques to simultaneously achieve
generalizable fusion device and classifier subset selection. By
doing so we have proposed a method to train the subset selector
by optimizing the weighted logistic regression loss.

and in this work we ...

2. Classifier Fusion
2.1. Problem Setup

We assume that, during the development phase, one has access
to a development setD = {(si, yi), i = 1, 2, . . . , Ndev} of
base classifier score vectorssi ∈ R

L, with yi ∈ {+1,−1}
indicating whether the corresponding speech sample originates
from a target speaker(yi = +1) or from a non-target(yi =
−1). UsingD, the goal is to find the best parameters(w∗, θ∗)
of a linear combinerfw,θ(s) = w

t
s+ θ so that a classification

error measure is minimized. We adopt thedetection cost func-
tion (DCF) used in the NIST speaker recognition evaluations,

Cdet(θ) = CmissPmiss(θ)Ptar + CfaPfa(θ)(1− Ptar), (1)

wherePtar is the prior probability of a target (true) speaker,
Cmiss is the cost of a miss (false rejection) andCfa is the cost of
a false alarm (false acceptance). These application-dependent
cost parameters can also be summarized as a single cost param-
eter,effective prior:

P = logit−1(logit(Ptar) + log(Cmiss/Cfa)), (2)

wherelogitP = logP − log(1−P ). It is possible to minimize
DCF directly (e.g. [17]) or to optimize a surrogate cost such as
effective prior weighted logistic regression cost [18].

2.2. Logistic regression

Here shortly about logistic regression model, where important
point is that quantitywt

si+w0 is log-odds and that optimizing
the negative log-likelihood leads to the cross-entropy objective.

2.3. Weighted cross-entropy objective

In the speaker verification applications, we are usually inter-
ested in a specific set of DCF parameters, by so doing we are
operating in a cost-sensitive learning. In addition, the ratio of
positive and negative examples in the development set might be
highly imbalanced. This is the case with the bi-annual NIST

evaluation setup.
In the FoCal software package[correct ref] , indirect opti-

mization of said parameters is achieved by modifying the cross-
entropy objectiveCwlr . Modification weights cost by effective
prior and the observed ratio of positive and negative examples.

Cwlr(w, s) =
P

Nt

Nt
∑

i=1

log
(

1 + e−w
t
si+θ′

)

+
1− P

Nf

Nf
∑

j=1

log
(

1 + ew
t
sj−θ′

)

, (3)

where the two sums go through theNt target score vectorssi

and theNf non-target score vectorssj , respectively. We will
also do the standard bias encoding, by adding one extra element
containing 1 tos. Global bias can then be extracted from the
corresponding position in the weight vector. Here,P is the ef-
fective prior defined in subsection 2.1 andθ′ = − logit(P ) is
the decision threshold which is determined from the pre-set cost
parametersPtar, Cmiss andCfa.

Due to the cross-entropy being convex in which theCwlr

loss function is optimized. We use iterative gradient descent
method

3. Regularized Logistic Regression
We extend the weighted logistic regression in Eq. (3), by adding
a regularization term. It leads to minimizing [6],

Cwlr(w, s) s.t. J(w) ≤ t, (4)

whereJ(w) is either 1
2
‖w‖22, which is called ridge regression

or ‖w‖1, and LASSO as well. The user specified parameter
t indicates the intended amount of parameter shrinkage. The
Lagrange coefficients will give us, in the case of LASSO the
following expression,

Cwlr(w, s) + λ‖w‖1. (5)

It is known that the largerλ, the more norm‖w‖ will be
shrunk [13]. If the optimization is based on the Eq. (5), then
the correspondence betweenλ and shrinkage thresholdt can be
found by a binary search on possibleλ values. In each iteration
we select oneλ value and optimize weights using it, output is
then the norm of the weights. Final weight vector is the one
which norm is closest to the targett, but does not violate it.



Elastic-Net, on the other hand, is based on the idea that we
can combine both regularizers into one constraint optimization
problem,

Cwlr(w, s) + λ
(

α‖w‖1 + (1− α)‖w‖22
)

. (6)

As can be seen, Eq. (6) is a generalized variant of both LASSO
and ridge regression, we can always find such aα where,
in terms of performance, Elastic-Net will at least not lose to
LASSO or ridge regression. However, whereas LASSO and
ridge regression had to select only one regression parameter,
now we need to crossvalidate over a 2-d space. In this work
we use the methodology, whereα parameter is first fixed and
then shrinkage factor can be cross validated as in LASSO and
Ridge. In practice,α will also be cross validated in such a way
that bestα and shrinkage factor will be selected based on cross
validation set to be applied on the evaluation set.

Depending on the chosen regularization method, there are
different strategies to optimize (4). Since logistic regression
using quadratic regularization is differentiable, it can be effi-
ciently optimized using standard packages [6]. Situation is not
so simple for LASSO regularization. In [13], aquadratic pro-
gramming(QP) solution was proposed to it by rewriting the
constraints in (4) to a more convenient form. However, more
recent techniques are faster in practice, for that reason we ap-
ply projectionL1algorithm [19] that optimizes the Lagrangian
form Eq. (5). We apply the same method to Elastic-Net, as,
sum of two convex functions is still convex, we can minimize
Cwlr(w, s)+λ(1−α)‖w‖22, givenλα‖w‖1 as the constraint.

3.1. Bayesian interpretation

Regularized logistic regression can be seen as a MAP esti-
mate [13] of logistic regression, where prior is Gaussian, in the
case of Ridge regression, and Laplacian, in the case of LASSO.
add more details

3.2. Variational Bayes fusion

Using automatic relevance determination(ARD) in the fully
Bayesian logistic regression, we can generate sparse solutions
without cross-validating any regularization parameters.add
more details

4. Corpora, Metrics and Base Classifiers
4.1. Experiments with I4U systems

We utilize the two most recent NIST SRE corpora, namely,
NIST 2008 and NIST 2010, in our experiments1. The audio
files from all NIST 2008 speakers were split into two disjoint
parts. Trials were then automatically generated from those two
sets, while keeping observedptarget similar than in the official
NIST 2008 SRE trial lists. The first part,trainset, is used for
training the score warping parameters (S-cal was used as pre-
calibration method), fusion weights and bias. The second part,
cross validation set, is used to estimate shrinkage parameter (λ)
and tradeoff between LASSO and Elastic-Net (α). Parameters
are then applied to NIST 2010 data, which serves as the evalua-
tion purposes.

For evaluation of the methods, we consider the detection
cost function in (1), where the cost parameters are adopted from
the previous NIST SRE evaluation plans, namely,Cmiss = 10
Cfa = 1 andPtar = 0.01. Decision is based on the threshold

1http://www.itl.nist.gov/iad/mig//tests/sre/

obtained from effective prior in Eq. (2). And we are interested
in comparing the application dependent classification error as
measured in actual DCF (ActDCF).
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Figure 2: Weight evolution of the LASSO regularization as a
function of normalizedt.
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Figure 3: Weight evolution of the ridge regression regulariza-
tion as a function of normalizedt.

In this study we use the same ensemble setup as in our pre-
vious work [14]. We have twelve subsystems in total, all are
based on different cepstral features and four different classi-
fiers, as part of the of the I4U system. When subsystems share
the same classifier and features, it means that the systems are
independent implementations. For classifiers, we use the gener-
ative GMM-UBM-JFA [4] and the discriminative GMM-SVM
approaches with KL-divergence kernel [20] and the recently
proposed Bhattacharyya kernel [21]. We also include another
recent method, feature transformation [22], as an alternative su-
pervector for SVM. All of the methods are grounded on the
universal background model(UBM) paradigm and share simi-
lar form of subspace channel compensation, though the training
methods differ. We used data from the NIST SRE 2004, SRE
2005 and SRE 2006 corpora to train the UBM and the session
variability subspaces, and additional data from the Switchboard
corpus to train the speaker-variability subspace for the JFA sys-
tems. Each base classifier has its own score normalization prior
to score warping and fusion. To this end, we use T-norm and
Z-norm with NIST SRE 2004 and SRE 2005 data as the back-
ground and cohort training data.
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Figure 4: Weight evolution of the Elastic-net regularization,
with α = 0.7, as a function of normalizedt.
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Figure 5: Effect of ensemble size to accuracy (Evalset 2) us-
ing VB logistic regression. For a fixed ensemble size (K), the
lowest (green) and highest (red) lines show the best and worst
possible selections out from the

(

12

K

)

choices from Evalset 2
(NIST SRE 2010). The middle (blue) line indicates the actual
ensemble selected by cross-validation Evalset 1.

5. Experiments
It is instructive to show the evolution of the individual classifier
weights as the function of threshold parametert. In Figs. 2, 3
and 4 we observe the fusion weights as a function of normalized
shrinkage threshold̂t = t/‖ŵ‖, whereŵ is the unregularized
solution. We see that̂t will tell how much of the unregularized
norm is left after shrinkage. It can be noticed immediately that
ridge regression tends to group all classifiers to similar weights
as the norm is shrunk towards zero. The grouping effect and the
lack of it in the LASSO is known in the general regression liter-
ature [15]. Ridge regression tends to group together classifiers
that are correlated. LASSO on the other hand tends to select
few classifers per group. Selection is evident in Fig. 2, as very
quickly only four classifiers are left in the ensemble, namely
GMM-SVM using MFCC and LPCC front-end and two JFA
systems with PLP front-end (base classifiers{1, 2, 6, 7}). It is
notable that even though both JFA base classifers use same fea-
tures, they are different implementations, even using different
programming languages, also data sets used for learning factor
loading matrices are different.

Regularization path of the Elastic-Net solutions on the other
hand shows grouping effect, it appears to group classifiers into
4 different groups with theα = 0.7 selection. Only two classi-
fiers are zeroed out when shrinkage ratio is set to 0.66.

Table 1: Variational Bayes logistic regression compared to max-
imum likelihood trained logistic regression.

Fusion EER MinDCF ActDCF Ensemble
(%) (×100) (×100) size

itv
itv

Log. Regr 3.55 1.8072 2.8420 12
VB 3.51 1.7789 2.8728 10
VB-ARD 3.48 1.7621 2.9289 10

itv
te

l Log. Regr 2.40 0.98 1.74 12
VB 2.50 0.9683 2.0020 12
VB-ARD 2.50 0.9924 2.0112 12

m
ic

m
ic Log. Regr 5.10 .2.35 4.14 12

VB 5.10 2.2273 4.8788 9
VB-ARD 5.67 2.1127 5.6405 9

te
lte

l Log. Regr 2.33 1.12 1.18 12
VB 2.23 1.1396 3.0361 12
VB-ARD 2.27 1.1746 3.1334 12

5.1. Variational Bayes approaches

Variational Bayesian (VB) logistic regression with automatic
relevance determination (ARD) prior is shown in Table 1. As
in logistic regression weighting was used but in VB approaches
effective prior information was not used it was assumed that in
terms of DCF logistic regression would be the winner. How-
ever, in all but tel-tel condition VB approaches won in terms
of minDCF. Our way of using VB logistic regression did not
output well calibrated scores (at least in contrast to the logistic
regression).

In terms of EER, VB did work better for itv-itv and tel-
tel conditions. Relative improvement over logistic regression in
tel-tel condition is 5.6%.

It is interesting to note that both VB and VB-ARD ap-
proaches do infact zero out some base classifiers, but only for
the case of itv-itv and mic-mic conditions. Table 1 also shows
that difference between VB and VB-ARD is negligible. We do
not consider ARD further.

As noted in the Table 1, VB approaches underfit, in terms
of finding the sparse solution. However, we can utilize sub-
set selection methodology, where VB solution is found for all
subsets of base classifiers. Results for it are shown in In Fig. 5,
where best real solution is chosen based on the Evalset 1 (shown
in blue) and applied to Evaset 2. Best and worst oracle bound
are also shown. As a comparison we show also same experi-
ment when logistic regression was used instead of VB in Fig. 6.
We notice that VB provides much more stabile performance as
function of subset size.

In Table 2, subset size is also selected by cross-validation
from Evalset 1. There is an improvement over full ensemble
methodsm except in ActDCF. Using subset selection ensemble
size was further reduced from 10 to 6.

Table 2: Variational Bayes using subset selection applied to
Evalset 2. Cross-validation is performed on Evalset 1.

Fusion EER MinDCF ActDCF Ensemble
(%) (×100) (×100) size

itv
itv

subset Log. Regr3.40 1.7506 2.6119 6
subset VB 3.38 1.7524 3.0221 6
subset VB-ARD 3.37 1.7532 3.0322 6
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Figure 6: Effect of ensemble size to accuracy (Evalset 2) using
logistic regression. For a fixed ensemble size (K), the lowest
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2010). The middle (blue) line indicates the actual ensemble
selected by cross-validation Evalset 1.

5.2. Results with all core conditions

In Table 4 we show recognition results for the NIST SRE 2010
sub-conditions (itv-itv, itv-tel, mic-mic and tel-tel). We de-
fine baseline method to signify an unregularized solution (i.e.
λ = 0), equivalent to the implementation of the FoCal toolkit,
but with a different optimizer. Best single classifier is selected
based on the performance on the cross validation set, so all
methods are directly, and fairly, comparable in Table 4. We
notice that for itv-tel and mic-mic subcondition (for both males
and females) Elastic-Net achieves the best results, in terms of
Actual DCF. It is interesting to note that improvement in Actual
DCF is because scores are better calibrated after fusion with
Elastic-Net than with other methods.

General trend, when comparing minDCF over all condi-
tions seems to be that there are no large differences in except
in the mic-mic condition where FoCal clearly fails. Differences
in Actual DCF are the mostly the product of different calibra-
tions. Noting here that the bias isnot regularized.

It is interesting to note that predicting theα value using
cross validation set is not a trivial problem. It is clear that in
the case when either LASSO or Ridge won over Elastic-Net in
terms of Actual DCF the prediction ofα was unsuccesful. Es-
pecially interesting is the case itv-itv female, where prediction
gaveα = 0 (i.e. Ridge) and in the NIST SRE 2010 LASSO
was clearly better.

Regularization, however, does not bring improvement in
tel-tel condition. For the tel-tel condition, designers of base
classifiers had a very large and extensively used corpora avail-
able where to tune their systems. In addition, selection of data
sets for the estimation of session compensation parameters is
more straight forward. But the interview and microphone data
conditions did not have such a wealth of material backing their
classifier design. Then it is expected that regularization will
hurt the classification performance in the tel-tel condition. In
other conditions, significant improvement over the baseline can
be achieved by all regularization methods. Ridge regression and
Elastic-Net obtain in general best performance, where best one
according to cross validation results come from Elastic-Net (in
five out of eight sub conditions).

5.3. Avoiding sparsity

As λ is increased LASSO tends to zero out large number of
base classifiers. In this section we are interested to regularize
the LASSO regularizer, in so words to make it less harsh. We

can exclude any of the base classifiers from being zeroed out by
the optimizer by adding an extra constraintwj 6= 0 to the (4).
Taking Lagrange formulation of the constrained optimization
problem, we giveλ for wj 6= 0 constraint. We assume that said
λ is the same as one for the LASSO, thenλ equals to zero for
base classifierj.

In Table 3, cross-validation was used to select which classi-
fier not to regularize per condition. We notice that not regulariz-
ing one classifier does not lead to ensemble size being increased
by one classifier, in the case of itv-tel ensemble size decreased
from 8 to 7. In other conditions, increase in ensemble size is
observed, extreme being tel-tel condition where ensemble size
was increased from 5 to full ensemble.

Not regularizing one classifier helps in the itv-tel condition,
where EER improves from 2.40% to 2.25%. Lowest minDCF
in tel-tel condition is obtained using this configuration.

Table 3: Restricting LASSO by not regularizing one base
classifier on Evalset 2. Regularization parameter and non-
regularizing base classifier selected using Evalset 1.

Condition EER MinDCF ActDCF Ensemble
(%) (×100) (×100) size

itv-itv 3.40 1.7135 2.5198 8
itv-tel 2.25 1.1631 1.4407 7
mic-mic 5.67 2.3601 3.4493 4
tel-tel 2.27 1.1074 1.1922 12

6. Conclusions
We have studied regularized logistic regression fusion on the
NIST SRE 2010 core test sub conditions. We find that regu-
larization brings improvement over unregularized variant when
the development set and evaluation set (NIST SRE 2010) are so
closely matched.

As a future work we plan to extend the variational Bayes
approach used in this paper to the Elastic-Net regularized logis-
tic regression.
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Table 4: Comparison of fusion methods for NIST SRE 2010 set, all tuningparameters have been cross validated using NIST SRE 2008
development set.

Training EER MinDCF ActDCF ‖wreg‖1
‖w‖1

Ensemble
method (%) (×100) (×100) size

itv
-it

v
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