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Abstract

The MapReduce programming paradigm allows to process big data sets in parallel on a large cluster of
commodity machines. The MapReduce users often outsource their data and computations to a public cloud
provider. We focus on the fundamental problem of matrix multiplication, and address the inherent security and
privacy concerns that occur when outsourcing to a public cloud. Our goal is to enhance the two state-of-the-art
algorithms for MapReduce matrix multiplication with privacy guarantees such as: none of the nodes storing an
input matrix can learn the other input matrix or the output matrix, and moreover, none of the nodes computing
an intermediate result can learn the input or the output matrices. To achieve our goal, we rely on the well-known
Paillier’s cryptosystem and we use its partially homomorphic property to develop efficient algorithms that satisfy
our problem statement. We develop two different approaches called Secure-Private (SP) and Collision-Resistant-
Secure-Private (CRSP), and compare their trade-offs with respect to three fundamental criteria: computation
cost, communication cost, and privacy guarantees. Finally, we give security proofs of our protocols.

1 Introduction

MapReduce [6] is a programming paradigm for processing big data sets. The MapReduce programs are automati-
cally parallelized and executed on a large cluster of commodity machines. The users need to specify two functions
(map and reduce), whereas the system takes care of several aspects such as partitioning the data, scheduling the
program’s execution across the machines, handling machine failures, and managing the communication between
different machines.

In practice, the MapReduce users often outsource their data and computations i.e., they rent storage and
computing resources from a public cloud provider (e.g., Google Cloud Platform, Amazon Web Services, Microsoft
Azure). On the positive side, using a public cloud makes the big data processing accessible to users who cannot
afford to build their own clusters. However, outsourcing the data and computations to a public cloud involves
inherent security and privacy concerns. Indeed, the MapReduce users are no longer in control of their data, which
may be communicated over an untrusted network and processed on some untrusted machine, where malicious
public cloud users may breach their privacy.

We address the fundamental problem of MapReduce matrix multiplication from a privacy-preserving perspec-
tive i.e., we develop algorithms for which the public cloud cannot learn neither the input nor the output data.
The matrix multiplication is also the original purpose for which the Google implementation of MapReduce was
created. Such multiplications are needed by Google in the computation of the PageRank algorithm. The standard
algorithms for MapReduce matrix multiplication use either two or one communications rounds, and moreover,
their communication and computation cost analysis have been throughly analysed in Chapter 2 of [12].

Problem statement. Two compatible matrices M and N are stored in the distributed file system of some public
cloud provider. A user (who does not know the matrices M and N) wants their product P = M × N . We
assume that the matrix M is initially spread over a set M of nodes, each of them storing a chunk of M i.e., a
set of elements of M . Similarly, the matrix N is initially spread over a set N of nodes. In the case of one round
(Figure 1), the final result P is spread over a set R of nodes before it is sent to the user’s nodes P; in the case of
two rounds (Figure 2), intermediate results are spread over a set R1 of nodes and the final result P is spread over
a set R2 of nodes before it is sent to the user’s nodes P. We expect the following properties:

1. the user cannot learn any information about input matrices M and N ,
2. none of the nodes in M can learn any information about matrices N and P ,
3. none of the nodes in N can learn any information about matrices M and P ,
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Figure 1: One Round.
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Figure 2: Two Rounds.

Algorithm # rounds Computation cost (big-O) Comm. cost (big-O) Privacy

Standard
in [12]

Two
2n2 + (C× + C+)n3 n3 + 3n2

None
One 2n3 + n2

Secure-Private
(SP)

Two (C+ + 2CE)n
2 + (2C× + 2Cexp + CD)n3 3n3 + 4n2 All†

One (1 + CE)n
2 + (C× + Cexp)n3 2n3 + n2 Only (1)–(3)

CRSP
Two

2CEn
2 + (4CE + 7C× + 2CD + 2Cexp)n3 4n3 + 3n2

All
One 5n3 + n2

† Assuming nodes do not collude.

Figure 3: Summary of results. Let n be max(a, b, c), and C× (resp. C+, Cexp, CE , CD) is the cost of multiplication
(resp. addition, exponentiation, encryption, decryption).

4. none of the nodes in R (for one round), or in R1 and R2 (for two rounds) can learn any information about
matrices M , N , and P .

The second and third condition state that none of the nodes storing an input matrix can learn the other input
matrix or the output matrix, whereas the fourth condition states that none of the public cloud’s nodes storing
intermediate or final result can learn the input or the output matrices.

Notice that a straightforward solution would require the use of a fully homomorphic encryption scheme e.g.,
Gentry [11]. Indeed, a fully homomorphic encryption scheme would allow to execute directly in the encrypted
domain all multiplications and additions needed for computing a matrix multiplication. Unfortunately, such an
approach would solve our problem only from a theoretical point of view because making a fully homomorphic
encryption scheme work in practice remains an open question (as noted e.g., in [11]).

Summary of contributions. We propose algorithms that extend the two standard algorithms for MapReduce
matrix multiplication (as found in Chapter 2 from [12]) while ensuring data privacy, and remaining efficient from
both computational and communication points of view.

Our technique is based on the well-known Paillier’s cryptosystem [17], which is partially homomorphic i.e., it is
additively homomorphic. The integration of this cryptosystem into the standard MapReduce algorithms for matrix
multiplication is not trivial. Indeed, Paillier’s cryptosystem does not allow to execute directly in the encrypted
domain the multiplications that are needed for matrix multiplication.

Assuming that the public cloud’s nodes do not collude, we design the Secure-Private (SP) approach which
satisfies all afeorementionned conditions. Indeed, we show that if nodes N collude with nodes R2, then R2

can retrieve all elements of matrix N . The second approach designs a sophisticated algorithm that relies on
additional communications to overcome these risks of collusions; this idea led to our Collision-Resistant-Secure-
Private (CRSP) approach, which satisfies all conditions enumerated in the problem statement.

We summarize in Figure 3 the trade-offs between computation cost, communication cost, and privacy guar-
antees for our two approaches and the two standard MapReduce algorithms for matrix multiplication. In our
communication cost analysis, we measure the total size of the data that is emitted from a map or reduce node, and
the additional data that needs to be communicated to realize the interactive multiplication in the encrypted do-
main. The CRSP approach satisfies all privacy constraints and resists to collusions, but requires a communication
overhead.

Related work. Chapter 2 of [12] presents an introduction to the MapReduce paradigm. In particular, it includes
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the two MapReduce algorithms for matrix multiplication that we enhance with privacy preservation.
The security and privacy concerns of MapReduce have been summarized in a recent survey [7]. To the best

of our knowledge, no existing work has addressed the problem of matrix multiplication, on which we focus in this
paper. More precisely, the state-of-the-art techniques for execution of MapReduce computations while preserving
privacy focus on problems such as word search [3, 8], information retrieval [14, 8], count queries [19, 8], equijoins [8],
and range queries [8]. The general goal of these works is to execute MapReduce computations such that the public
cloud cannot learn the data. This is precisely our goal too, but for a fundamentally different task i.e., matrix
multiplication.

Distributed matrix multiplication has been thoroughly investigated in the secure multi-party computation
model (MPC) [9, 1, 20, 10], whose goal is to allow different nodes to jointly compute a function over their
private inputs without revealing them. The aforementioned works on secure distributed matrix multiplication have
different assumptions compared to our MapReduce framework: (i) they assume that nodes contain entire vectors,
whereas the division of the initial matrices in chunks as done in MapReduce does not have such assumptions,
and (ii) in MapReduce, the functions specified by the user [6] are limited to map (process a key/value pair to
generate a set of intermediate key/value pairs) and reduce (merge all intermediate values associated with the same
intermediate key), and the matrix multiplication is done in one or two communication rounds [12]; on the other
hand, the works in the MPC model assume arbitrary numbers of communication rounds, relying on more complex
functions than map and reduce.

Moreover, generic MPC protocols [13, 4] allow several nodes to securely evaluate any function. Such protocols
could be used to secure MapReduce. However, due to their generic nature, they are inefficient and require a lot of
interactions between parties. Our goal is to design an optimized protocol to secure MapReduce.

Paper organization. We introduce the needed cryptographic tools in Section 2 and the standard algorithms for
matrix multiplication with MapReduce in Section 3. We present our SP algorithm for secure matrix multiplication
with MapReduce and its analysis in Section 4, and the CRSP algorithm in Section 5. We prove the security of
our algorithms in Section 6. We outline conclusion and future work in Section 7.

2 Cryptographic Tools

We start by recalling the definition of negligible function used in security proofs and definition, and security
requirements of public key cryptosystems.

Definition 1 (Negligible function). A function ε : N → N is negligible in η if for every positive polynomial p(·)
and sufficiently large η, ε(η) < 1/p(η).

Definition 2 (Public Key Encryption (PKE)). Let η be a security parameter. A PKE scheme is defined by three
algorithms (G, E ,D):

G(η): returns a public/private key pair (pk, sk).

Epk(m): returns the ciphertext c.

Dsk(c): returns the plaintext m.

A PKE scheme Π = (G, E ,D) is indistinguishable under chosen-plaintext attack (IND-CPA) [2] if for any probalis-
tic polynomial time adversary A, the difference between 1

2 and the probability that A wins the IND-CPA experiment
in Figure 4 is negligible, where the oracle Epk(LRb(·, ·)) takes (m0,m1) as input and returns Epk(mb). The standard
definition of CPA experiment allows the adversary to call this oracle only one time. However, in [2] authors prove
that the two definitions of CPA security are equivalent using an hybrid argument.

In the following, we require an additive homomorphic encryption scheme to secure the computation of matrix
multiplication with MapReduce. There exist several schemes that have this property [16, 17, 5, 15]. We choose
Paillier’s public key encryption scheme [17] to illustrate specific required homomorphic properties. Our results
and proofs are generic, since any other encryption schemes having such properties can be used instead of Paillier’s
scheme.
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ExpIND-CPA
Π,A (η):

b
$← {0, 1}

(pk, sk)← G(η);
b∗ ← AEpk(LRb(·,·))(pk)
return (b = b∗)

Figure 4: IND-CPA experiment [2].
A B

Knows c1 = EpkA(m1) and c2 = EpkA(m2)
Picks two randoms δ1, δ2 ∈ Zn

DskA(α1) = m1 + δ1 and DskA(α2) = m2 + δ2
α1,α2←−−− α1 = c1 × EpkA(δ1) and α2 = c2 × EpkA(δ2)

β = EpkA((m1 + δ1)× (m2 + δ2))
β−→ EpkA(m1 ×m2) = β

EpkA (δ1×δ2)×cδ21 ×c
δ1
2

Figure 5: Paillier interactive mutiplicative homomorphic protocol, of computation cost O(4CE+6C×+2CD+2Cexp)
and communication cost O(3).

2.1 Paillier’s Scheme

Paillier’s scheme is an IND-CPA scheme [18], we recall the key generation, the encryption and decryption algo-
rithms.

Key Generation. We denote by Zn, the ring of integers modulo n and by Z∗n the set of inversible elements of
Zn. The public key pk of Paillier’s encryption scheme is (n, g), where g ∈ Z∗n2 and n = p × q is the product of
two prime numbers such that gcd(p, q) = 1.

The corresponding private key sk is (λ, µ), where λ is the least common multiple of p − 1 and q − 1 and
µ = (L(gλ mod n2))−1 mod n, where L(x) = x−1

n .

Encryption Algorithm. Let m be a message such that m ∈ Zn. Let g be an element of Z∗n2 and r be a random
element of Z∗n. We denote by Epk the encryption function that produces the ciphertext c from a given plaintext m
with the public key pk = (n, g) as follows: c = gm × rn mod n2.

Decryption Algorithm. Let c be the ciphertext such that c ∈ Zn2 . We denote by Dsk the decryption function
of the plaintext c with the secret key sk = (λ, µ) defined as follows: m = L

(
cλ mod n2

)
× µ mod n .

2.2 Homomorphic Properties

Paillier’s cryptosystem is a partial homomorphic encryption scheme. We present these properties.

Homomorphic Addition of Plaintexts. Let m1 and m2 be two plaintexts in Zn. The product of the two
associated ciphertexts with the public key pk = (n, g), denoted c1 = Epk(m1) = gm1 × rn1 mod n2 and c2 =
Epk(m2) = gm2 × rn2 mod n2, is the encryption of the sum of m1 and m2.

Epk(m1)× Epk(m2) = c1 × c2 mod n2

= (gm1 × rn1 )× (gm2 × rn2 ) mod n2

=
(
gm1+m2 × (r1 × r2)n

)
mod n2

= Epk(m1 +m2 mod n) .

We also remark that:
Epk(m1)
Epk(m2) = Epk(m1 −m2).

Specific Homomorphic Multiplication of Plaintexts. Let m1 and m2 be two plaintexts in Zn and c1 ∈ Z∗n2

be the ciphertext of m1 with the public key pk (c1 = Epk(m1)). With Paillier’s scheme, c1 raised to the power of
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m2 is the encryption of the product of the two plaintexts m1 and m2.

Epk(m1)m2 = cm2
1 mod n2

= (gm1 × rn1 )m2 mod n2

= (gm1·m2 × (rm2
1 )n) mod n2

= Epk(m1 ×m2 mod n) .

Interactive Homomorphic Multiplication of Ciphertexts. Cramer et al. [4] show that an interactive
protocol makes possible to perform multiplication over ciphertexts using additive homomorphic encryption schemes
as Paillier’s encryption scheme. More precisely, Bob knows two ciphertexts c1, c2 ∈ Z∗n2 of the plaintexts m1,m2 ∈
Zn with the public key of Alice, he wants to obtain the cipher of the product of m1 and m2 without revealing to
Alice m1 and m2. For this Bob has to interact with Alice as described in Figure 5. Bob first picks two randoms
δ1 and δ2 and sends to Alice α1 = c1 × EpkA(δ1) and α2 = c2 × EpkA(δ2). By decrypting respectively α1 and α2,
Alice recovers respectively m1 + δ1 and m2 + δ2. She sends to Bob β = EpkA((m1 + δ1) × (m2 + δ2)). Then,

Bob can deduce the value of E(m1 ·m2) by computing: β

EpkA (δ1×δ2)×cδ11 ×c
δ2
2

, since EpkA((m1 + δ1) × (m2 + δ2)) =

EpkA(m1 ×m2)× EpkA(m1 × δ2)× EpkA(m2 × δ1)× EpkA(δ1 × δ2).

3 Matrix Multiplication

Let M and N be two compatible matrices, respectively of size a× b and b× c. We denote by mij the element of
the matrix M which is in the i-th row and the j-th column with 1 ≤ i ≤ a and 1 ≤ j ≤ b. In the same way, we
denote by njk the element of the matrix N which is in the j-th row and k-th column with 1 ≤ j ≤ b and 1 ≤ k ≤ c.
Moreover, we denote by P the product M ×N .

3.1 Two MapReduce Rounds

The matrix multiplication with two MapReduce rounds is composed of four functions: first Map function (2R-M1),
first Reduce function (2R-R1), second Map function (2R-M2) and second Reduce function (2R-R2).

The First Map Function (Figure 6(a)). 2R-M1 consists of rewriting each element of matrices M and N in the
form of key-value pairs such that elements needed to compute each element of the product M ×N share the same
key. Hence, nodesM create pairs of the form (j, (M, i,mij)), where 1 ≤ i ≤ a and 1 ≤ j ≤ b and send them to the
set of nodes R1. In the same way, nodes N create pairs of the form (j, (N, k, njk)) where 1 ≤ j ≤ b and 1 ≤ k ≤ c
and send them to R1. We stress that M and N in the values are the names of matrices, that can be encoded with
a single bit, and not the matrices themselves.

The First Reduce Function (Figure 6(b)). To compute elements of P , the first step is to compute each product
mij × njk for 1 ≤ j ≤ b. Hence 2R-M1 executed on R1 creates key-values pairs and sends them to R2 where for a
key (i, k) with 1 ≤ i ≤ a and 1 ≤ k ≤ c, values are mij × njk for 1 ≤ j ≤ b.

The Second Map Function. In this second round, 2R-M2 is the identity function, hence we further omit it from
the analysis of the computation and communication costs.

The Second Reduce Function (Figure 6(c)). It is executed by nodes of type R2 and aggregates all values with
the same key to obtain key-value pairs ((i, k),

∑b
j=1mij × njk). Then R2 sends results to P.

3.2 One MapReduce Round

The matrix multiplication with one MapReduce round is composed of two functions: the Map function (1R-M)
and the Reduce function (1R-R).

The Map Function (Figure 7(a)). It is executed onM and N , and creates the sets of matrix elements that are
needed to compute each element of the product M ×N . Since an element of M or N is used for many elements
of the final result, the output of the Map function sent to R gives key-value pairs where keys are (i, k) where i is
the row of M and k is the column of N , and values are of the form (N, j,mij) and (N, j, njk).

The Reduce Function (Figure 7(b)). With the previous Map function, we obtain for a key (i, k) a set of values
of the form (M, j,mij) and (N, j, njk) with 1 ≤ j ≤ b. Then, 1R-R executed by R computes the sum of mij × njk
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Input: (key, value)
// key: id of a chunk of M or N
// value: collection of (i, j,mij)
// or (j, k, njk)
foreach (i, j,mij) ∈ value do

emitM→R1
(j, (M, i,mij))

foreach (j, k, njk) ∈ value do
emitN→R1 (j, (N, k, njk))

(a) 1st Map function (2R-
M1).

Input: (key, value)
// key: id of a chunk of M or N
// value: collection of (i, j,mij)
// or (j, k, njk)
foreach (i, j,mij) ∈ value do

emitM→R1
(j, (M, i, Epkp (mij)))

foreach (j, k, njk) ∈ value do
emitN→R1

(j, (N, k,(njk + τjk, Epkr2 (τjk))))

(d) 1st Map function (2R-SP-M1).

Input: (key, value)
// key: id of a chunk of M or N
// value: collection of (i, j,mij)
// or (j, k, njk)
foreach (i, j,mij) ∈ value do

emitM→R1
(j, (M, i, Epkp (mij)))

foreach (j, k, njk) ∈ value do
emitN→R1

(j, (N, k, Epkp (njk)))

(g) 1st Map function (2R-CRSP-M1).

Computation cost: 2n2. Computation cost: (C+ + 2CE)n2. Computation cost: 2CEn
2.

Communication cost: 2n2. Communication cost: 3n2. Communication cost: 2n2.

Input: (key, values)
//key: 1 ≤ j ≤ b
//values: collection of (M, i,mij)
// or (N, k, njk)
foreach (M, i,mij) ∈ values do

foreach (N, k, njk) ∈ values
do

emitR1→R2
((i, k), (mij×

njk))

(b) 1st Reduce function
(2R-R1).

Input: (key, values)
//key: 1 ≤ j ≤ b
//values: collection of (M, i, Epkp (mij))

// or (N, k,(njk + τjk, Epkr2 (τjk)))

foreach (M, i, Epkp (mij)) ∈ values do

foreach (N, k,(njk + τjk, Epkr2 (τjk))) ∈
values do

emitR1→R2
((i, k),

(Epkp (mij)
njk+τjk , Epkp (mij), Epkr2 (τjk)))

(e) 1st Reduce function (2R-SP-R1).

Input: (key, values)
//key: 1 ≤ j ≤ b
//values: collection of (M, i, Epkp (mij))

// or (N, k, Epkp (njk))

foreach (M, i, Epkp (mij)) ∈ values do

foreach (N, k, Epkp (njk)) ∈ values do

emitR1→R2
((i, k),

inter(Epkp (mij), Epkp (njk)))

(h) 1st Reduce function (2R-CRSP-
R1).

Computation cost: C×n3. Computation cost: Cexpn3. Computation cost: (4CE + 6C× + 2CD + 2Cexp)n3.
Communication cost: n3. Communication cost: 3n3. Communication cost: 4n3.

Input: (key, values)
//key: (i, k) ∈ J1, aK× J1, cK
//values: collection of v = mij ×
njk
emitR2→P ((i, k),

∑
((i,k),v) v)

(c) 2nd Reduce function
(2R-R2).

Input: (key, values)
//key: (i, k) ∈ J1, aK× J1, cK
//values: collection of (v1, v2, v3) =

// (Epkp (mij)
njk+τjk , Epkp (mij), Epkr2 (τjk))

emitR2→P ((i, k),
∏

((i,k),(v1,v2,v3))
v1/(v

Dskr2
(v3)

2 ))

(f) 2nd Reduce function (2R-SP-R2).

Input: (key, values)
//key: (i, k) ∈ J1, aK× J1, cK
//values: collection of v = Epkp (mij × njk)

emitR2→P ((i, k),
∏

((i,k),v) v)

(i) 2nd Reduce function (2R-CRSP-
R2).

Computation cost: C+n3. Computation cost: (2C× + Cexp + CD)n3. Computation cost: C×n3.
Communication cost: n2. Communication cost: n2. Communication cost: n2.

Figure 6: Algorithms for two MapReduce rounds, the highlighting emphasizes differences between algorithms of
the first column and the second one, and between algorithms of the second column and the third one. By n we
denote max(a, b, c). Computation and communication costs are given in big-O notation.

6



Input: (key, value)
//key: id of a chunk of M or N
//value: collection of (i, j,mij) or
(j, k, njk)
foreach (i, j,mij) ∈ value do

foreach 1 ≤ k ≤ b do
emitM→R((i, k), (M, j,mij))

foreach (j, k, njk) ∈ value do
foreach 1 ≤ i ≤ a do

emitN→R((i, k), (N, j, njk))

(a) Map function (1R-M).

Input: (key, value)
//key: id of a chunk of M or N
//value: collection of (i, j,mij) or
(j, k, njk)
foreach (i, j,mij) ∈ value do

foreach 1 ≤ k ≤ c do
emitM→R((i, k), (M, j,
Epkp (mij)))

foreach (j, k, njk) ∈ value do
foreach 1 ≤ i ≤ a do

emitN→R((i, k), (N, j, njk)

(c) Map function (1R-SP-M).

Input: (key, value)
//key: id of a chunk of M or N
//value: collection of (i, j,mij) or
(j, k, njk)
foreach (i, j,mij) ∈ value do

foreach 1 ≤ k ≤ c do
emitM→R((i, k), (M, j, Epkp (mij)))

foreach (j, k, njk) ∈ value do
foreach 1 ≤ i ≤ a do

emitN→R((i, k), (N, j,
Epkp (njk)))

(e) Map function (1R-CRSP-M).

Computation cost: 2n2. Computation cost: (1 + CE)n2. Computation cost: 2CEn
2.

Communication cost: 2n3. Communication cost: 2n3. Communication cost: 2n3.

Input: (key, values)
//key: (i, k) ∈ J1, aK× J1, cK
//values: collection of (M, j,mij)
// or (N, j, njk)
foreach j ∈ J1, bK do

emitR→P ((i, k),
∑b
j=1(mij ×

njk))

(b) Reduce function (1R-R).

Input: (key, values)
//key: (i, k) ∈ J1, aK× J1, cK
//values: collection of (M, j, Epkp (mij))

// or (N, j, njk)
foreach (i, k) ∈ J1, aK× J1, cK do

emitR→P ((i, k),∏b
j=1 Epkp (mij)

njk )

(d) Reduce function (1R-SP-R).

Input: (key, values)
//key: (i, k) ∈ J1, aK× J1, cK
//values: collection of (M, j, Epkp (mij))

// or (N, j, Epkp (njk))

foreach (i, k) ∈ J1, aK× J1, cK do
emitR→P ((i, k),∏b

j=1 inter(Epkp (mij), Epkp (njk)))

(f) Reduce function (1R-CRSP-
R).

Computation cost: (C+ + C×)n3. Computation cost: (C× + Cexp)n3. Computation cost (4CE + 7C× + 2CD + 2Cexp)n3.
Communication cost: n2. Communication cost: n2. Communication cost: 3n3 + n2

Figure 7: Algorithms for one MapReduce round, the highlighting emphasizes differences between algorithms of
the first column and the second one, and between algorithms of the second column and the third one. By n we
denote max(a, b, c). Computation and communication costs are given in big-O notation.

with 1 ≤ j ≤ b for each key (i, k). These results are paired to the keys (i, k) for 1 ≤ i ≤ a and 1 ≤ k ≤ c in the
output of 1R-R and sent to the MapReduce user P.

4 SP Matrix Multiplication

The SP matrix multiplication with MapReduce uses the Paillier’s scheme and the idea of adding a random mask
to ensure privacy of elements of matrices.

4.1 SP Two MapReduce Rounds

The matrix multiplication for SP two MapReduce rounds is composed of four functions: the first Map function
(2R-SP-M1), the first Reduce function (2R-SP-R1), the second Map function (2R-SP-M2) and the second Reduce
function (2R-SP-R2).

The First SP Map Function (Figure 6(d)). 2R-SP-M1 encrypts all elements mij of the matrix M using
Paillier’s cryptosystem with the public key pkp of user P and masks all elements njk of the matrix N by adding
a random element τjk ∈ Zn to njk. Moreover, 2R-SP-M1 encrypts and sends each τjk with the public key pkr2 of
nodes R2.

The First SP Reduce Function (Figure 6(e)). 2R-SP-R1 is executed on the set of nodes R1. As we have
seen in the standard MapReduce, 2R-R1 produces key-value pairs where the key is equal to (i, k) and values is
equal to mij · njk for 1 ≤ j ≤ b. In the SP approach, keys are also equal to (i, k) but values are tuples equal to
(Epkp(mij)

njk+τjk , Epkp(mij), EpkR2
(τjk)). Thus, R1 can compute Epkp(mij×njk)×Epkp(mij)

τjk using homomorphic

properties of Paillier’s cryptosystem which is equal to Epkp(mij)
njk+τjk in the tuple. The mask removal is later on

done in nodes R2.
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The Second SP Map Function. It is also the identity.

The Second SP Reduce Function (Figure 6(f)). 2R-SP-R2, executed on R2, multiplies all values associated
to the same key (i, k). Moreover, R2 removes all masks for each value using Epkp(mij) and Epkr2 (τjk) emitted by

R1. In fact, to compute Epkp(mij × njk), R2 computes

Epkp(mij)
njk+τjk/

(
Epkp(mij)

Dskr2
(Eskr2 (τjk)))

=Epkp(mij)
njk × Epkp(mij)

τjk/Epkp(mij)
τjk

=Epkp(mij × njk) .

4.2 SP One MapReduce Round

The matrix multiplication for SP one MapReduce round is composed of two functions: the Map function (1R-
SP-M) and the Reduce function (1R-SP-R). Unlike in two MapReduce rounds, elements of matrix N cannot be
masked since there is only one reduce function.

The SP Map Function (Figure 7(c)). In 1R-SP-M, only elements of matrix M are encrypted with the public
key pkp of the user P using Paillier’s cryptosystem.

The SP Reduce Function (Figure 7(d)). 1R-SP-R uses the homomorphic property of Paillier’s cryptosystem.
In fact, instead to summing all products mij × njk; 1R-SP-R mutltiplies, for each key (i, k), all encrypted values
Epkp(mij)

njk corresponding to Epkp(mij × njk).

5 CRSP Matrix Multiplication

The MapReduce matrix multiplication with one and two rounds reveals all intermediate results to each set of
nodes of the cluster. For example, when matrix multiplication is performed with two MapReduce rounds, R1

knows all elements of matrices M and N . We describe below MapReduce algorithms with the CRSP approach,
which precludes the cluster nodes from learning elements of the matrices.

5.1 CRSP Two MapReduce Rounds

The matrix multiplication for CRSP two MapReduce rounds is composed of four functions: the first Map function
(2R-CRSP-M1), the first Reduce function (2R-CRSP-R1), the second Map function (2R-CRSP-M2) and the second
Reduce function (2R-CRSP-R2).

The First CRSP Map Function (Figure 6(g)). Unlike 2R-SP-M1, 2R-CRSP-M1 encrypts all elements mij

of the matrix M and all elements njk of the matrix N with the public key pkp of the user P. Hence, when
2R-CRSP-M1 emits the key-value pairs to R1, which learns nothing about elements of matrices M and N .

The First CRSP Reduce Function (Figure 6(h)). It has to perform multiplications of encrypted values
having the same key on R1, i.e. for a key (i, k), R1 multiplies Epkp(mij) by Epkp(njk) for 1 ≤ j ≤ b. We use
the interactive protocol in Figure 5 to perform mutiplication of two ciphertexts with the Paillier’s cryptosystem.
Hence, R1 interacts with the client P to perform the multiplications.

The Second CRSP Map Function. It is also the identity.

The Second CRSP Reduce Function (Figure 6(i)). Since R2 receives key-value pairs where values v equal
to Epkp(mij × njk), R2 uses the homomorphic property of Paillier’s cryptosystem to compute the sum of all
encrypted values associated to the same key (i, k). Pricisely, 2R-CRSP-R2 computes

∏
((i,k),v) v for a key (i, k)

which represents Epkp(
∑

((i,k),v) v).
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5.2 CRSP One MapReduce Round

Finally, we present the matrix multiplication for CRSP one MapReduce round composed of two functions: the
Map function (1R-CRSP-M) and the Reduce function (1R-CRSP-R).

The CRSP Map Function (Figure 7(e)). 1R-CRSP-M creates the sets of matrix elements used to compute
the product of matrices M and N . All these matrix elements are encrypted with the public key pkp of the user
P. Hence, M, N and R cannot learn any information on elements of these matrices.

The CRSP Reduce Function (Figure 7(f)). For a key (i, k), it takes as input values of the form (M, j, Epkp(mij))

and (N, j, Epkp(njk)), for 1 ≤ j ≤ b. To compute
∑b

j=1mij × njk from these encrypted values, 1R-CRSP-R uses
Paillier’s interactive multiplicative homomorphic protocol.

6 Security Proofs

We provide formal security proof of our two rounds CRSP protocol. Proofs for the one round CRSP protocol and
for SP protocols are quite similar but having no space for all four, we focus on the most technically interesting.

We use the standard multi-party computations definition of security against semi-honest adversaries [13]. We
consider several entities that run a secure protocol in order to evaluate a multivariate function f . For example,
consider two parties A and B using respectively inputs a and b that run a secure two-party protocol to evaluate
the multivariate function f = (fA, fB). At the end of the protocol, A learns fA(a, b) and B learns fB(a, b). Such
a protocol is secure when A (resp. B) learns nothing else than fA(a, b) about b (resp. fB(a, b) about a). We
consider semi-honest adversaries in the sense that A and B run honestly the protocols, but they try to exploit all
intermediate information that they have received during the protocol.

We model our protocol with five entities M,N ,R1,R2 and P using respective inputs I = (IM, IN , IR1 , IR2 ,
IP) and a function f = (fM, fN , fR1 , fR2 , fP) such that:
• M has the input IM = (M, pkp) where M is a matrix and pkp is a Paillier’s public key, and returns fM(I) =⊥

(where ⊥ denotes that the function returns nothing), because M does not learn anything.
• N has the input IN = (N, pkp) where N is a matrix and pkp is a Paillier’s public key, and returns fN (I) =⊥,

because N does not learn anything.
• R1 has the input IR1 = pkp where pkp is a Paillier’s public key, and returns fR1(I) =⊥, because R1 does

not learn anything.
• R2 has the input IR2 = pkp where pkp is a Paillier’s public key, and returns fR2(I) =⊥, because R2 does

not learn anything.
• P has the input IP = (pkp, skp) where (pkp, skp) is a Paillier’s key pair, and returns fP(I) = M ×N .

Note that for the sake of clarity, we consider that R2 sends the product of the encrypted matrices to P instead
of storing them in a database. Moreover, we show that our two-rounds protocol is secure even if the two reduce
nodes R1 and R2 collude, i.e. they share all their information.

We start by formally defining the Computational Indistinguishability and the view of an entity before formally
presenting the security of CRSP MapReduce protocols.

Definition 3 (Computational indistinguishability). Let η be a security parameter and Xη and Yη two distribu-

tions. We say that Xη and Yη are Computationally Indistinguishable, denoted Xη
c≡ Yη, if for every probabilistic

polynomial-time distinguisher D we have:

|Pr[x← Xη : 1← D(x)]− Pr[y ← Yη : 1← D(y)]| ≤ ε(η) ,

where ε is a negligible function in η.

Definition 4 (view). Let π be a n-parties protocol that computes the function f = (fi)1≤i≤n for the entites
(Ei)1≤i≤n using inputs I = (Ii)1≤i≤n. The view of a party Ei (where 1 ≤ i ≤ n) during an execution of π, denoted
viewπ

Ei
(I), is the set of all values sent and received by Ei during the protocol. We denote by viewπ

Ei,Ej
(I) =

(viewπ
Ei

(I),viewπ
Ej

(I)) (where 1 ≤ i, j ≤ n) the view of a collusion between Ei and Ej.
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To prove that a party E learns nothing during execution of the protocol, we show that E can run a simula-
tor algorithm that simulates the protocol, such that E (or any polynomialy bounded algorithm) is not able to
differentiate an execution of the simulator and an execution of the real protocol. The idea is the following: since
the entity E is able to generate his view using the simulator without the secret inputs of other entities, E cannot
extract any information from his view during the protocol. This notion is formalized in Definition 5.

Definition 5 (Security with respect to semi-honest behavior). Let π be a n-parties protocol that computes the
function f = (fi)1≤i≤n for entites (Ei)1≤i≤n using inputs I = (Ii)1≤i≤n ∈ I. We say that π securely computes f in
the presence of semi-honest adversaries if for each Ei (where 1 ≤ i ≤ n) there exists probabilistic polynomial-time
simulators SEi such that:

SEi(Ii, fEi(I))
c≡ viewπ

Ei(I) .

We say that π is secure against collusions between Ei and Ej (where 1 ≤ i, j ≤ n) if there exist probabilistic
polynomial-time simulators SEi,Ej such that:

SEi,Ej ((Ii, fEi(I)), (Ij , fEj (I)))
c≡ viewπ

Ei,Ej (I) .

The security of CRSP two MapReduce rounds is given by Theorem 1.

Theorem 1. Assume Paillier’s cryptosystem is IND-CPA, then the CRSP two-rounds protocol securely computes
the matrix mutiplication in the presence of semi-honest adversaries even if R1 and R2 collude. Moreover, the
CRSP one-round protocol securely computes the matrix multiplication in the presence of semi-honest adversaries.

In a security point of view, the only difference between the two protocols is that the collusion of the nodes R1

and R2 in the two-rounds protocol becomes a unique node R in the one-round protocol, then the security of the
two-rounds protocol implies the security of the one-round one.

The security proof for the two-rounds protocol (Theorem 1) is decomposed in Lemma 1 forM and N , Lemma 2
for R1 and R2 and Lemma 3 for P.

Lemma 1. There exists probabilistic polynomial-time simulators SM and SN such that for all I = (IM, IN , IR1 , IR2 , IP)
we have:

SM(IM, fM(I))
c≡ viewCRSP

M (I) ,

SN (IN , fN (I))
c≡ viewCRSP

N (I) .

Proof. We build the simulator SM presented in Algorithm 1. The view of M only contains the encryption of
M that is sent to R1. We remark that SM((M, pkp),⊥) uses exactly the same algorithm as the real protocol of

CRSP, then it describes exactly the same distribution as viewCRSP
M (I), which concludes the proof. Building the

simulator SN as SM, we prove that SN ((N, pkp),⊥) describes exactly the same distribution as viewCRSP
N (I).

SM((M, pkp),⊥):

M ′ ←
(
Epkp(mij)

)
1≤i≤a,1≤j≤b

;

view = (M ′) ;
return view.

Algorithm 1: Simulator SM.

Lemma 2. Assume Paillier’s cryptosystem is IND-CPA, then there exists a probabilistic polynomial-time simulator
SR1,R2 such that for all I = (IM, IN , IR1 , IR2 , IP) we have:

SR1,R2((IR1 , fR1(I)), (IR2 , fR2(I)))
c≡ viewCRSP

R1,R2
(I) .
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Proof. Let SR1,R2 be the simulator presented in Algorithm 2. It outputs the view of R1 that contains the
two encrypted matrices M ′ and N ′ sent by M and N , all couples of ciphertexts (xijk, yijk) sent to P and all
corresponding ciphertexts zijk returned by P to compute multiplication on encrypted coefficients, and all the
values zijk that are forwarded to R2. It also outputs the view of R2 that contains all values zijk sent by R1 and
coefficients uik of the encrypted matrix P ′ sent to P.

Let η be the security parameter used for the Paillier’s cryptosystem. Assume there exists a polynomial-time
distinguisher D such that for all I ∈ I:∣∣Pr[s← SR1,R2((IR1 , fR1(I)), (IR2 , fR2(I))) : 1← D(s)]

− Pr[s← viewCRSP
R1,R2

(I) : 1← D(s)]
∣∣ = ε(η) ,

where ε is a non-negligible function in η. We show how to build a probabilistic polynomial-time adversary A such
that A has a non-negligible advantage to win the IND-CPA experiment on the Paillier’s cryptosystem. Then we
conclude the proof by contraposition. Adversary A is presented in Algorithm 3. At the end of its execution, A
uses the distinguisher D to compute the bit b∗ before returning it. First, we remark that:

Pr[1← ExpIND-CPA
Paillier,A(η)|b = 0] =

Pr[s← viewCRSP
R1,R2

(I) : 0← D(s)] .

Indeed, when b = 0, the view that A uses as input for D is computed as in the real protocol CRSP. Then the
probability that the experiment returns 1 (which is the probability that b∗ = b = 0) is equal to the probability
that the distinguisher returns 0 on inputs computed as in the real protocol. On the other hand, we have:

Pr[1← ExpIND-CPA
Paillier,A(η) | b = 1] =

Pr[s← SR1,R2((IR1 , fR1(I)), (IR2 , fR2(I))) : 1← D(s)] .

When b = 1, the view that A uses as input for D is computed as in the simulator SR1,R2 . Then the probability
that the experiment returns 1 (which is the probability that b∗ = b = 1) is equal to the probability that the
distinguisher returns 1 on inputs computed as in the simulator. Finally, we evaluate the probability that A wins
the experiment, i.e. b∗ = b:

Pr[1← ExpIND-CPA
Paillier,A(η)]

= Pr[b = 0] · Pr[1← ExpIND-CPA
Paillier,A(η) | b = 0]

+ Pr[b = 1] · Pr[1← ExpIND-CPA
Paillier,A(η) | b = 1]

=
1

2
· Pr[s← viewCRSP

R1,R2
(I) : 0← D(s)]

+
1

2
· Pr[s← SR1,R2((IR1 , fR1(I)), (IR2 , fR2(I))) : 1← D(s)]

=
1

2
· Pr[s← viewCRSP

R1,R2
(I) : 0← D(s)]

+
1

2
·
(

Pr[s← viewCRSP
R1,R2

(I) : 1← D(s)]± ε(η)
)

=
1

2
· Pr[s← viewCRSP

R1,R2
(I) : 0← D(s)]

+
1

2
− 1

2
· Pr[s← viewCRSP

R1,R2
(I) : 0← D(s)]± 1

2
· ε(η)

=
1

2
± ε(η)

2
.

We deduce the advantage of A: ∣∣∣∣Pr
[
1← ExpIND-CPA

Paillier,A(η)
]
− 1

2

∣∣∣∣ =
ε(η)

2
.

Which concludes the proof by contraposition.
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SR1,R2((pkp,⊥), (pkp,⊥)):

for 1 ≤ i ≤ a do

for 1 ≤ j ≤ b do αij
$← Zn;

for 1 ≤ j ≤ b do

for 1 ≤ k ≤ c do βjk
$← Zn;

M ′ ← (Epkp(αij))1≤i≤a,1≤j≤b ;

N ′ ← (Epkp(βjk))1≤j≤b,1≤k≤c ;

for 1 ≤ i ≤ a do
for 1 ≤ k ≤ c do

for 1 ≤ j ≤ b do

(rijk, sijk, tijk)
$← (Zn)3 ;

xijk ← Epkp(αij)× Epkp(rijk) ;

yijk ← Epkp(βjk)× Epkp(sijk) ;

zijk ← Epkp(tijk) ;

uik =
∏b
j=1 zijk ;

viewR1 = (M ′, N ′, {(xijk, yijk), zijk}1≤i≤a,1≤j≤b,1≤k≤c) ;
viewR2 = ({zijk}1≤i≤a,1≤j≤b,1≤k≤c, {uik}1≤i≤a,1≤k≤c) ;
return view = (viewR1 ,viewR2).

Algorithm 2: Simulator SR1,R2 .

Lemma 3. There exist a probabilistic polynomial-time simulator SP such that for all I = (IM, IN , IR1 , IR2 , IP)
we have:

SP(IP , fP(I))
c≡ viewCRSP

P (I) .

Proof. We build the simulator SP presented in Algorithm 4. The view of P contains the couple of ciphertexts
(xijk, yijk) sent by R1 and the answer zijk that contains the encryption of the multiplication of xijk and yijk. Since
xijk and yijk are randomized by R1, there are indistinguishable to random ciphertexts in the P point of view. The
view of P also contains P ′ = Epkp(P ) encrypted by pkp that is sent by R2. Finally, SP((pkp, skP), P ) describes

exactly the same distribution as viewCRSP
P (I), which concludes the proof.

7 Conclusion and Future Works

We have presented efficient algorithms for MapReduce matrix multiplication that enjoy privacy guarantees such
as: none of the nodes storing an input matrix can learn the other input matrix or the output matrix, and moreover,
none of the nodes computing an intermediate result can learn the input or the output matrices. To achieve our goal,
we have relied on Paillier’s cryptosystem and we developed two different approaches: one resisting to collusions
between nodes (Collision-Resistant-Secure-Private) and an other which does not require communication overhead
(Secure-Private). We have thoroughly compared these two approaches with respect to three fundamental criteria:
computation cost, communication cost, and privacy guarantees.

Looking forward to future work, we plan to study the practical performance of our algorithms in an open-source
system that implements the MapReduce paradigm. Additionally, we aim to investigate the matrix multiplication
with privacy guarantees in different big data systems (such as Spark or Flink) whose users also tend to outsource
data and computations similarly to MapReduce.
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Rhône-Alpes, the support of the “Digital Trust” Chair from the University of Auvergne Foundation, the Indo-
French Centre for the Promotion of Advanced Research (IFCPAR) and the Center Franco-Indien Pour La Promo-

12



A(pkp):

for 1 ≤ i ≤ a do

for 1 ≤ j ≤ b do mij
$← Zn;

for 1 ≤ j ≤ b do

for 1 ≤ k ≤ c do njk
$← Zn;

M = (mij)1≤i≤a,1≤j≤b ;
N = (njk)1≤j≤b,1≤k≤c ;
for 1 ≤ i ≤ a do

for 1 ≤ k ≤ c do
for 1 ≤ j ≤ b do

(vijk, wijk)
$← (Zn)2 ;

xijk ← Epkp(vijk) ;

yijk ← Epkp(wijk) ;

θijk
$← Zn ;

zijk ← Epkp(LRb(mij × njk, θijk)) ;

uik =
∏b
j=1 zijk ;

for 1 ≤ i ≤ a do
for 1 ≤ j ≤ b do

µi,j
$← Zn ;

m′ij ← Epkp(LRb(mij , µi,j)) ;

M ′ ← (m′ij)1≤i≤a,1≤j≤b ;

for 1 ≤ j ≤ b do
for 1 ≤ k ≤ c do

δj,k
$← Zn ;

n′jk ← Epkp(LRb(njk, δj,k)) ;

N ′ ← (n′jk)1≤j≤b,1≤k≤c ;

viewR1 = (M ′, N ′, {xijk, yijk, zijk})1≤i≤a,1≤j≤b,1≤k≤c) ;
viewR2 = ({zijk}1≤i≤a,1≤j≤b,1≤k≤c, {uik}1≤i≤a,1≤k≤c) ;
b∗ ← D(viewR1 ,viewR2) ;
return b∗.

Algorithm 3: Adversary A.

SP
(
(pkp, skP), P

)
:

for 1 ≤ i ≤ a do
for 1 ≤ k ≤ c do

for 1 ≤ j ≤ b do

(rijk, sijk)
$← (Zn)2 ;

xijk ← Epkp(rijk) ;

yijk ← Epkp(sijk) ;

zijk ← Epkp(rijk · sijk) ;

(pik)1≤i≤a,1≤k≤c = P ;

P ′ ←
(
Epkp(pjk)

)
1≤i≤a,1≤k≤c

;

view = ({(xijk, yijk), zijk}1≤i≤a,1≤j≤b,1≤k≤c, P ′) ;
return view.

Algorithm 4: Simulator SP .
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