High-Speed Quantitative 3D Blood Flow Imaging by Multi illumination Holographic Microscopy

Alexey Brodoline, Nitin Rawat, Dario Donnarumma, Daniel Alexandre, Michel Gross
Laboratoire Charles Coulomb (L2C), UMR5221, CNRS-Université de Montpellier, Montpellier, France

Abstract:
A holographic microscopy method using two illumination beams with a 0.5 aperture objective is proposed to image blood microcirculation in zebrafish larvae. Recent achievements in 3D imaging of blood flow are presented.

OCS codes: (090.1995) Digital holography; (170.0180) Microscopy; (170.1470) Blood or tissue constituent monitoring; (290.5850) Scattering, particles.

Background

Blood flow monitoring:
- Assesses angiogenesis, tumor vascularization
- Early detection of cardiovascular diseases, age-related macular degeneration

Zebrafish used for:
- A model in drug screening
- Effect of the active substances on the cardiovascular functions
- Zebrafish heart as a model for human heart

Conventional imaging techniques
- Cardiac microscopy
- OIC + GFP fluorescence

The techniques commonly used are invasive

Goals

Expected characteristics of the measurement technique
- Fast 3D Imaging
- Position of RBCs in volume
- 3D information in one camera frame

Non-invasive operation
- No contrast agents (label-free)
- No genetic engineering

Multimodality, information extraction
- Integration with conventional microscopes
- Amplitude / phase information
- Quantitative measurement of blood flow

Dual-illumination Holographic Microscopy Setup

The setup is an upright transmission microscope adapted for digital holography in off-axis configuration. Typical camera frequencies are 100/200 Hz.

A double illumination of the sample is performed to better localize the position of the red blood cells (RBCs) in z.

Benefit of double illumination illustrated with an element of a USAF target. Reconstruction in different planes.

2D Holographic Reconstruction of Zebrafish Blood Flow

Fourier Transform of the hologram obtained with a 20x/0.5 microscope objective with a phase ring. The double illumination is visible inside the pupil of the HO.

+1 order cropped in the Fourier space. The two directions of illumination are numerically selected and represented in colors.

3D Reconstruction with cleaning algorithm

3D cube of data containing the information on the light scattered around the sample. A cleaning algorithm extracts the positions of the RBCs.

The positions of the RBCs correspond to the points of maximum correlation between the two illuminations.

Reconstructed 3D images of the vascular system of a 5-days zebrafish. (a, b) Averaged in time positions of the RBCs give the shape of the vessels. (c) Positions of the RBCs in one camera frame.

We acknowledge Labex NUMEV (convention ANR-10-LABX-20) for funding.